

Cosmology with DES lensing

beyond the power spectrum

Daniel Gruen, Einstein Fellow @ Stanford / SLAC

on behalf of the Dark Energy Survey Collaboration

Kavli IPMU Tokyo, 2018-11-15

Agenda

- Introduction
- Lensing as a high-precision survey science
 - separate discussion on photo-z tomorrow!
- DES Y1 cosmology results
 - two-point functions & joint probes
 - matter/galaxy density PDF
 - clusters of galaxies

Questions welcome!

ore non-Gaussian more information ore complex mode

What goes up must come down?

• on large scales, Universe described as homogenous fluid in expanding space

$${\ddot a\over a}=-{4\pi G\over 3}\left(
ho+{3p\over c^2}
ight)$$

matter, radiation, relativistic species: pressure $p \ge 0$

scale factor of Universe

What goes up keeps getting faster!

 on large scales, Universe described as homogenous fluid in expanding space

sensitive to growth of structure

redshift space distortions	galaxy clustering gravitational lensing galaxy clusters "structure"
	CMB BAO supernovae GW sirens "geometry"

Q: Is everything we observe consistent with the same parameters in a ΛCDM universe?

sensitive to expansion

of structure
growth a
sensitive to

redshift space distortions	galaxy clustering gravitational lensing	DES results Elvin-Poole+2018 Prat, Sanchez+2018 Gruen+2018, Troxel+2018 DES 2018a
	galaxy clusters "structure"	McClintock, Varga+2018 DES in prep.
	СМВ	DES WL+clustering +BAO+SNe (last week
	BAO	DES 2018b
	supernovae	DES (last week)
	GW sirens	LIGO-VIRGO-DES+2018
	"geometry"	

sensitive to expansion

sensitive to growth of structure

redshift space distortions	galaxy clustering gravitational lensing	Elvin-Poole+2018 Prat, Sanchez+2018 Gruen+2018, Troxel+2018
	galaxy clusters "structure"	DES 2018a McClintock, Varga+2018 DES in prep.
	СМВ	DES WL+clustering +BAO+SNe (last week)
	BAO	DES 2018b
	supernovae	DES (last week)
	GW sirens	LIGO-VIRGO-DES+2018
	"geometry"	

sensitive to expansion

sensitive to expansion

sensitive to growth of structure

redshift space distortions	galaxy clustering gravitational lensing galaxy clusters "structure"	Expansion paints a consistent picture of a fiducial ACDM model.*
	CMB BAO supernovae GW sirens	How about structure?
	"geometry"	*except maybe H ₀ – can discuss what DES and HSC say about that

Planck CMB temperature z=1100 δ of O(10⁻⁵)

z=0 – δ of O(1)

Credit: Ralf Kaehler, Carter Emmart, Tom Abel, Oliver Hahn / KIPAC

Are the structures found in the evolved Universe explained by primordial fluctuations growing in ΛCDM?

Gravitational lensing

- When light passes massive structures, it feels gravity and its path gets bent
- This causes shifting, and magnification, and <u>shearing</u> of the galaxy image

$$\gamma_t(\theta) = \langle \kappa(\theta') \rangle_{\theta' < \theta} - \kappa(\theta)$$

$$\kappa = \Sigma / \left[\frac{c^2}{4\pi G} \frac{D_s}{D_d D_{ds}} \right]$$

Gravitational lensing

- When light passes massive structures, it feels gravity and its path gets bent
- This causes shifting, and magnification, and <u>shearing</u> of the galaxy image

$$(\gamma_t(\theta)) = \langle \kappa(\theta') \rangle_{\theta' < \theta} - \kappa(\theta)$$

$$\kappa = \Sigma / \left[\frac{c^2}{4\pi G} \frac{D_s}{D_d D_{ds}} \right]$$

Need to measure galaxy shapes and redshift distributions

0.1deg 1.5 Mpc

Source: LSST Science Book

D_{ds}

Ds

RXC J2248.7-4431, z=0.35; DG+2014

Is there evidence for tension from gravitational lensing?

- recent studies have claimed 2-3 σ offset from Planck CMB in Ω_m - σ_8 but see Troxel&Krause, DG+2018
- interpretations differ statistical fluke, systematics, crack in ΛCDM?

The Dark Energy Survey

- 5000 sq. deg. survey in grizY from Blanco @ CTIO, 10 exposures, 5.5 years, >400 scientists
- Primary goal: dark energy equation of state
- Probes: Large scale structure, Supernovae, Cluster counts, Gravitational lensing
- Status:
 - Y1 (1500 sq. deg, 40% depth):
 key results published / in internal review
 - Y3 (5000 sq. deg, 50% depth):
 data processed, vetting catalogs
 - Y5: data taking finished (90% depth)
 - Y6: homogeneous survey at planned depth

basic Y3 data released 01/10/18 full Y1 value added data released 10/01/18

Collaborating institutions:

DES SV to Y1

Chang, DG+2018

With great statistical power comes great systematic responsibility

 two independent galaxy shape measurements, including metacalibration algorithm, bias<1.3% (68 c.l.) (Zuntz, Sheldon, DG+2018)

Metacalibration:

i. apply biased estimator to image

+Δ****

e'

e'-e

Δv

- ii. manipulate image to include artificial (shear) signal
- iii. apply biased estimator to manipulated image
 → derivative w.r.t. signal response=

35 million galaxy shapes with systematic error <1.3% (68% C.L.)

Huff & Mandelbaum, Sheldon & Huff 2017; Zuntz, Sheldon, DG+2018

With great statistical power comes great systematic responsibility

- two independent galaxy shape measurements, including metacalibration algorithm, bias<1.3% (68 c.l.) (Zuntz, Sheldon, DG+2018)
- two independent calibrations of photometric redshifts of four source bins (Hoyle&DG+2018)

COSMOS + clustering methods agree, ~0.015 uncertainty on <z>

With great statistical power comes great systematic responsibility

- two independent galaxy shape measurements, including metacalibration algorithm, bias<1.3% (68 c.l.) (Zuntz, Sheldon, DG+2018)
- two independent calibrations of photometric redshifts of four source bins (Hoyle&DG+2018)
- two independent cosmological inference pipelines, tested with simulations (Krause Eifler+20)

simulations (Krause, Eifler+2018; MacCrann, DeRose+2018)

1) Cosmology from two-point correlations

combination of these three two-point functions maximizes use of information and jointly and robustly constrains nuisance parameters

[Hu&Jain 2004, Huterer+2006, Bernstein+2009, Joachimi&Bridle 2010, van Uitert+2017, Joudaki+2017]

joint constraints from these three probes in a photometric survey for the first time: DES Collaboration, DG+2018

Key result: Consistency of late Universe with Planck in ΛCDM

- DES and Planck constrain matter density and S₈ with equal strength
- Difference in central values
 1-2σ in the same direction as earlier lensing results
- Bayes Factor good ** no evidence for inconsistency
- Combination with CMB/BAO/SNe yields consistent, tightest constraints

Released last week: Cosmology from DES 2pt+BAO+SNe

First joint constraint from structure + geometry in an imaging survey

SNe Ia: 207 DES SNe (no low-z)

Phot. BAO: angular clustering of 1.6m DES Y1 galaxies at z=0.6-1

DES 3x2pt:

DES Y1 galaxy/shear 2pt functions

Released last week: Cosmology from DES 2pt+BAO+SNe

First joint constraint from structure + geometry in an imaging survey

Released last week: Cosmology from DES 2pt+BAO+SNe

First joint constraint from structure + geometry in an imaging survey

Non-Gaussian properties of structure at least double the cosmological information

They also at least double the complexity of modeling and simulation-based validation

Measuring the PDF of matter density

Cosmology from matter/galaxy PDF with lensing and counts in cells

• Step 1: split lines of sight into quintiles of LRG count – underdense ("troughs") to overdense

Cosmology from matter/galaxy PDF with lensing and counts in cells

- Step 1: split lines of sight into quintiles of LRG count N
- Step 2: measure shear around and mean counts in quintiles there is an asymmetry / skewness!

Cosmology from matter/galaxy PDF with lensing and counts in cells

- Step 1: split lines of sight into quintiles of LRG count N
- Step 2: measure shear around and mean counts in quintiles
- Step 3: model these signals via joint PDF of matter and galaxy density

$$\langle \gamma_t \rangle(N) = \int p(\delta_m | N) \langle \gamma_t \rangle(\delta_m) \, \mathrm{d}\delta_m$$

perturbation theory model: Friedrich, DG+ 2018

Cosmology from matter/galaxy PDF: constraining skewness of density

- Lensing + counts in cells jointly constrain:
 - Cosmology
 - Bias + Stochasticity
 - Skewness of matter density: $S_3 \equiv \frac{\langle \delta^3 \rangle}{\langle \delta^2 \rangle^2}$
- Skewness adds significant constraining power
- Limited by stochasticity
 higher order bias

Clusters of galaxies

~Mpc, >10¹⁴ M_{sol}

stars in elliptical galaxies / ICL <<hot gas \rightarrow X-ray, SZ <<dark matter

Counting clusters of galaxies

richness = count of bright elliptical galaxies

Cosmology with clusters of galaxies

Simply ...

 Count clusters in an optical survey

- Compare count to predictions as function of cosmology
 - M dependence: S₈, new physics
 - z dependence: Dark Energy

Cosmology with clusters of galaxies: MOR calibration is key

Simply ...

- Count clusters in an optical survey
- Calibrate MOR (massobservable relation)
- Compare count to predictions as function of cosmology
 - M dependence: S₈, new physics
 - z dependence: Dark Energy

MOR calibration with lensing surveys

 Large area lensing surveys are now by far the best way of calibrating the MOR of cluster samples (mean mass!)

Ways forward: MOR calibration with lensing surveys

- Large area lensing surveys are now by far the best way of calibrating the MOR of cluster samples (mean mass!)
- Self-calibration helps [Murata+2018]
- Uncertainties limited by modeling and photo-z

Source of systematic	SV Amplitude uncertainty	Y1 Amplitude Uncertainty
Shear measurement	4%	1.7%
Photometric redshifts	3%	2.6% photo-z
Modeling systematics	2%	0.73%
Cluster triaxiality	2%	2.0% modeling (galaxy-matter
Line-of-sight projections	2%	2.0% connection)
Membership dilution + miscentering	$\leqslant 1\%$	0.78%
Total Systematics	6.1%	4.3%
Total Statistical	9.4%	2.4%
Total	11.2%	5.0%

Mass-observable relation: We are limited by scatter prior

- greatly improved model for scatter due to projection effects [Costanzi&Rozo+2018a]
- <u>intrinsic</u> scatter is a free parameter
- prior motivated by dedicated & archival X-ray and SZ data
- daily telecons, unblinding next week?
- DES Y1 clusters will significantly add to S₈ issue
 we need to get this right

preliminary and blind

DES in prep.

see also Costanzi&Rozo+2018ab, McClintock&Varga, DG+2018, DG+2018b, Zhang+2018, Varga+in prep., Farahi+in prep., von der Linden&Mantz+in prep.

Summary

A Carlo Carlo

 The Dark Energy Survey tests cosmology competitively, with lensing-empowered measurements of structure.

- Consistency with Planck CMB, but intriguingly low S₈
- Different, almost fully independent, views of Gaussian and non-Gaussian properties of density field with full PDF and cluster counts
- Geometry and growth of structure are complementary.
 DES is the first photometric survey to join them.
 Both are consistent with the simple yet crazy ACDM.
- Stay tuned for 5x more DES, HCS, and the next generation.