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Overview

Gravitational Wave (GW) detection by LIGO/Virgo is promising for theoretical
physics:

◦ confirms prediction of General Relativity

◦ allows to test GR (and its modifications) in a strong and dynamical regime

◦ suggests to look for other sources of GWs in relation to particle physics:
phase transitions, cosmic strings,...

Two topics in this talk:

◦ constraining noncommutative space-time from LIGO/Virgo waveforms
(transient signal)

◦ exploring beyond the Standard Model physics with GWs from phase
transitions (stochastic background)
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Part I: Test of GR and noncommutative space-time
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First GW signal: GW150914

◦ Inspiral, merger and ring-down of a binary black hole observed by LIGO.

◦ Masses of 36+5
−4 M� and 29+4

−4 M�.

◦ Frequency ranging from 35 to 250 Hz and velocity up to ∼ 0.5c.

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 061102]
[N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955]
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An opportunity to test GR and its modifications

Einstein Field Equations (EFE) from GR predict the waveform of such GWs :

◦ post-Newtonian formalism: analytical expansion in v
c for the inspiralling

◦ numerical Relativity: accurate simulations including merger and ring-down

GW150914 data are in good agreement with GR predictions
[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]

⇒ opportunity to test various models beyond GR.
[e.g.: N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955, N. Yunes, E. Berti, K. Yagi, arXiv:1801.03208]

Our objective: constrain the scale of noncommutative space-time.
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The post-Newtonian formalism

A perturbative approach to solve the EFE,

�hαβ =
16πG

c4 ταβ ∂µhαµ = 0,

as an expansion in v
c . [L. Blanchet, Living Rev. Rel. 17 (2014)]

Notation:

◦ gravitational-field amplitude: hαβ =
√−ggαβ − ηαβ

◦ matter-gravitational source: ταβ = |g|Tαβ + c4

16πG Λαβ

◦ O (n) ≡ O
(

vn

cn

)
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Far zone vs near zone

Iterative expansions in the near and far zones and matching strategy in the
overlap zone:

Post Newtonian (PN) -
(

1
c

)n
:

◦ hαβ = ∑∞
n=2

1
cn hαβ

n

◦ ταβ = ∑∞
n=−2

1
cn τ

αβ
n

◦ ∇2hαβ
n = 16πG τ

αβ
n−4 + ∂2

t hαβ
n−2

Post Minkowskian (PM) - Gn:

◦ hαβ = ∑∞
n=1 Gnhαβ

n

◦ �hαβ = Λαβ

◦ �hαβ
n = Λαβ

n [h1, · · · , hn−1]
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Matter source

Consider a binary system of two black holes of masses m1 and m2. Usually
approximated by two point-like particles:

Tµν(x, t) =
m1√

ggρσ
vρ

1vσ
1

c2

vµ
1 (t)v

ν
1(t) δ3(x− y1(t)) + 1↔ 2

Useful parametrization:

◦ total mass: M = m1 + m2

◦ reduced mass: µ = m1m2
M

◦ symmetric mass ratio: ν =
µ
M = m1m2

M2

We neglect spin effects in our considerations.
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The balance equation

Equations of motion - energy E:

◦ ∇νTµν = 0

◦ a1 = −Gm2
r2

12
n12 +O(2)

◦ E =
m1v2

1
2 −

Gm1m2
2r12

+O(2)+ 1↔ 2

Radiated flux F :

◦ F = G
c5

(
1
5 I(3)ij I(3)ij +O(2)

)
◦ F = G

c5

(
32G3 M5ν2

5r5 +O(2)
)

Conservation of energy implies the balance equation and the orbital phase:

dE
dt

= −F ⇒ φ =
∫

Ω(t)dt
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State-of-the-art computations
For data analysis, consider the waveform in frequency space:

h( f ) = A( f ) eiψ( f ).

The phase ψ( f ) (Fourier transform of φ(t)) has been calculated to 3.5PN
accuracy:

ψ( f ) = 2π f tc − φc −
π

4
+

3
128

7

∑
j=0

ϕj

(
πMG f

c3

)(j−5)/3
,

where the phase coefficients are

ϕ0 = 1
ϕ1 = 0
ϕ2 = 3715

756 + 55
9 ν

ϕ3 = −16π

ϕ4 = 15293365
508032 + 27145

504 ν + 3085
72 ν2

· · ·

[T. Damour, B. Iyer and B. Sathyaprakash, Phys. Rev. D 63 (2001) 044023]

[G. Faye, S. Marsat, L. Blanchet, B. Iyer, Class. Quantum Grav. 29 (2012) 175004]
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GR vs GW150914: bayesian analysis

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]
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Noncommutative corrections to the waveform
A. Kobakhidze, CL, A. Manning, PRD 94 (2016) 064033
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Noncommutative space-time

NC space-time arises in a number of contexts:

◦ Originally proposed by Heisenberg as an effective UV cutoff.

◦ Several formalisations (e.g. Snyder [Phys. Rev. 71 (1947) 38]).

◦ Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].

◦ Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

We focus on the canonical algebra of coordinates:

[x̂µ, x̂ν] = iθµν ∆xµ∆xν ≥ 1
2
|θµν|

with noncommutative QFT - fields product replaced by Moyal product:

f (x) ? g(x) = f (x)g(x)+
+∞

∑
n=1

(
i
2

)n 1
n!

θα1 β1 · · · θαn βn ∂α1 · · · ∂αn f (x) ∂β1 · · · ∂βn g(x)

Previous constraints on NC scale |θ| only at inverse ∼ TeV.
[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]
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Noncommutative effects on GWs

Expect modifications on both matter source and field equations.

◦ Consider a Schwarzschild black hole described by a massive scalar field in
noncommutative QFT[A. Kobakhidze, Phys. Rev. D79 (2009) 047701]:

Tµν
NC(x) =

1
2
(∂µφ ? ∂νφ + ∂νφ ? ∂µφ)− 1

2
ηµν

(
∂ρφ ? ∂ρφ−m2φ ? φ

)
Similar approach as for the quantum corrections of a Schwarzschild BH.

[N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, Phys. Rev. D68 (2003) 084005]

◦ Neglect corrections on the EFE since noncommutative gravity appears at
O(|θ|2) and is model-dependent.

[X. Calmet, A. Kobakhidze, Phys. Rev. D74 (2006) 047702] [P. Mukherjee, A. Saha, Phys. Rev. D74 (2006) 027702 ]
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Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

Tµν
NC(x, t) ≈ Tµν

GR(x, t) +
m3G2

8c4 vµvνΘkl∂k∂l δ3(x− y(t))

with

Θkl =
θ0kθ0l

l2
Pt2

P
+ 2

vp

c
θ0kθpl

l3
PtP

+
vpvq

c2
θkpθlq

l4
P

=
θ0kθ0l

l2
Pt2

P
+O(1)

Binary black hole EMT with 2PN noncommutative corrections:

Tµν(x, t) = m1γ1vµ
1 vν

1δ3(x−y1(t))+
m3

1G2κ2

8c4 vµ
1 vν

1θkθl∂k∂l δ3(x−y1(t))+ 1↔ 2

where

κθi =
θ0i

lPtP
.
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Noncommutative effects on gravitational waveform

d(EGR + ENC)

dt
= −FNC −FNC

Lowest-order corrections appear at 2PN:

ENC = −3M3µ(1− 2ν)G3κ2

8c4r3 θkθl n̂kl +O(5)

FNC =
G
c5

(
−36

5
G5 M7

c4r7 ν2(1− 2ν)κ2 +O(5)
)

Lowest order modification to the waveform phase:

ϕ4 =
15293365
508032

+
27145
504

ν +
3085
72

ν2 +
5
4
(1− 2ν)κ2
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Noncommutativity vs GW150914

δϕNC
4 =

ϕNC
4

ϕGR
4

=
1270080 (1− 2ν)

4353552 ν2 + 5472432 ν + 3058673
κ2

|δϕNC
4 | . 20⇒

√
κ . 3.5

17 / 36



Summary of Part I

◦ Several observations of binary system merger by LIGO/Virgo

◦ GW waveform consistent with GR

◦ Explicit computation of the lowest-order (2PN) noncommutative
correction to the GW waveform.

◦ Constraint on the scale of noncommutativity to around the Planck scale:

|θ0i| . O(10) · lPtP
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Part II: Phase transitions and Gravitational
Waves

19 / 36



First-order phase transition and GWs

Hot Big Bang scenario:

◦ early Universe ∼ hot plasma (high T)

◦ scalar field(s) behaviour dictated by
their free energy density F (ρ, T)

◦ dynamics depend on the underlying
particle physics model

2nd-order transition / crossover:

◦ smooth dynamics

◦ no GWs
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Example of a very recent simulation

[D. Cutting, M. Hindmarsh, D. Weir, arXiv:1802.05712]
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Looking for BSM physics with GWs

A possible probe of new physics:

◦ no 1st-order PT in the Standard Model [K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887]

⇒ no stochastic GW background predicted in the SM

◦ various BSM models account for a 1st-order EWPT (e.g. motivated by
electroweak baryogenesis)

Examples of models considered:

◦ non-linearly realised electroweak gauge group
[A. Kobakhidze, A. Manning, J. Yue, arXiv:1607.00883] [A. Kobakhidze, CL, A. Manning, J. Yue, arXiv:1703.06552]

◦ Standard Model with hidden scale invariance
[S. Arunasalam, A. Kobakhidze, CL, S. Liang, A. Zhou, arXiv:1709.10322]
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Stochastic background from bubble collisions

Stochastic background from three sources [C. Caprini et al., JCAP 1604 (2016) no.04 001]:

h2ΩGW( f ) ' h2Ωcol + h2Ωsw + h2ΩMHD

Ωcol dominant for very strong PT (as considered here).

Peak frequency and amplitude of the background mainly depend on the bubble
size R̄ at collision and kinetic energy ρkin stored in the bubbles:

◦ fpeak ∼ (R̄)−1

◦ Ωcol ∼ (R̄Hp)2 ρ2
kin

(ρkin+ρrad)2
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Bubble-collision simulations

Going beyond dimensional analysis with numerical simulations (and redshift)
[S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation: α = ρkin/ρrad and β = vR̄−1

Amplitude:

h2Ωcol( f ) =1.67× 10−5
(

100
g∗

)1/3( β

Hp

)−2
κ2

v

(
α

1 + α

)2( 0.11v3

0.42 + v2

)
S( f )

S( f ) =
3.8( f / f0)

2.8

1 + 2.8( f / f0)3.8

Peak frequency:

f0 = 1.65× 10−7
(

Tp

1 GeV

)( g∗
100

)1/6
H−1

p β

(
0.62

1.8− 0.1v + v2

)
Hz

The set of parameters (R̄, ρkin, v, κν) is determined by the underlying particle
physics model.
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Different scenarios of electroweak phase transition

Typical case (quick PT):

◦ O(1) bubbles produced per Hubble volume at Tn . TEW

◦ they rapidly collide ⇒ percolation temperature Tp ∼ Tn

◦ time scale of the process much shorter than Hubble time

◦ fpeak ∼ milliHertz ⇒ range of LISA [C. Caprini et al., JCAP 1604 (2016) no.04 001]

Prolonged and supercooled PT [A. Kobakhidze, CL, A. Manning, J. Yue, arXiv:1703.06552]:

◦ weaker nucleation probability

◦ less bubbles produced ⇒ more time needed for them to collide

◦ ⇒ Tp � Tn . TEW

◦ fpeak ∼ 10−8 Hertz ⇒ range of Pulsar Timing Arrays
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Different scenarios of electroweak phase transition

[From rhcole.com/apps/GWplotter/]
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Prolonged electroweak phase transition
A. Kobakhidze, CL, A. Manning, J. Yue [Eur.Phys.J. C77 (2017), arXiv:1703.06552]
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Realisation of SU(2)L ×U(1)Y

Main idea:

◦ Gcoset = SU(2)L ×U(1)Y/U(1)Q is gauged

◦ with broken generators Ti = σi − δi3I and Goldstone bosons πi(x)

◦ physical Higgs as a singlet ρ(x) ∼ (1, 1)0

SM Higgs doublet identified as H(x) = ρ(x)√
2

e
i
2 πi(x)Ti

(
0
1

)
, i ∈ {1, 2, 3}

SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

V(0)(ρ) = −µ2

2
ρ2 +

κ

3
ρ3 +

λ

4
ρ4.

For additional details, see e.g.: [M. Gonzalez-Alonso et al., Eur. Phys. J. C 75 (2015) 3, 128] [D. Binosi and A.

Quadri, JHEP 1302 (2013) 020] [A. Kobakhidze, arXiv:1208.5180] [R. Contino et al., JHEP 1005 (2010) 089]
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Tree-level potential

Model specified by one parameter: κ = κ̄ · m2
h

v ∼ 63.5 · κ̄ GeV.

Barrier in the Higgs potential at tree level ⇒ likely to allow a strong 1st-order
EWPT.
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Bubble nucleation probability
Decay probability per unit volume per unit time: Γ(T) ≈ A(T)e−S(T)

[A. Linde, Nucl.

Phys. B216 (1983) 421]
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[A. Linde, Nucl.

Phys. B216 (1983) 421]

Computation of the Euclidean action:

S[ρ, T] = 4π
∫ β

0
dτ
∫ ∞

0
dr r2

[
1
2

(
dρ

dτ

)2
+

1
2

(
dρ

dr

)2
+F (ρ, T)

]

∂2ρ

∂τ2 +
∂2ρ

∂r2 +
2
r

∂ρ

∂r
− ∂F

∂ρ
(ρ, T) = 0 + boundary conditions

S[ρ, T] ≈


S4[ρ, T] = 2π2

∫ ∞

0
dr̃ r̃3

[
1
2

(
dρ

dr̃

)2
+F (ρ, T)

]
, T � R−1

0

1
T S3[ρ, T] =

4π

T

∫ ∞

0
dr r2

[
1
2

(
dρ

dr

)2
+F (ρ, T)

]
, T � R−1

0
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Bubble nucleation probability
Decay probability per unit volume per unit time: Γ(T) ≈ A(T)e−S(T)

[A. Linde, Nucl.

Phys. B216 (1983) 421]

Some numerical results:

Standard scenario: number of bubbles ∼ O(1) requires min S . 140
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Phase transition dynamics

General formalism in expanding universe: [M. Turner et al., Phys. Rev. D46 (1992) 2384].

Probability for a point of space-time to remain in the false-vacuum:

p(t) = exp
[
−4π

3

∫ t

t?
dt′Γ(t′)a3(t′)r3(t, t′)

]
r(t, t′) =

∫ t

t′
dt′′

v(t′′)
a(t′′)

Completion of the PT requires p(t)→ 0

Percolation temperature (∼ collision) [L. Leitao et al., JCAP 1210 (2012) 024]: p(tp) ≈ 0.7

Number density of produced bubbles:

dN
dR

(t, tR) = Γ(tR)

(
a(tR)

a(t)

)4 p(tR)

v(tR)

Nucleation temperature Tn: maximum of dN
dR (tp, tR)
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Bubbles properties at collision

By definition:

◦ most bubbles collide at tp

◦ majority of them produced at tn

⇒ bubble physical radius: R̄ = a(tp)r(tp, tn)

Kinetic energy stored in bubble-walls:

Ekin = κν · 4π
∫ tp

tn

dt
dR
dt

(t, tn)R2(t, tn)ε(t)

◦ ε(t): latent heat (∼ vacuum energy)

◦ κν: fraction of energy going into the wall motion (vs. heating the plasma)

R̄ and Ekin: key parameters to deduce the GW spectrum
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Some assumptions

Entire dynamics specified by Γ(t), ε(t), κν, v(t) and a(t).

Very strong PT:

◦ large amount of vacuum energy released

◦ ⇒ κν ∼ 1 [A. Kobakhidze et al, arXiv:1607.00883]

◦ ⇒ v ∼ 1 (runaway bubbles) [C. Caprini et al., JCAP 1604 (2016) no.04 001]

Consider a radiation-dominated Universe:

◦ a(t) ∝ t1/2

◦ t =
(

45M2
p

16π3g?

)1/2
1

T2
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Consider a radiation-dominated Universe:

◦ a(t) ∝ t1/2

◦ t =
(

45M2
p

16π3g?

)1/2
1

T2
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Numerical results

Probability p(T):
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Numerical results

Number density distribution for |κ̄| = 1.9: ⇒ Tn ∼ 49 GeV
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Numerical results

κ [m2
h/|v|] T? GeV Tn GeV Tp GeV (R̄Hp)−1 ρkin/ρrad

−1.87 85.9 48.9 43.4 8.79 0.57

−1.88 85.5 48.9 31.2 2.76 1.88

−1.89 84.5 49.0 14.4 1.41 37.8

−1.9 84.1 48.7 4.21 1.09 5.09 · 103

−1.91 83.9 48.6 0.977 1.02 1.73 · 106

−1.92 83.3 48.5 0.205 1.00 8.80 · 108

Observations:

◦ new feature: Tp � Tn

◦ Hubble-size bubbles at collision

◦ ρrad � ρkin: confirm very strong scenario
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GW spectra: results

◦ Current constraints: EPTA, PPTA, NANOGrav

◦ Possible detection: Square Kilometre Array
[Moore et al., Class. Quant. Grav. 32 (2015) 015014]
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Summary of Part II

◦ Stochastic background of GWs as a signature of new physics

◦ Different possible scenarios of 1st-order transitions:

◦ standard electroweak transition at T ∼ 100 GeV ⇒ signal in LISA

◦ prolonged electroweak transition ⇒ signal in PTA

◦ Not limited to the model discussed here
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General Conclusion

◦ The detection of Gravitational Waves represents a milestone by itself.

◦ It also provides new opportunities to probe various area of fundamental
physics from General Relativity to Particle Physics.

◦ There are lot of expectations regarding the future experiments like
KAGRA, LISA, SKA, etc
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Backup slides
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Standard Model with hidden scale invariance

◦ Scale invariant models are attractive to address the hierarchy problem
e.g.: [K. Meissner, H. Nicolai, PLB 648 (2007) 312] [R. Foot et al., PRD 77 (2008) 035006] [S. Iso et al., PLB 676 (2009) 81]

◦ Assume existence of UV complete scale invariant model (string theory,...)

◦ Focus on low-energy effective field theory:

◦ Standard Model Higgs potential at UV scale Λ

V(Φ†Φ) = V0(Λ) + λ(Λ)
[
Φ†Φ− v2

ew(Λ)
]2

+ ...

◦ spontaneously broken scale invariance manifests through dilaton field χ

Λ→ Λ χ
fχ
≡ αχ

v2
ew(Λ)→ v2

ew(αχ)
f 2
χ

χ2 ≡ ξ(αχ)
2 χ2

V0(Λ)→ V0(αχ)
f 4
χ

χ4 ≡ ρ(αχ)
4 χ4

We get an effective scale invariant potential:

V(Φ†Φ, χ) = λ(αχ)

[
Φ†Φ− ξ(αχ)

2
χ2
]2

+
ρ(αχ)

4
χ4
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Hierarchy and light dilaton

◦ Scale invariance is broken by quantum effects:

λ(i)(αχ) = λ(i)(µ) + βλ(i) (µ) ln (αχ/µ) + β′
λ(i) (µ) ln2 (αχ/µ) + ...

◦ Minimisation conditions and small vacuum energy density:

∂V
∂χ

∣∣∣∣
Φ=vew ,χ=vχ

= 0,
∂V
∂Φ

∣∣∣∣
Φ=vew ,χ=vχ

= 0, V(vew, vχ) = 0

◦ We obtain dimensional transmutation and hierarchy of VEVs (Λ ∼ vχ):

ρ(vχ) = 0, βρ(vχ) = 0, ξ(vχ) =
v2

ew
v2

χ

◦ ξ(vχ) can be hierarchically small (technical naturalness)

◦ Prediction of a light dilaton: m2
χ '

β′ρ(vχ)

4ξ(vχ)
v2

ew
mχ

mh
∼
√

ξ
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Recovering the Standard Model at µ = vew

◦ Consider the running of parameters between vew and vχ ∼ Λ

◦ Require that m2
χ(vew) > 0

169 170 171 172 173 174 175

1019

1020

1021

mt/GeV

Λ
/G
eV

◦ Dilaton mass at vχ ∼ Λ ∼ MP: mχ ∼ 10−8 eV

◦ Indicative only and requires higher-loop corrections

40 / 36



Recovering the Standard Model at µ = vew

◦ Consider the running of parameters between vew and vχ ∼ Λ

◦ Require that m2
χ(vew) > 0

169 170 171 172 173 174 175

1019

1020

1021

mt/GeV

Λ
/G
eV

◦ Dilaton mass at vχ ∼ Λ ∼ MP: mχ ∼ 10−8 eV

◦ Indicative only and requires higher-loop corrections

40 / 36



Recovering the Standard Model at µ = vew

◦ Consider the running of parameters between vew and vχ ∼ Λ

◦ Require that m2
χ(vew) > 0

169 170 171 172 173 174 175

1019

1020

1021

mt/GeV

Λ
/G
eV

◦ Dilaton mass at vχ ∼ Λ ∼ MP: mχ ∼ 10−8 eV

◦ Indicative only and requires higher-loop corrections

40 / 36



Recovering the Standard Model at µ = vew

◦ Consider the running of parameters between vew and vχ ∼ Λ

◦ Require that m2
χ(vew) > 0

169 170 171 172 173 174 175

1019

1020

1021

mt/GeV

Λ
/G
eV

◦ Dilaton mass at vχ ∼ Λ ∼ MP: mχ ∼ 10−8 eV

◦ Indicative only and requires higher-loop corrections

40 / 36



Electroweak and QCD phase transitions

In the Standard Model, both electroweak and QCD PTs are crossover
[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

In the model with hidden scale invariance:

◦ flat direction in the Higgs-dilaton potential at tree level

◦ vacua are almost degenerate ⇒ no EWPT until T � TEW

QCD-induced electroweak phase transition:

◦ supercooling until T ∼ TQCD

◦ at TQCD: chiral phase transition with 6 massless quarks

◦ quark condensates reduce the barrier in the Higgs potential ⇒ EWPT

See also: [E. Witten Nucl.Pys.B177 (1981) 477] [W. Buchmuller, D. Wyler, PLB 249 (1990) 281 ] [S. Iso et al., PRL 119 (2017)

141301] [B. von Harling, G. Servant, JHEP 1801 (2018) 159]
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Thermal Higgs-dilaton potential + quark condensates

◦ Thermal contributions to the Higgs-dilaton potential ⇒ barrier along the
flat direction:

VT(h, χ(h)) ≈ AT4 +
1
48

[
4λ(Λ) + 6y2

t (Λ) +
9
2

g2(Λ) +
3
2

g′2(Λ)

]
h2T2 + . . .

◦ Quark-antiquark condensate with N massless quarks [J. Gasser, H. Leutwyler, PLB 184

(1987) 83] :

〈q̄q〉T = 〈q̄q〉
[

1− (N2 − 1)
T2

12N f 2
π
− 1

2
(N2 − 1)

(
T2

12N f 2
π

)2

+ . . .

]

◦ Quark-Higgs Yukawa interactions induce a linear term in the potential:

VT(h)→ VT(h) +
yq√

2
〈q̄q〉Th

◦ This linear term dominates over the barrier for small enough T
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Results and dynamics of the transitions

◦ For N = 6 and fπ ≈ 93 MeV, 〈q̄q〉Tc = 0 at Tc ≈ 132 MeV

◦ For T ≈ 127 MeV the barrier disappears and the EWPT completes

◦ The Higgs-dilaton rolls down the potential (smooth transition)

◦ However, SU(6)R × SU(6)L chiral symmetry breaking is 1st-order for
massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338]

◦ Implicit assumption: chiral transition completes quickly

◦ More refined analysis currently under investigation:

◦ effective field theory for the Higgs, dilaton and pions

◦ U(6)×U(6) linear sigma model for the pions

L = Tr
(

∂µ ϕ†∂µ ϕ−m2 ϕ† ϕ
)
− λ1

[
Tr
(

ϕ† ϕ
)]2
− λ2Tr

(
ϕ† ϕ

)2
+ L(ϕ, φ, χ)

◦ requires a proper treatment of infrared divergences
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◦ U(6)×U(6) linear sigma model for the pions

L = Tr
(

∂µ ϕ†∂µ ϕ−m2 ϕ† ϕ
)
− λ1

[
Tr
(

ϕ† ϕ
)]2
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ϕ† ϕ
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+ L(ϕ, φ, χ)

◦ requires a proper treatment of infrared divergences
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Gravitational Waves

◦ 1st order chiral transition ⇒ stochastic background of GWs

◦ Peak frequency roughly given by duration of transition (size of bubbles at
collision): fp ≈ vR−1

c

◦ observed frequency today:

f0 = fp
a(tc)

a(t0)
≈ 1.65 · 10−8 v

Rc Hc

Tc

100 MeV
Hz ≈ 10−7 Hz

◦ possible detection with Pulsar Timing Arrays (EPTA, NANOGrav, SKA)
[C. Caprini et al., PRD 82 (2010) 063511] [A. Kobakhidze et al., EPJ C77 (2017) 570]

◦ precise spectrum and amplitude of the background currently under
computation (within linear sigma model)
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Gravitational Waves

[From rhcole.com/apps/GWplotter/]
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Summary of Backup

◦ Scale invariant extensions of the SM motivated by the hierarchy problem

◦ Low energy effective formulation with a dilaton field

◦ Interesting predictions:

◦ small dilaton mass: mχ ≈ 10−8 eV

◦ low temperature QCD-induced electroweak transition

◦ potential GW signal in the range of Pulsar Timing Arrays

◦ To investigate further:

◦ precise dynamics of the transitions

◦ Black Holes production
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