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Talk Outline:

Motivation.

Description of generalised perturbative approach to Large
Scale Structure (LSS).

The Importance of theoretical consistency for upcoming
surveys.

The 1-loop matter bispectrum in non-standard models of
gravity and dark energy.

Applications and Extensions.
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Why Modify ACDM?

m Extrapolation of general relativity to Onlny Mt
. 49%
cosmological scales.

m Dominant dark sector in standard T
picture.
m Tentative tensions in data sets.
[1409.2769]
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Generality is useful ...

We want a general picture of gravity ....
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but must respect solar system tests — screening.
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Comparisons of Approaches to LSS Modelling
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[1607.03150,1704.05309,1804.05867]
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Generalised Perturbation Theory (PT) Predictions for
LSS

Core Ingredients:
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Generalised Perturbation Theory (PT) Predictions for
LSS

Core Ingredients:

Evolution of initial Gaussian perturbations to LSS in a flat
FRLW background.

Working in the Newtonian Regime, i.e. v, P << 1.

Loop corrections added to improve non-linear regime
modelling.

@A Additional modelling required to connect with observables.

O

ds® = —dt> + aQ(t)(dlr2 +dy + d:z)

Ben Bose @ IPMU




Eulerian Perturbation Theory

Conservation of energy and momentum lead to the Continuity
and Euler equations:

3 3
220003) o o) = _/ dhadka 5k — ks — ka)a(ke, ka) O(ke, )5 (ka, 2),
da (2m)3

a%+ <2+ [???] + "Hig) o(k, a) — (ﬁf o(k,a) =

1 / d3k1d3ko
2 (2m)3

-+ 4 0dq, 04 equations, etc.

Op(k — k1 — k2)B(ki, ko) O(k1, a)0(k2, a),
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Eulerian Perturbation Theory

Conservation of energy and momentum lead to the Continuity
and Euler equations:

a(%(k, a)
Oa

+0(k,a) = / d ("217:') ka 5p(k — ky — ka)a(ky, ko) O(ky, a)d(ka, a),

1 [ d3k1d3k
-5 / #%(k — k1 — k2)B(k1, k) 0(k1, )0(ka, a),

-+ 04,04 equations, etc.

* dni(k,a) =302, dn(k, a), On(k,a) = 32021 On(k, a).

* Sa(k;a) = Wﬁ [ d3ky...d3kn0p(k — k.. _n)Fa(k1, ..., kn; a)So(k1)...50 (Kkn)-
Evolution equations solved numerically using MGCopter up to 4th
order in the perturbations.
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Gravitational Modelling

We can keep gravity general through Poisson equation in the
evolution equations

- (;;) o= ?’Qf;@)ﬂ(k; 2)6(k) + S(k; a),
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Gravitational Modelling

We can keep gravity general through Poisson equation in the
evolution equations

- (:) o= () 4 2) 5000 + S 2)

where the non-linear interaction term is given by

3 3
S(k, a) :/ d ("2;")3“2 51 (k — kia)ya(ks, ko; 2)3(k1) (k2)

d3k; d3kod3k
/ %%(k — k123)y3(k1, k2, ks; a)d(k1) 6(k2) 6(ks)
d3k; d3kod3ksd3k
/ %t%(k — ki1234)7a(k1, ka2, k3, kg; a)d (k1) d(k2) 6(ks)d(ka).

This term is responsible for screening.

[1606.02520]
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Dark Sector Modelling

We can incorporate general interactions within the dark sector
easily. Some examples:
m Momentum exchange models:

<2 + Aa) + 3’;) 0(k; a),

[1412.1080]
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Dark Sector Modelling

We can incorporate general interactions within the dark sector
easily. Some examples:
m Momentum exchange models:

<2+A@y+if>mkax

[1412.1080]
or NOT so easily ...
m Clustering quintessence systems :
k2 c2k?§
/ _ _ s q —
g+ [2 3w + = }0" 22" T L1 w2
ky, k c2
/d3k1d3k26D(k — Kk — ko) [— A 12 2)0q(k1)0q(k2) + ﬁéq(kl)ﬁq(kz)a(k]

ac; c2(1+c3)
(1+ w)

5 (k1) (ko Yok ko) + 5AhﬁAthbu—6ﬂA

a2H2(1 + w)?

1106.0834
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Information Extraction: 2-point Statistics:

The power spectrum or correlation function are Fourier doubles
of a 2-point correlation of the perturbations

(8(k)d(K")) = (2m)°dp (k + k') P(k).

m Has been well studied in perturbative regime. [ex.
1607.03150,1607.03148]

m High precision measurements demand accurate theory.
There are many difficulties in this respect.

m Information rich scales difficult to model in a useful way.
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Relevance of Consistent Modelling for Future

Spectroscopic Surveys (z = 1)
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Screening effects on matter power spectrum in above

analysis < 0.5%.
[1702.02348]
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Information Extraction: 3-point Statistics
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The Matter Bispectrum

The bispectrum is a Fourier space 3-point correlation
measurement of the perturbations:

<5(k1)(5(k2)(5(k3)> = (271')35D(k1 + ko + k3) B(kl7 ko, k3)
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The Matter Bispectrum

The bispectrum is a Fourier space 3-point correlation
measurement of the perturbations:

<5(k1)(5(k2)(5(k3)> = (271')35D(k1 + ko + k3) B(kl7 ko, k3)

To include non-linear information we can include loop corrections.
The 1-loop bispectrum is then given by

Bi—ioop(k1, ko, k3) = Biio + [ Baoo + B3o1 + Bar ],

where
(02(k1)d2(k2)d2(k3)) = (27)*0p(k1 + k2 + k3) Baxo,

(61(k1)d2(k2)d3(k3)) ~ (27)*0p (k1 + ko + k3) B3,

<51(k1)(51(k2)54(k4)> ~ (271')351)(k1 + ko + k3) Bs11.
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1-loop Bispectrum:
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Fitting formula for (Beyond) Horndeski: [Namikawa et al. 1805.10567]
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1-loop Bispectrum
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1-loop Bispectrum
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z=0.5, ko = 0.1h/Mpc
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z=0, kz = 0.1h/Mpc z=0.5, ko = 0.1h/Mpc z=1, kz = 0.1h/Mpc
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of 3-point Statistics:
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of 3-point Statistics: f(R), |fre| = 2.5 x 107°
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Applications and Extensions: Galaxy Bispectrum
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Usefulness of pipeline for next generation of spectroscopic surveys
where statistical errors will be tiny : EUCLID, DESI, WFIRST.
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Usefulness of pipeline for next generation of spectroscopic surveys
where statistical errors will be tiny : EUCLID, DESI, WFIRST.

* can complement power
spectrum analyses of galaxy data sets: improve constraints
(factor of up to 5) and break degeneracies.
[1705.04392,1606.00439]

Velocity kernels already computed by algorithm but additional
integral required for multipoles.

Requires galaxy bias and redshift space modelling so
constraints may be weaker and/or biased....

Total model parameters for a redshift space, biased tracer
bispectrum prediction at 1-loop order is > 10!
[1705.02574,1806.04015]

has great scope to constrain
gravitational theories but non-linear modelling must be
accurate + intrinsic alignments, z-distribution.
1801.01741,1805.10567
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Applications and Extensions: CMB Lensing Bispectrum

Direct application to CMB experiments:
* CMB lensing very clean but currently offers weaker constraints
than convergence spectra.
* Next generation CMB experiments may be able to offer
competitive constraints on gravity and dark energy. 1805.10567
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Summary

m SPT at 1-loop order plus some redshift space model (ex. TNS) seems to be a
promising framework for upcoming survey analyses (see Fonseca et al.
1805.12394 for example).
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Summary

m SPT at 1-loop order plus some redshift space model (ex. TNS) seems to be a
promising framework for upcoming survey analyses (see Fonseca et al.
1805.12394 for example).

m Extremely adaptable and suitable for statistical parameter inference analyses.

m Upcoming surveys offer a different approach to constrain gravity and cosmology
other than pushing into the non-linear regime: higher order statistics.

m The 1-loop matter bispectrum performs very well, competitive with current
fitting formulas for modified gravity.

B The 1-loop bispectrum offers relatively large non-linear signatures of
modification (from screening for example). This greatly depends on triangle
configuration and scales considered.

m Code has been validated against analytic results and simulation results and is
ready for application to survey data.

m Redshift space extension is available but introduces many free parameters and
numerically challenging in general case.

m CMB lensing offers clean measurement but may not have strong enough signal
even at stage 4 plus added complication of post-born modelling.
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Thanks for listening!
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