Gamma-Ray Imaging Instrumentation in Oncology Current Status, Challenges and Opportunities

Lars R. Furenlid, PhD and James M. Woolfenden, MD

Center for Gamma-ray Imaging College of Medicine and College of Optical Sciences University of Arizona

CGRI Faculty and Staff

L. R. Furenlid, PhD, Co-P.I. and Co-Director
H. H. Barrett, PhD, Co-P.I. and Co-Director
J. M. Woolfenden, MD, Associate Director for Biomedical Applications
M. A. Kupinski, PhD, Project Leader
Z. Liu, MD, Project Leader
L. Caucci, PhD
E. Clarkson, PhD
G. Stevenson, DVM - Veterinarian
C. Clarkson, PhD
C. Stevenson, DVM - Veterinarian
C. Stevenson, DVM - Veterinarian

C. Barber, Research Technician

CGRI Adjunct Faculty B. Miller, Assistant Professor, University of Colorado

P41-EB002035

Overview

- The fundamentals
- Current state of the art
- Why it always comes down to better detectors
- Making use of all of the information carried by each gamma-ray photon
- Collimation strategies
- Progress and opportunity

Molecular Imaging

George Charles de Hevesy (1885 – 1966) 1943 Nobel Prize in Chemistry

Molecular target becomes a signal source *Tracer should not affect target or organism*

• Use for tumor staging, but rarely for initial diagnosis

- Use for tumor staging, but rarely for initial diagnosis
- Detect small/unsuspected metastases (pivotal task)

- Use for tumor staging, but rarely for initial diagnosis
- Detect small/unsuspected metastases (pivotal task)
- Assess baseline metabolic activity

- Use for tumor staging, but rarely for initial diagnosis
- Detect small/unsuspected metastases (pivotal task)
- Assess baseline metabolic activity
- Assess drug targeting (and off-target localization)

- Use for tumor staging, but rarely for initial diagnosis
- Detect small/unsuspected metastases (pivotal task)
- Assess baseline metabolic activity
- Assess drug targeting (and off-target localization)
 - Radioimmunotherapy drugs: dose needed for therapy

- Use for tumor staging, but rarely for initial diagnosis
- Detect small/unsuspected metastases (pivotal task)
- Assess baseline metabolic activity
- Assess drug targeting (and off-target localization)
 - Radioimmunotherapy drugs: dose needed for therapy
 - New drug development: targeting and kinetics

- Use for tumor staging, but rarely for initial diagnosis
- Detect small/unsuspected metastases (pivotal task)
- Assess baseline metabolic activity
- Assess drug targeting (and off-target localization)
 - Radioimmunotherapy drugs: dose needed for therapy
 - New drug development: targeting and kinetics
- Monitor tumor metabolic response to therapy

Recipe for High-Resolution Small-Animal SPECT

- Starting with: 2-3 mm intrinsic-resolution Anger camera + 1-2 mm bore parallel-hole collimator + filtered back projection reconstruction
- Move to pinhole apertures with magnification
- Develop analytical forward model and switch to statistical reconstruction (ML-EM, etc...)
- Add additional pinholes and cameras to acquire projections in parallel
- Combine with high resolution anatomical modality
- Make pinholes smaller and move closer to object, trading FOV for magnification
- Calibrate system for more accurate forward model measured H matrix
- Gate acquisition to reduce respiratory and cardiac motion

CGRI Modular Camera

Record all sensor values associated with an event at full precision

200 MHz LVDS Data Link

Sensor Signals and Times

Photon-by-photon list

ata	Event#	EventSignals		EventTime (s)	
Camera 0 Da	1 2 3 4	PMT 0 PMT 1 PMT 0 PMT 1 PMT 0 PMT 1 PMT 0 PMT 1	····PMT 8 PMT 8 ^{::::} PMT 8 PMT 8	xxx.xxxxxxxx xxx.xxxxyyyy xxx.xxxxzzzz xxx.xxxaaaaa	×16

All data acquisition in FastSPECTII is dynamic

Call it static if nothing changed in object

List-mode, double list-mode, and dynamic list-mode reconstruction are immediately important areas of research.

FastSPECT II Imager

Second generation dynamic SPECT imager

Key Features:

16 cameras in 2 rings of 8 with adjustable radial position

5 axis robotic stage for calibration and imaging subject positioning

Exchangeable cylindrical imaging apertures for choice of magnification/field-ofview

Listmode data acquisition architecture Full dynamic imaging capability for periodic and non-periodic processes Gigabit data link GPU-enabled real-time ML position estimation and images Data rate: 50 Gbits/sec

Dynamic FastSPECT Images of Drug Resistance

Drug Sensitive Tumor

Drug Resistant Tumor

Imaging recognition of multidrug resistance in human breast tumors using ^{99m}Tc-labeled monocationic agents and a high-resolution stationary SPECT system

Zhonglin Liu*, Gail D. Stevenson, Harrison H. Barrett, George A. Kastis, Michael Bettan¹, Lars R. Furenlid, Donald W. Wilson, James M. Woolfenden Nuclear Medicine and Biology 31(1), 53 – 65, 2004.

FaCT – An Adaptive CT

Companion modality for FastSPECT II

FaCT: Hi-Res Adaptive CT

Graduate Students: Jared Moore & Todd Bonham

High-Magnification Aperture

Application: neuroblastoma invasion in mouse knee

Magnification ~ 20 Pinholes = 100 μ m Resolution ~ 100 μ m FOV ~ (5 mm)³

Graduate Student: Mick Crawford

High-Magnification SPECT

Neuroblastoma invasion in the mouse knee

Axial

Coronal

High-magnification FSII images of mouse knee with invading neuroblastoma tumor

Above: Tomographic slices *Right*: CT showing field of view *Left*: Movie illustrating insult and response of femur Sagittal

Resident: Bret Abbott

Current State of the Art

- ~ 1 × 1 × 1 mm³ in a mouse-sized field of view
- ~ .5 × .5 × .5 mm³ in a small field of view
- 9% energy resolution at 140 keV

Recipe for Ultra-High-Resolution Small-Animal SPECT

- Improve camera intrinsic resolution, add DOI to reduce parallax
- Move to direct-conversion: semiconductor detector technologies
- Eliminate events with non-local energy deposition in detector
- Incorporate scatter and attenuation in object-specific H matrix
- Reconstruct in photon-by-photon list-mode form

CGRI Detectors

Modular Camera

iQID Camera

Arizona CZT Pixel Detector

Si DSSD

Takahashi-group CdTe DSSD

The Intensified Quantum Imaging Detector (iQID)

Graduate Students: Brian Miller & Ling Han

iQID Camera

Add optical gain between scintillator and an imaging sensor

Imaging Single 511 keV Photons

Direct visualization of gamma-ray photons

Acquisition Mode

Photon counting (fast frames with few events)

Integrating (slow frames with lots of events)

Beam direction

Distance between beam axis and scintillator exit face

Graduate Students: Brian Miller & Stephen Moore

Amazing Spatial Resolution

Identify complicated interactions in detector

CsI(TI) - 450µm thick film

iQID SPECT

CGRI's FastSPECTIII system incorporates 20 iQID cameras viewing a common field of view

Rodent brain imaging

GPU-based in-line processing for all 20 cameras operating in 200-frame-persecond mode is accomplished in computing rack with 5 computers

Graduate Student: Brian Miller

Comparison with Commercial Systems

· Each system in highest resolution mode offered

FastSPECT III Imaging

Multi-bed position acquisition and multi-scale PSF

iQID Alpha-Particle Imaging

1 mm

vides a significant e over simply integrating

Post-doc: Brian Miller

iQID Summary

- Exquisite spatial resolution
- Limited sensitivity due to need for structured scintillator (< 3 mm so far)
- Compromised energy resolution due to gain noise in microchannel plate of intensifier
- Superb for microdosimetry in autoradiography specimens

Si Double-Sided Strip Detector

Strip pitch 58 microns Thickness 1 mm 1024 × 1024 strips

Raw Energy Resolution

²⁴¹Am flood exposure: energy spectra, one strip

Collaboration with Vanderbilt University

Estimated Energy with Multiple Strips

Multi-isotope SPECT at low E

255 × 255 × 255 VOXEIS

- 15 mm \times 15 mm \times 15 mm FOV
- 250-µm slits
- 60 10-minute projections
- 5 subsets OSEM
- 5 iterations

Information Carriers

Similarities

- Gamma-ray initially interacts via photoelectric absorption or Compton scatter
- Interaction is local to a scale of ~100 µm
- Outputs are current pulses with comparable timing characteristics
- Multiple sensors generate output for each event (light spread for scintillator, charge spread for CZT/CdTe

Takahashi Group CdTe DSSD

- Fano factor for CdTe is ~0.1
- Ionization energy for CdTe is 4.43 eV.
- High density, high atomic number CdTe (Z_{Cd} =48 and Z_{Te} =52). Expanded dynamic range in readout suitable for energies to 400 keV and above

CdTe DSSD Energy Resolution

- Two independent measurements for each event: anode side and cathode side.
- Excellent electron transport, and low-noise on-ASIC A/D yields
 <1% energy resolution on anode side
- Depth dependence on cathode side enables DOI estimation
- APS Synchrotron measurements
 - o Beamline 6-ID-D
 - o 130 keV
 - \circ 10 \times 10 μ m² beam spot size

Takahashi Group DSSD Graduate Student: Esen Salcin

CdTe DSSD Synchrotron Beam Scanning Experiments

Takahashi Group DSSD Graduate Student: Esen Salcin

Maximum Likelihood Estimation Results

Photon Processing

- Making use of all of the information carried by each gamma-ray photon
- Maintaining and using as many photon attributes as possible x, y, z, ε, t
- Using maximum-likelihood estimation when ever possible for attribute estimation
- Calibrate, calibrate, calibrate!

Multi-Scale Imaging

Application-Specific Imager Configuration

Tomographic Imaging

Comparison of Iterative Algorithms

$$\hat{f}_n^{k+1} = \hat{f}_n^k \left\{ \frac{1}{S_n} \sum_{m=1}^M \frac{g_m H_{mn}}{\left[H \hat{f}^k \right]_m} \right\}$$

Conventional reconstruction from images

- ML-EM Works on projection data
- Requires binning into bitmaps

$$\hat{f}_{n}^{k+1} = \hat{f}_{n}^{k} \left\{ \frac{1}{T} \sum_{j=1}^{J} \frac{pr(A_{j} | \mathbf{r}_{n})}{\sum_{n'=1}^{N} pr(A_{j} | \mathbf{r}_{n'}) S_{n'} \hat{f}_{n'}^{k}} \right\}$$

Photon-processing reconstruction

- LM-EM Works on list-mode data (individual gamma-ray photons)
- Can include more attributes: x, y, z, E, t
- Doesn't require binning
- Makes use of all measured attributes

Both versions suitable for implementation in GPU

Why It Always Comes Down to Better Detectors

Fundamental Operation is Back Projection

- Monte Carlo sampling around estimated event attributes is approximation to full integrals
- 3D-position estimation minimizes parallax error
- Possible to add all physics effects (scatter, absorption, fluorescence x-rays...)

Challenges in Clinical Application

- Scaling need for much larger detector areas
- Much higher probabilities of attenuation and scatter
- Need for highly specific radiotracers
- Practical limitations on imaging time
- Patient motion

Characterize tumor microenvironment

- Characterize tumor microenvironment
 - Vascularity, pH, pO₂, immune cells

- Characterize tumor microenvironment
 - Vascularity, pH, pO₂, immune cells
- Assess functional status of immune cells

- Characterize tumor microenvironment
 - Vascularity, pH, pO₂, immune cells
- Assess functional status of immune cells
 - Tumor fighters versus tumor promoters

- Characterize tumor microenvironment
 - Vascularity, pH, pO₂, immune cells
- Assess functional status of immune cells
 - Tumor fighters versus tumor promoters
- Assess tumor cell heterogeneity

- Characterize tumor microenvironment
 - Vascularity, pH, pO₂, immune cells
- Assess functional status of immune cells
 - Tumor fighters versus tumor promoters
- Assess tumor cell heterogeneity
 - Detect resistant clones within tumor

- Characterize tumor microenvironment
 - Vascularity, pH, pO₂, immune cells
- Assess functional status of immune cells
 - Tumor fighters versus tumor promoters
- Assess tumor cell heterogeneity
 - Detect resistant clones within tumor
- Identify and target tumor stem cells

- Characterize tumor microenvironment
 - Vascularity, pH, pO₂, immune cells
- Assess functional status of immune cells
 - Tumor fighters versus tumor promoters
- Assess tumor cell heterogeneity
 - Detect resistant clones within tumor
- Identify and target tumor stem cells
- Detect and characterize tumor-associated exosomes

