Hot gas outflows in the Milky Way Galaxy

Shinya Nakashima (RIKEN)

collaborates: Y. Inoue, N. Yamasaki, Y. Sofue, J. Kataoka, T. Takeshi, K. Koyama, N. Masayoshi, H. Uchiyama

2018-09-07 APEC seminar @IPMU

- Introduction
- 100 pc scale outflow in the Galactic Center
- •10 kpc scale outflow (North Polar Spur, Fermi bubbles)
- Galactic hot gaseous halo
- Future prospects

Current standard cosmological model

- CMB measurements determines cosmological parameters (WMAP, Planck).
- Cosmological simulations successfully reproduce the large-scale cosmic web:
 - Virialized halos: overdensity (local density/cosmic mean density) > 200
 - Filaments: overdensity 30-200
- Baryons simply follow dark matter distribution?

Baryon behavior is not so simple

- Massive galaxy clusters have nearly all their baryons.
- However, field galaxies missing 70-95% of baryons -> baryons escape from halos?
- If so, how to strip baryons from galaxies?

Supernova/AGN feedback?

M82: starburst wind

Cen A: AGN jets & lobes

- Supernovae and AGN release large energies.
- They probably heat surrounding ISM and drive outflow from galaxies.
- X-rays from outflowing hot gas are a direct tracer, and some extreme cases are actually observed (starburst galaxies, nearby AGNs).
- How about in "normal" galaxies? Observational test is still on the way.

Target: the Milky Way Galaxy

Pros:

- Proximity: resolve detailed structures & good photon statistics.
- Normal spiral galaxy: moderate SFR & no AGN

Cons:

- We are in the MW: difficult to identify 3D structure.
 - -> but observed X-ray absorption columns give a hint.

All-sky view in near-infrared

All-sky view in X-ray

All-sky view in radio continuum

Fermi bubbles: Gamma-ray counterpart?

• Fermi satellite found GeV gamma-ray bubbles above/below the Galactic center

All-sky view in X-ray

Energy band & resolution are limited in ROSAT (promotional counter) -> High quality imaging spectrometer (CCD) is necessary to derive physical parameters.

Suzaku X-ray observatory

5 cm

XRT

XIS

- Japanese 5th X-ray astronomy satellite launched in 2005
- X-ray telescope + X-ray CCD (& non-imaging hard X-ray detector)
- Good spectroscopic performance, large effective area, and very low instrumental background

Comparison between CCDs in different X-ray satellites

Name	FoV	Spatial resolution	Energy resolution	Effective area @1.5 keV	Relative background level
Suzaku	18'	120"	130 eV	1000 cm ²	1
Chandra	1'	0.5"	200 eV	600 cm ²	2-5
XMM- Newton	30'	15"	130 eV	1200 cm ²	2-5 on flare >10
Swift	24'	18"	140 eV	110 cm ²	1

The highest sensitivity and spectroscopic performance for diffuse source

Suzaku view of the Galactic Center

Extended X-ray features were discovered by Suzaku

X-ray spectroscopy of the diffuse hot gas

NPS + Loop-I + Fermi bubbles

X-ray spectrum of NPS

X-ray survey across Fermi bubbles

- Ubiquitous $kT \sim 0.3 \text{ keV}$ plasma with $N_H \sim N_{Gal}$ as same as NPS.
- Significant enhancement of EM near the bubbles' edge. -> compression of GH?
- Assuming shock compression of ~0.2 keV GH, expansion velocity is ~300 km/s.

Pressure balance between FB and NPS

we assume thickness of envelop is ~1/2 of bubble radius ~2 kpc

HD simulations

• Sofue+16: Hyper-shell model with $E \sim 4 \times 10^{56}$ erg and t ~ 10 Myr.

-> Reproduces kT ~ 0.3 keV shell that agrees with the X-ray observations.

Sarker+18: Different halo gas density between north and south (by ~20%)

-> Reproduces X-ray asymmetry between north and south.

Explosion (starburst of Sgr A* flare) in the GC is origin of X-ray features (and Fermi bubbles)

Galactic hot gaseous halo

Cosmic X-ray background (superposition of AGNs) explains only 50% of the observed flux

Observations of Galactic Halo

 Uniform analysis of the soft diffuse X-ray emission of 107 fields observed with Suzaku at 75° < I < 285°

X-ray spectrum of GH

Temperature & emission measure

Spatial density distribution of GH

Emission measure distribution

Disk component is clearly shown in X-ray emissions. Spherical component is not excluded (might be "disk + spherical")

Origin of the disk-like hot halo gas

- [O/Fe] is larger than the solar value => significant contribution of the core-collapse SNe (but uncertainty is very large in the CCD spectral resolution).
- Multiple SNe at star-forming regions make a super bubble and "chimney" of hot gas outflows (Norman & Ikeuchi 89).

Future Prospects

XRISM (JAXA & NASA mission)

- to be launched in 2021
- x30 energy resolution of CCD (like Hitomi)
- precise measurements of metal abundance and ionization state.

Athena (ESA mission)

- to be launched in early 2030s
- higher spatial resolution than that of XRISM
- observation of other galaxies

Summary

- Suzaku revealed the nature of diffuse hot gases in the MW
- Galactic Center
 - ~100 pc scale of hot gas outflow was found
 - Starburst or Sgr A* flare 0.1 Myr ago?
- NPS, Loop-I, and Fermi bubbles
 - ~10 kpc scale hot gaw with ubiquitous kT ~ 0.3 keV
 - Starburst or Sgr A* flare 10 Myar ago?
- Hot gaseous halo
 - Spatial distribution of EM shows disk-like morphology.
 - [O/Fe] shows contribution of SNcc: outflows from the disk?
- XRISM and Athena will provide more precise picture.