IPMU seminar, 19th July 2018

The SM EFT framework and Cosmological Relaxation

Tevong You

Dartmouth seminar, 12th April 2017

SMEXIT Implications of decoupling new physics

Introduction

- Soft exit from the SM: New physics around the corner
 - Usual *low-scale SUSY/compositeness/extra-dimensions*... just a bit more finetuned
 - Neutral naturalness/Twin Higgs... hidden naturalising sector
- Hard exit from the SM: New physics decoupled
 - Accept fine-tuning while SUSY/compositeness/extra-dimensions resolve other problems at heavier scales
 - Anthropic landscape, censorship-type approaches...
 - Cosmological relaxation, clockwork...
 - Phenomenological framework: SM EFT

Introduction

Spotted at CERN:

- SM EFT a systematic approach to decoupled new physics
- Job is now to classify phenomenology, from bottom-up and top-down
- Precision experimental measurements may find a pattern of deviations

Outline

• Part I: SM EFT

• A phenomenological framework for decoupled new physics

• Part 2: B Anomalies

• Signs of a non-zero Wilson coefficient?

• Part 3: Cosmological Relaxation

• A new approach to decoupling new physics without fine-tuning

References

SM EFT:

-Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data John Ellis, Christopher W. Murphy, Veronica Sanz and TY [arXiv:1803.03252]

-Dimension-6 operator analysis of the CLIC sensitivity to new physics John Ellis, Philipp Roloff, Veronica Sanz and TY JHEP 05 (2017) 096 [arXiv:1701.04804]

-Sensitivities of Prospective Future e+e- Colliders to Decoupled New Physics, John Ellis and TY JHEP 03 (2016) 089 [arXiv:1510.04561]

-Comparing EFT and Exact One-Loop Analyses of Non-Degenerate Stops, Aleksandra Drozd, John Ellis, Jeremie Quevillon and TY JHEP 06 (2015) 028 [arXiv:1504.02409]

-The Effective Standard Model after LHC Run I, John Ellis, Veronica Sanz and TY JHEP 29 (2015) 007 [arXiv:1410.7703]

Cosmological Relaxation:

-A Dynamical Weak Scale From Inflation, TY JCAP 1709 (2017) 09, 019 [arXiv:1701.09167]

-Leptogenesis in Cosmological Relaxation with Particle Production Minho Son, Fang Ye, TY 1804.06599

B anomalies:

-The Case for Future Colliders from B decays, Ben Allanach, Ben Gripaios and TY JHEP 03 (2018) 021 [arXiv:1710.06363]

- Part I: SM EFT
- Part 2: B Anomalies
- Part 3: Cosmological Relaxation

Why SM EFT?

Include only experimentally discovered degrees of freedom in our theory

The TeV Scale

What effective theory captures everything we know experimentally about weak interactions?

1933–1982 4-fermion interactions

$$\sim G_{\rm F} E^2 \qquad \Rightarrow \Lambda \sim {\rm TeV}$$

1982–2011 SM without Higgs

2012-now SM + higher-dimension operators?

$$\Rightarrow \Lambda \lesssim M_{\rm P}?$$

Why SM EFT?

Take a step back: recall the situation before 2012

The TeV Scale

What effective theory captures everything we know experimentally about weak interactions?

1933–1982 4-fermion interactions

$$\frown \qquad \qquad \Rightarrow \Lambda \sim \text{TeV}$$

1982-2011SM without Higgs λ_{M} λ_{M} λ_{M} λ_{M} λ_{M} λ_{M} λ_{M} λ_{M} λ_{M} λ_{M} 2012-nowSM + higher-dimension operators?

$$\Rightarrow \Lambda \lesssim M_{\rm P}$$
?

Beyond the Standard Model?

A priori many ways to break electroweak symmetry!

EFT for weak bosons

- 1980s-2012: Discovery of weak bosons. Non-linear effective Lagrangian for spontaneously-broken global symmetry (breaking mechanism unknown!)
- **Global** symmetry-breaking pattern gives low-energy effective theory regardless of UV mechanism responsible for it

$$SU(2) \times SU(2) \rightarrow SU(2)_V$$
 $(\rho \equiv M_W/M_Z \cos \theta_w \sim 1)$

$$\mathcal{L} = \frac{v^2}{4} \mathrm{Tr} D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma - m_i \bar{\psi}_L^i \Sigma \psi_R^i + \mathrm{h.c.}$$

$$\Sigma = \exp\left(i\frac{\sigma^a\pi^a}{v}\right)$$

EFT for weak bosons + scalar

• 2012: Non-linear electroweak Lagrangian + general couplings to singlet scalar

$$\begin{split} \mathcal{L} &= \frac{v^2}{4} \mathrm{Tr} D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \left(1 + 2 \frac{a}{v} \frac{h}{v} + \frac{b}{v^2} + ... \right) - m_i \bar{\psi}_L^i \Sigma \left(1 + \frac{c}{v} \frac{h}{v} + ... \right) \psi_R^i + \mathrm{h.c.} \\ &+ \frac{1}{2} (\partial_{\mu} h)^2 + \frac{1}{2} m_h^2 h^2 + \frac{d_3}{6} \left(\frac{3 m_h^2}{v} \right) h^3 + \frac{d_4}{24} \left(\frac{3 m_h^2}{v^2} \right) h^4 + ... \quad , \end{split}$$

$$\Sigma &= \exp\left(i \frac{\sigma^a \pi^a}{v} \right)$$

Fit experimental data to couplings

• Could have had very different coupling patterns than SM!

Mbrom 222068 - elidicorenery J. Ellis and T.Y. [arXiv:1203.0699]

Why SM EFT?

Assuming a SM Higgs and decoupled new physics at higher energies, the SM EFT is the next phenomenological framework

The TeV Scale

What effective theory captures everything we know experimentally about weak interactions?

1933–1982 4-fermion interactions

$$\frown \qquad \qquad \Rightarrow \Lambda \sim \text{TeV}$$

1982–2011 SM without Higgs

2012-now SM + higher-dimension operators? $\Rightarrow \Lambda \lesssim M_P$?

Dimension-6 Operators

 $\mathcal{L}_Y = y_d \bar{Q}_L \phi q_R^d + y_u \bar{Q}_L \phi^c q_R^u + y_L \bar{L}_L \phi l_R + \mathrm{h.c.}$

 $\mathcal{L}_G = -rac{1}{4}B_{\mu
u}B^{\mu
u} - rac{1}{4}W^a_{\mu
u}W^{a\mu
u}$

 $\mathcal{L}_H = (D^L_\mu \phi)^{\dagger} (D^{L\mu} \phi) - V(\phi)$

$$\mathcal{L}_{ ext{SM}}^{ ext{dim-6}} = \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i$$

(+ dim-5 Weinberg operator)

- First classified systematically by Buchmuller and Wyler (Nucl. Phys. B 268 (1986) 621)
- 59 dim-6 CP-even operators in a **non-redundant** basis, assuming minimal flavor structure (Gradkowski et al [arXiv:1008.4884])

$$\begin{array}{l} \mathcal{O}_{H} = \frac{1}{2} (\partial^{\mu} |H|^{2})^{2} \\ \mathcal{O}_{T} = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2} \\ \mathcal{O}_{G} = \lambda |H|^{6} \\ \mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) D^{\nu} W^{a}_{\mu\nu} \\ \mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} \end{array} \right) \begin{array}{l} \mathcal{O}_{BB} = g'^{2} |H|^{2} B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{GG} = g^{2}_{s} |H|^{2} G^{A}_{\mu\nu} G^{A\mu\nu} \\ \mathcal{O}_{HW} = ig(D^{\mu} H)^{\dagger} \sigma^{a}(D^{\nu} H) W^{a}_{\mu\nu} \\ \mathcal{O}_{HB} = ig'(D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ \mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\,\rho\mu} \end{array}$$

Basis adopted from Pomarol and Riva 1308.1426

(SILH basis Giudice et al. hep-ph/0703164)

$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \widetilde{H} u_R + \text{h.c.}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R + \text{h.c.}$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L H e_R + \text{h.c.}$
$\mathcal{O}^{u}_{R} = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{u}_{R} \gamma^{\mu} u_{R})$	$\mathcal{O}_R^d = (i H^\dagger \overset{\leftrightarrow}{D_\mu} H) (\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^e = (iH^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$
$\mathcal{O}_L^q = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{Q}_L \gamma^{\mu} Q_L)$		
$\mathcal{O}_L^{(3)q} = (i H^\dagger \sigma^a \overset{\leftrightarrow}{D_\mu} H) (\bar{Q}_L \sigma^a \gamma^\mu Q_L)$		
$\mathcal{O}_{LL}^{(3)ql} = \left(\bar{Q}_L \sigma^a \gamma_\mu Q_L\right) \left(\bar{L}_L \sigma^a \gamma^\mu L_L\right)$		$\mathcal{O}^{(3)l}_{LL} = \left(\bar{L}_L \sigma^a \gamma^\mu L_L\right) \left(\bar{L}_L \sigma^a \gamma_\mu L_L\right)$

+ four-fermion operators

Modifications of EWPO from dim-6 Operators

• (Pseudo-)Observables

$$T_{2}^{\mu} = T_{had} + 3T_{2}^{\mu} + 3T_{2}^{\mu} \quad R_{\ell} = \frac{T_{had}}{T_{2}^{\mu}} \quad \mathcal{O}_{had} = 12\pi \frac{T_{2}^{\mu} T_{had}}{T_{2}^{\mu}} \quad \mathcal{A}_{FB}^{\ell} = \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f} \quad M_{W} = c_{W} M_{2}$$

$$R_{q} = \frac{T_{q}}{T_{had}}$$
• Depends on

$$\Gamma_{f}^{L} = \frac{\int_{2}^{2} G_{F} M_{t}^{2} \hat{M}_{t}}{G_{T}} \left[(g_{L}^{f})^{2} + (g_{R}^{f})^{2} \right] \qquad A_{f} = \frac{(g_{L}^{f})^{2} - (g_{R}^{f})^{2}}{(g_{L}^{f})^{2} + (g_{R}^{f})^{2}}$$

$$g^{f} = T_{f}^{2} - Q_{f} g_{w}^{2} \qquad g^{2}_{w} = \frac{1}{2} - \frac{1}{2} \int_{1}^{1} - \frac{4\pi \alpha}{3z G_{L} m_{t}^{2}}$$

• Dim-6 operators can modify observables directly through Zff couplings contributions or indirectly through redefinitions of input observables

$$m_t^2 = (m_z^2)^o (1+\pi_{tt}) \quad G_f = G_f^o (1-\pi_{uw}^o) \propto (m_t) = \alpha^o (m_z) (1+\pi_{yy}^o)$$

SM EFT Present Constraints

Marginalized constraints on a complete non-redundant basis of dim-6 operators affecting EWPTs

Ellis, Sanz and T.Y. 1410.7703

S,T parameter corresponds to $(c_W + c_B)$, c_T subset

$$S = \frac{4\sin^2 \theta_W}{\alpha(m_Z)} (\bar{c}_W + \bar{c}_B) \approx 119 (\bar{c}_W + \bar{c}_B)$$
$$T = \frac{1}{\alpha(m_Z)} \bar{c}_T \approx 129 \bar{c}_T.$$

Higgs constraints on dim-6 operators

• Operators affect Higgs signal strength measurements, differential distributions

240

SM EFT Present Constraints

 Constraints from LHC triple-gauge coupling measurements and Higgs physics

Tevong You

Translating EFT Constraints to MSSM Stops

Coeff.	Exper	imental constraints	95 % CL limit	$\begin{array}{c} \text{deg.} \ m_{\tilde{t}_1}, \\ X_t = 0 \end{array}$
ē	LHC	marginalized	$[-4.5, 2.2] \times 10^{-5}$	$\sim 410~{\rm GeV}$
c_g		individual	$[-3.0, 2.5] \times 10^{-5}$	$\sim 390~{\rm GeV}$
a IH	THC	marginalized	$[-6.5, 2.7] \times 10^{-4}$	$\sim 215 { m ~GeV}$
c_{γ}	LIIC	individual	$[-4.0, 2.3] \times 10^{-4}$	$\sim 230~{\rm GeV}$
- -	IFD	marginalized	$[-10, 10] \times 10^{-4}$	$\sim 290 { m ~GeV}$
c_T	LEL	individual	$[-5,5] \times 10^{-4}$	$\sim 380 { m ~GeV}$
$\bar{c}_W + \bar{c}_B$	LEP	marginalized	$[-7,7] \times 10^{-4}$	$\sim 185 { m GeV}$
		individual	$[-5,5] \times 10^{-4}$	$\sim 195~{\rm GeV}$

Drozd, Ellis, Quevillon and T.Y. 1504.02409

FCC-ee EWPT Constraints

FCC-ee EWPT Constraints

FCC-ee EWPT Constraints

Future Higgs Constraints

• Similar precision to current EWPT

Future Constraints to MSSM Stops

Coeff. Experimental constraints		05 07 CT 1:	deg. $m_{\tilde{t}_1}$		
		al constraints	95 % CL limit	$X_t = 0$	$X_t = m_{\tilde{t}}/2$
	$TT \cap 1150 fb^{-1}$	marginalized	$[-7.7, 7.7] \times 10^{-6}$	$\sim 675 \text{ GeV}$	$\sim 520 \text{ GeV}$
ā	ILC_{250GeV}	individual	$[-7.5, 7.5] \times 10^{-6}$	$\sim 680 \text{ GeV}$	$\sim 545 \text{ GeV}$
c_g	FCC as	marginalized	$[-3.0, 3.0] \times 10^{-6}$	$\sim 1065 \text{ GeV}$	$\sim 920 \text{ GeV}$
	r CC-ee	individual	$[-3.0, 3.0] \times 10^{-6}$	$\sim 1065 \text{ GeV}$	$\sim 915 \text{ GeV}$
	$TT C^{1150 fb^{-1}}$	marginalized	$[-3.4, 3.4] \times 10^{-4}$	$\sim 200 \text{ GeV}$	$\sim 40 \text{ GeV}$
ā	ILC_{250GeV}	individual	$[-3.3, 3.3] \times 10^{-4}$	$\sim 200 \text{ GeV}$	$\sim 35 { m ~GeV}$
	FCC-ee	marginalized	$[-6.4, 6.4] \times 10^{-5}$	$\sim 385 \text{ GeV}$	$\sim 250 \text{ GeV}$
		individual	$[-6.3, 6.3] imes 10^{-5}$	$\sim 390 { m GeV}$	$\sim 260 { m GeV}$
	$ILC_{250GeV}^{1150fb^{-1}}$	marginalized	$[-3,3] \times 10^{-4}$	$\sim 480 \text{ GeV}$	$\sim 285 { m GeV}$
ā		individual	$[-7,7] \times 10^{-5}$	$\sim 930 { m ~GeV}$	$\sim 780 { m ~GeV}$
$ $ c_T	FCC-ee	marginalized	$[-3,3] \times 10^{-5}$	$\sim 1410 \text{ GeV}$	$\sim 1285 \text{ GeV}$
		individual	$[-0.9, 0.9] \times 10^{-5}$	$\sim 2555 { m GeV}$	$\sim 2460 { m ~GeV}$
	$ILC_{250GeV}^{1150fb^{-1}}$	marginalized	$[-2,2] \times 10^{-4}$	$\sim 230 \text{ GeV}$	$\sim 170 { m ~GeV}$
		individual	$[-6, 6] imes 10^{-5}$	$\sim 340 \text{ GeV}$	$\sim 470 { m ~GeV}$
$ c_W + c_B $	FCC-ee	marginalized	$[-2,2] \times 10^{-5}$	$\sim 545 \text{ GeV}$	$\sim 960 { m GeV}$
		individual	$[-0.8, 0.8] \times 10^{-5}$	$\sim 830 \text{ GeV}$	$\sim 1590~{\rm GeV}$

Future e+e- Constraints

- Future precision sensitive to TeV scale, even for loop-induced operators
- One-loop matching simplified by a Universal One-Loop Effective Action

Henning, Lu, Murayama, 1412.1837; Drozd, J. Ellis, Quevillon, TY, 1512.03003; S.A.R. Ellis, Quevillon, TY, Z. Zhang, 1604.02445, 1706.07765.

- Part I: SM EFT
- Part 2: B Anomalies
- Part 3: Cosmological Relaxation

B anomalies

$$\mathcal{O}_{ij}^l = (\bar{s}\gamma^\mu P_i b)(\bar{l}\gamma_\mu P_j l)$$

- Anomalies in processes involving $b \rightarrow s \ \mu^+\mu^-$ transitions:
- LHCb 3.4 σ in P5' angular distribution of B $\rightarrow K^* \mu^+ \mu^-$ (2 σ for Belle)
- Various other kinematic observables in $b \rightarrow s \ \mu^+\mu^-$
- 3.2 σ in $B_s \rightarrow \varphi \ \mu^+ \mu^-$
- ~4 σ non-zero Wilson coefficient in global fit to these "messy" observables
- 2.5 σ in "clean" observable R_K
- 2.5 σ in "clean" observable R_K^*
- ~4 σ non-zero Wilson coefficient in combined fit to just these two clean observables
- Consistency of all these various anomalies is non-trivial

Motivation for future colliders

- If $b \rightarrow s\mu^+\mu^-$ anomalies are confirmed, can we *definitely* discover directly the source (i.e. LQ/Z') at higher energies? (80 TeV unitarity limit = no general no-lose theorem at FCC-hh) Di Luzio, Nardecchia [1706.01868]
- Consider sensitivity to most **pessimistic** scenario: only include minimal couplings required to explain $b \rightarrow s\mu^+\mu^-$ anomalies

• More realistic models will only be *easier* to discover

• Extrapolate current 13 TeV di-muon search:

• Actual limits depend on Z' couplings in signal x-section

• Extrapolate current 13 TeV di-muon search:

Z' Sensitivity

• Actual limits depend on Z' couplings in signal x-section

Z'

 μ^+

 \overline{s}

• Extrapolate current 13 TeV di-muon search:

15

20

ч×

10⁻⁵

 10^{-6}

10⁻⁷

0

10

20

30

M [TeV]

40

50

Z' Sensitivity

Ч×

10⁻⁵

 10^{-6}

10⁻⁷,

0

1.5 TeV

5

10

M [TeV]

Z' Sensitivity

• Extrapolate current 13 TeV di-muon search:

• Actual limits depend on Z' couplings in signal x-section

b

 \overline{s}

Z'

 μ^+

Z' coverage: For each $M_{7'}$, plot vertically the anomalycompatible

• Actual limits depend on Z' couplings in signal x-section

• Extrapolate current 13 TeV di-muon search:

Z' Sensitivity

Z' Sensitivity

• Extrapolate current 13 TeV di-muon search:

• Actual limits depend on Z' couplings in signal x-section

Z' Sensitivity

• Extrapolate current 13 TeV di-muon search:

• 100 TeV can cover **all** parameter space of most *pessimistic* scenario

Leptoquark Sensitivity

• Extrapolate current 8 TeV LQ di-muon+di-jet search: gro

- Pair production for scalar LQ depends only on QCD coupling
- Upper limit from Bs mixing constraint

9000

Leptoquark Sensitivity

• Extrapolate current 8 TeV LQ di-muon+di-jet search: g

- Pair production for scalar LQ depends only on QCD coupling
- Upper limit from Bs mixing constraint

 ∂LQ

Take-home message

- Complete coverage of Z' models at 100 TeV FCC-hh
- Contrived LQ models may still survive FCC-hh
- Future studies: consider backgrounds, other channels, more realistic benchmark models, etc.
- Even if anomalies vanish, motivates **direct** discovery potential of future hadron colliders and interplay with **indirect** sensitivity from B physics

- Part I: SM EFT
- Part 2: B Anomalies
- Part 3: Cosmological Relaxation

Beyond the Standard Model?

• Hierarchy problem is still a problem: $(m_h)^2_{tree} + (m_h)^2_{radiative} = (m_h)^2_v$

$$\delta m_{\phi}^2 \propto m_{
m heavy}^2, \quad \delta m_{\psi} \propto m_{\psi} \log\left(rac{m_{
m heavy}}{\mu}
ight)$$

• Earliest example of an unnatural, arbitrary feature of a fundamental theory:

 $m_{inertial} = q_{gravity}$

• Classical electromagnetism fine-tuning:

$$(m_ec^2)_{
m obs} = (m_ec^2)_{
m bare} + \Delta E_{
m coulomb},$$

$$\Delta E_{\rm coulomb} = \frac{e^2}{4\pi\epsilon_0 r_e}$$

- Pions, cut-off also at natural scale
- Higgs? Expect new physics close to weak scale

Understanding the origin of EWSB

- The SM has many *arbitrary* features put in by hand which hint at **underlying structure**
 - Pattern of Yukawa couplings
 - QCD Theta term
 - Neutrino mass
 - Higgs potential
- Maybe it just is what it is ⁻_(ツ)_/⁻
- but we would like a **deeper understanding**
 - e.g. PQ axion for Theta term, see-saw for neutrino mass, Froggat-Nielsen for Yukawas...
- In SM, no understanding of Higgs sector: Higgs potential and couplings put in by hand
- Just like in condensed matter systems, we feel there must be some underlying structure that **explains the origin of EWSB**
- In any such theory in which the Higgs potential is *calculable*, there is a **UV sensitivity** to the Higgs mass (that is no longer a free parameter) which requires fine-tuned cancellations
- Unlike solutions to other arbitrary features, this one points to weak-scale new physics

Beyond the Standard Model?

http://resonaances.blogspot.com.es/2016/01/do-or-die-year.html

• Maybe Nature is trying to tell us we are missing something in the way we think about the hierarchy problem

P. W. Graham, D. E. Kaplan and S. Rajendran, [arXiv:1504.07551]

L. F. Abbott, Phys. Lett. B 150 (1985) 427

• Higgs mass is naturally at large cut-off M

$$V_{\text{soft}}(a) \simeq (ga - \underline{M}^2)|h|^2 + gM^2a + \dots$$

- Axion-like particle *a* protected by shift symmetry, explicitly broken through technically-small parameter *g*
- Scans an effective Higgs mass
- Barriers switch on after EWSB

$$V_{\cos}(a) = \Lambda_G^4 \cos(a/f) \qquad \Lambda_G^4 \equiv \Lambda_G^{4-n} v^n$$

P. W. Graham, D. E. Kaplan and S. Rajendran, [arXiv:1504.07551]

L. F. Abbott, Phys. Lett. B 150 (1985) 427

• Higgs mass is naturally at large cut-off M

$$V_{\text{soft}}(a) \simeq (ga - M^2)|h|^2 + gM^2a + \dots$$

- Axion-like particle *a* protected by shift symmetry, explicitly broken through technically-small parameter *g*
- Scans an effective Higgs mass
- Barriers switch on after EWSB

$$V_{\cos}(a) = \Lambda_G^4 \cos(a/f) \qquad \Lambda_G^4 \equiv \Lambda_G^{4-n} v^n$$

P. W. Graham, D. E. Kaplan and S. Rajendran, [arXiv:1504.07551]

L. F. Abbott, Phys. Lett. B 150 (1985) 427

• Higgs mass is naturally at large cut-off M

$$V_{\text{soft}}(a) \simeq (ga - M^2)|h|^2 + gM^2a + \dots$$

- Axion-like particle *a* protected by shift symmetry, explicitly broken through technically-small parameter *g*
- Scans an effective Higgs mass
- Barriers switch on after EWSB

 $V_{\cos}(a) = \Lambda_G^4 \cos(a/f) \qquad \Lambda_G^4 \equiv \Lambda_G^{4-n} v^n$

P. W. Graham, D. E. Kaplan and S. Rajendran, [arXiv:1504.07551]

L. F. Abbott, Phys. Lett. B 150 (1985) 427

$$V_{\text{soft}}(a) \simeq (ga - M^2)|h|^2 + gM^2a + \dots$$

$$V_{\cos}(a) = \Lambda_G^4 \cos(a/f) \qquad \Lambda_G^4 \equiv \Lambda_G^{4-n} v^n$$

• Trapped when barrier height = slow-roll slope

P. W. Graham, D. E. Kaplan and S. Rajendran, [arXiv:1504.07551]

L. F. Abbott, Phys. Lett. B 150 (1985) 427

Constraints: H < v, classical rolling vs quantum, inflaton energy density dominates relaxion, etc.

Very small g and natural scanning range lead to super-planckian field excursions, exponential e-foldings...

• Trapped when barrier height = slow-roll slope

Relaxation Models

(apologies for lack of references)

$$V_{\cos}(a) = \Lambda_G^4 \cos(a/f) \quad \Lambda_G^4 \equiv \Lambda_G^{4-n} v^n \qquad gM^2 \sim \frac{\Lambda_G^{4-n} v^n}{f_\phi}$$

• **n=1 models** Graham et al [arXiv:1504.07551]

- G=QCD: Need additional ingredients to overcome strong-CP problem
- New gauge group G: new physics at weak scale + coincidence problem

• **n=2 models** Espinosa et al [arXiv:1506.09217]

- G can be at higher scales, raises M cut-off too
- Requires second scalar to relax relaxion barriers: doublescanning mechanism

• **n=0 models** Hook and Marques-Tavares [arXiv:1607.01786], **TY** [arXiv:1701.09167]

• More promising, make use of axial gauge coupling $\mathcal{L} = \frac{1}{32\pi^2} \frac{a}{f} \epsilon^{\mu\nu\rho\sigma} \text{Tr}G_{\mu\nu}G_{\rho\sigma}$

Relaxation backreaction on inflation

TY [arXiv:1701.09167]

• Minimal relaxion setup, **no v-dependence in relaxion sector**

$$\mathcal{L} \supset \left(M^2 - g\phi\right)|h|^2 + gM^2\phi + ... + \Lambda_G^4 \cos\left(\frac{\phi}{f_\phi}\right) - \frac{\alpha_D}{f_D}\phi F_{\mu\nu}\tilde{F}^{\mu\nu},$$

- Backreaction instead ends inflation
 - e.g. Inflation supported by electroweak dissipation \mathcal{L}

$$\mathcal{L} \supset -\frac{\alpha}{f} \sigma F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\ddot{\sigma} + 3H\dot{\sigma} + V'_{\sigma}(\sigma) = -I\frac{\alpha}{f}\left(\frac{H}{\xi}\right)^4 e^{2\pi\xi}, \qquad \xi \equiv \frac{\alpha}{2f}\frac{\dot{\sigma}}{H}$$

See e.g. Anber and Sorbo 0908.4089

- Hubble falls
- Dark dissipation increases
- Relaxion loses KE and is trapped

	M	g	H_I	H_c	N_e	Λ_G	f_{ϕ}	f_D/α_D
$\sim [\text{GeV}]$	10^{8}	10^{-11}	10^{-2}	10^{-5}	10^{18}	$10^{3.5}$	10^{9}	10^{15}

Relaxation backreaction on inflation

TY [arXiv:1701.09167]

• Minimal relaxion setup, **no v-dependence in relaxion sector**

$$\mathcal{L} \supset \left(M^2 - g\phi\right)|h|^2 + gM^2\phi + ... + \Lambda_G^4 \cos\left(rac{\phi}{f_\phi}
ight) - rac{lpha_D}{f_D}\phi F_{\mu
u} ilde{F}^{\mu
u},$$

- Backreaction instead ends inflation
 - e.g. Inflation supported by electroweak dissipation \mathcal{L}

$$\mathcal{L} \supset -\frac{\alpha}{f} \sigma F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\ddot{\sigma} + 3H\dot{\sigma} + V'_{\sigma}(\sigma) = -I\frac{\alpha}{f}\left(\frac{H}{\xi}\right)^4 e^{2\pi\xi}, \qquad \xi \equiv \frac{\alpha}{2f}\frac{\dot{\sigma}}{H}$$

See e.g. Anber and Sorbo 0908.4089

- Hubble falls
- Dark dissipation increases
- Relaxion loses KE and is trapped

	M	g	H_I	H_c	N_e	Λ_G	f_{ϕ}	f_D/α_D
$\sim [\text{GeV}]$	10^{8}	10^{-11}	10^{-2}	10^{-5}	10^{18}	$10^{3.5}$	10^{9}	10^{15}

Relaxation backreaction on particle production

Hook and Marques-Tavares [arXiv:1607.01786]

• v-dependence in gauge particle production

$$\mathcal{L} \supset \left(M^2 - g\phi\right) |h|^2 + gM^2\phi + \dots + \Lambda_G^4 \cos\left(\frac{\phi}{f_\phi}\right) - \frac{\alpha_D}{f_D}\phi F_{\mu\nu}\tilde{F}^{\mu\nu},$$

$$\bigvee (a) \quad \langle H \rangle \sim \vee$$

$$\int \int \langle H \rangle \sim \vee$$

- For M ~ 10-100 TeV sub-Planckian field excursions, no tiny parameters
- Model can be realised before, during, or after inflation

Relaxation backreaction on particle production

Hook and Marques-Tavares [arXiv:1607.01786]

- Relaxation after inflation: relaxion can reheat universe
- Leptogenesis during reheating: L and CP violation by higherdimensional operators parametrising decoupled new physics

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_1} \lambda_{1,ij} H H \bar{L}_j^c L_i + \frac{1}{\Lambda_2^2} \lambda_{2,ijkl} (\bar{L}_i \gamma^\mu L_j) (\bar{L}_k \gamma_\mu L_l) + \frac{1}{\Lambda_3^2} \lambda_{3,ijkl} (\bar{L}_i \gamma^\mu L_j) (\bar{E}_k \gamma_\mu E_l) + h.c.$$

Hamada & Kawana [arXiv:1510.05186]

• Attractive features in leptogenesis for cosmological relaxation with particle production

Minho Son, Fang Ye, TY [1804.06599]

• Minimal EFT setup for naturally decoupled new physics

Conclusion

- Decoupled new physics motivates an SM EFT approach to phenomenology
- Future precision may probe even loop-induced operators at the TeV scale
- B anomalies could be the first indirect signs of new physics at accessible energy scales
- A desert above the weak scale has interesting implications for naturalness and model-building
- Cosmological relaxation mechanisms one possible avenue to explore

Conclusion

- A SM-like Higgs boson and no direct signs of new physics may turn out to be a significant experimental null result
- Null results may still lead to deeper understanding

• No new physics at the TeV scale could be our "Michelson-Morley" moment