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When we try to make a quantum formulation of the theory
several problems appear
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Motivation

In usual QFT, causality is ensured if

[px), NI =0,  (x—y)* <0

Quantum
fluctuations
v . \/
4 T-»x
Light cone o
around flat Causality:
Spacetime Definition of time?

Does a fundamental QFT exist for the gravitational

Interaction?
Moller (1952) Rosenfeld (1957)
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Motivation

It could be that at high energies the metric i1s not the
fundamental quantity in a quantum theory of gravity

——p At low energies, effective description in
terms of spacetime variables

Even if we do not know anything about the non-perturbative
part, we can do a perturbative analysis

A Background field method B. De Witt (1967)

Metric perturbations around fixed background
't Hooft and Veltman (1974)



Motivation

Around a fixed background spacetime we can use the usual
QFT formalism and study the theory in the perturbation limit
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Motivation

Perturbatively, GR  —»  Non renormalizable

Gravitational coupling is dimensionful [G] = -2

R + R + R +
e T N T

One-loop Two-loop

Pure gravity non renormalizable at two loops  Goroff and sagnotti (1985)
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Motivation

What about quadratic theories of gravity? S, ~ | d*x,/=g R*

PROS

Dimensionless couplings ——p Renormalizable

K. Stelle (1977)

Closest analogy to a YM theory of gravity

R/,wpg — apr'uya _ ao-r'uvp + 1—"M/lpl—‘ ﬂva _ F'u;tar%yp Field Strength
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Motivation

What about quadratic theories of gravity? S, ~ | d*x,/=g R*

CONS

Propagators falling as ~ —
P

Kallen-Lehmann spectral representation

1 1 1

Unitarity 1s lost

~__—
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Motivation

What about quadratic theories treated in
first order formalism?

—p» Renormalizability

—» Still room for unitarity

Possible UV completion of GR?

A. Salvio and A. Strumia (2014)
M. B. Einhorn and T. Jones (2017)
J. F. Donoghue and G. Menezes (2018)



Motivation

Lee-Wick type of mechanisms T. D. Lee and G. C. Wick (1969)

Able to fix unitarity diagram by

———— :
diagram

Nevertheless, this mechanism cannot be implemented into
the path integral formalism

D. G. Boulware and D. Gross (1969)
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First order vs Second order

Let us take the simple case of the EH action

@ \gf& E_étﬂ/ Independent fields

K
i) o v x

o Contorsion tensor Related to non-
Levi-Civita metricity

. 1
connection __oPO _ _
28 (T + 1 I ) Q,uyp T V/,tgl/p

UOU Vo ULC
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Let us take the simple case of the EH action

o T

For the EH action SO and FO classically
equivalent Palatini

The equivalence also holds at one loop order J. Anero and RS (2017)
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First order quadratic gravity

The most general first order quadratic action reads

=12

Srog = d4x\/—8 Z g0’
: I=1

Op = Rl (D)1 " " RY

UpG y/plgl

Dy : Function of metrics and deltas

The theory is Weyl invariant

Suv — Qz(x) Suv OI — Q_4OI

r, — T, VE — 9
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First order quadratic gravity

The theory is up to now in the conformal phase so the
symmetry has to be spontaneously broken

1
L= 7% (5" 0 - V)

Renormalizing this sector we get AL, = C.R¢*

l<qb>=v

The spontaneous breaking of the a2
i P 5 Lpg=M vV —8 R
ymmetry generates an EH term
I. Shapiro and S. D. Odintsov (1986)

S. L. Adler (1988) Dominates in the IR
P. G. Ferreira, T. Hill and G. Ross (2018)
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First order quadratic gravity

More general connections are allowed

(pu)

1
— SO FO __ A
AH,,, = Hy) = Hi0 = = —V,K,

+l VK +l VP K
) T S Y By T S

1 58 . 1 8S
H= K:

i \/Tgégﬂv Y \/Tgél“ﬁ”’

M. Borunda, B. Jansen and M. Bastero-Gil (2008)

Bigger solution space, where does gravitation live?
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Physical contentof A,

The connection being an independent field, can introduce
new degrees of freedom.

Our aim is to find a complete basis of spin projectors so that
we can decompose the three index tensor A, , in its
propagating spin pieces.

As we will see, a proliferation of spins occurs. It is crucial to
check that we do not have ghosts encoded in those
propagating spin components.
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Physical contentof A,

We take the EH action and expand the metric around {flat
space
Euw = M T Kh,m/

To quadratic order in the perturbation we get

— 4 EFH 1%
S == |dh w KL, b

We want to decompose a two index symmetric tensor in its
spin components

Four index operators that

Spin projectors —_—D : ' '
pin proj project onto a certain spin
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To project into the different components we have
Kk,

k= 5

In the rest frame D = 713
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Physical contentof A,

To project into the different components we have

k. k. : C e e
o — S Oy = Nuw — 22 » Projects onto spatial indices
0 kK, . s
> ——»  Projects onto time indices
Barnes-Rivers Projectors ,
: ’ Barnes (1963) Rivers (1964)

=9 - hir — hi’ —_hS. P. Van Niewuheinzen (1973)

] j 3 Y
s=1 hO' vaE :

: Ditterent spin

representations SO(3)



Physical contentof A,

To project into the different components we have

k kl/ O ] o o
KH = S Opv = M — 22 » Projects onto spatial indices
0 kK, . s
Wiy = ~ 13 ——»  Projects onto time indices

Barnes-Rivers Projectors

6= hl:]T. =h; — %héij — (P2>ZZ

—1 6°0° + 9°6” ——18 Gr°
2 ,Ll U //l U 3 ,l/”/
1
po __ o o o o
s=1: hy, — (Pl),ul/ =2 (Hﬁa)y + 0w, + 0jw] + Hya)ﬁ>

—_ () - w)Po — po
s=0: hy — (PO)W_a)Wa)

s=0: hE5ijhij — (Pg)pazl

—0,0°
po 3
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Physical contentof A,

These projectors add up to the identity

(Po), + (P1) |+ (P) + (PO) =10

We are interested in forming a basis of four index projectors

—» 5 independent monomials with this symmetry

M, = kkkk, One extra operator

My = kjn,, in the basis

M, =k, o _ L o .
3_ H ﬂp (PO)W—E@)WW +9/,wa)p >

My =100

MS = ”ﬂpﬂya
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Physical content of A,

These projectors add up to the identity

(Po), + (P1) |+ (P) + (PO) =10

Strategy

Take  K,,p5 = Z i Piuvpa

i
Divide the quadratic piece in the different spin

components
o — 227
h//w (Zci Pi/ﬂ/pd) hp - Z hi
i

l

)

hi

HU
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So now we can decompose any four index operator into the
spin projectors

NG

1 4 1 Uv 1 S 1 w X po
SEH+gf=5 d x —Zh P2+P1—EPO+EPO—TP h

UUPC

Inverting the operator we get the propagator and the free
energy D. Dicus and S. Willenbrock (1969)

1
4 v o 4 v o
W [Tm’ T(2>] [d YT Appel () = Jd z <Tﬁ> (P == PO)upo T()z))

Interaction between
external sources
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So now we can decompose any four index operator into the
spin projectors

NG

1 4 1 Uv 1 S 1 w X po
SEH+gf=5 dx—zh P2+P1—EPO+EPO—TP h
UUPO

Inverting the operator we get the propagator and the free
energy D. Dicus and S. Willenbrock (2004)

1
_ 4 v c __ 4 v 1
14 [T(l), T(z)] = [d XTH A o T = Jd X <T(q) (PYS Puspo T(p2)>

Positive definite



Physical contentof A,

So now we can decompose any four index operator into the
spin projectors

NG

1 4 1 Uv 1 S 1 w X po
SEH+gf=5 dx—zh P2+P1—EPO+EPO—TP h
UUPO

Inverting the operator we get the propagator and the free
energy

1
_ 4 v c __ 4 v 1
W [T(l)’ T(z)] — [d szﬁi)AﬂVPGY}'oz) = Jd X <]1('Li) (P2 — 5 PS)ﬂUPU 71('02)>

On-shell ——p A single spin 2 @

asymptotic states field propagates .
Graviton



Physical contentof A,

So now we can decompose any four index operator into the
spin projectors

1 1 1 1 3

UUPC

Summary

Spin-2 and Spin-0 components mediating the
interaction between external sources (off-shell)

Spin-2 massless unique asymptotic state
Graviton
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.40 X
independent
components

D

Hook part

E&iETx@Sym(Tx@Tx)

Totally
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120} @ 11} = 13,0} & 12,1}



Physical content of A,

We are working with symmetric connections

A E&iETx@Sym(Tx@Tx)

UUA
40 ® = 5>
independent Totally
components Hook part Symmetric
part
20,=2(2)®3 (1) ® (9) 20,=(3)@(2)®2 (1) ®2 (0)
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Physical content of A,

We are working with symmetric connections

A, €A =T,Q Sym (Tx® Tx)

® = D

We have 22 independent monomials with this symmetry

——» 22 projectors in the basis (P ,)g ;;1,

We need 10 extra spin operators with mixed symmetry

One spin-3, four spin-2, eleven spin-1 and six spin-0
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the Riemann squared terms
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Physical content of A,

Taking for instance the simpler action

Sr00 = [d”x\/fg (a R + B RIT], RICT +y R[F]ngR[F]””p“>

P Hook P Symmetric P Mixed

(Kro)?y" = ( =22y +8) P — (47 + 90+ 28) P§ + (27— ) P§ — 5(31+56) P

4
=27 PP = 37+ 8) Pr— (27 +5) PI¥ +48 P1° - 2(2y + B) (P2 +P»)
Uv po

— 4y P54+ 2(8 + ) ’.]352’;—47P3)T )\ []

Which ones appear in the propagator? Which ones survive on-shell?
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Physical content of A,

We need a gauge fixing to invert the operator

1 4 Uv . po T A
Sep =— [d"x 1" 0”7y Ay LA,
X
P Hook P Symmetric P Mixed

174 O 1 w S S X SWw ws 5 S w
(Kg)"\f _X(PO +3 Py +3 Py —3FPy+Ps" +P +P1_§P1+P1

uv po

2
£ 2 PP PY P O 44 P

Important to note: no spin-2 or spin-3 in the gauge fixing!
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v po 1 w S S X SWw ws w 5 S
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X
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or spin-3 3 oA
The projection onto spin-2 and spin-3 are zero modes

—»  We would need to gauge fix them

In fact, for R2 there are 13 zero modes
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Physical content of A,

For a # [ # y # 0 we can invert the operator in order to get the
propagator. In doing so, all the projectors of the basis appear.

The next step is to couple external sources for the connection
and see the spin components that survive.

To see the asymptotic states, we need to compute the equations
of motion for the different spin pieces of the connection.

We have not found any obvious problem with the spin-3 piece
so far. A full analysis of this piece is needed in order to see if
Inconsistencies appear.
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The coupling to matter in FO

The coupling of bosons in first order formalism does not give
any new feature as they do not couple to the connection.

We are interested in the coupling of fermions to gravity in first
order formalism, as they turn out to be a source of torsion.

This constitutes a difference between first order linear gravity
and second order linear gravity, not present in the case of pure
gravity.
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Coupling of fermions in FO

We take the minimal coupling of fermions to gravity. To do
that, we need to change to the vielbein formalism

1 1 ] o .
Spey = — EJd“x e Eea”eb”Rﬁub[a)] + EJd“x e <1//ea”}/ V=V pely l//)

The antisymmetric part of the variations with respect to the

sSpin connection
K .

Totally antisymmetric torsion
proportional to the axial current
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Coupling of fermions in FO

We can reintroduce it in the action

~ 3K
4. - 5
Spen = Sper T 6 Jd X e Yyysy Wy,rw
Dirac-EH action Dirac-EH action - —

) : : : H. Weyl (1950)
with torsion with no torsion

Extra quartic contact
Interaction between fermions

This is precisely the difference between FO and SO formalisms

What form does the torsion have when coupling fermions in
FOQG?
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Summary and Outlook

We have carried out a study of first order quadratic theories
of gravity and found

—» FOQG is a renormalizable gauge theory with room for
unitarity

—» In principle, this theory is richer in its field content: we
have spin-3, spin-2, spin-1 and spin-0 components

—» The solution space its bigger than that of second order
quadratic theories

—» The theory must undergo a spontaneous symmetry
breaking so that EH dominates in the IR
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Summary and Outlook

Future work is ongoing regarding some aspects of FOQG

—» The coupling to external sources will shed light into the
unitarity of the theory

—» The equations of motion of each component are needed to
analyse the asymptotic states

—» The coupling of fermions and the resulting torsion needs
more study

—» The spin-3 part is worth of deeper study

Are there any inconsistencies in the interactions?



Thank you for your attention
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