10/17/2018 Kavli IPMU

Higgs parity, strong CP problem, GUT

> Keisuke Harigaya (IAS) with Lawrence Hall 1803.08119

$V = \lambda_{\rm SM} |H|^4 - m_H^2 |H|^2$ 0.1 (100 GeV)²

Conventional approach $V = \lambda_{\rm SM} |H|^4 - m_H^2 |H|^2$

New physics giving 100 GeV scale? SUSY, compositeness, etc. LHC has not found them so far...

Maybe other explanations. (Anthropic principle?, though not established)

Approach today $V = \lambda_{\rm SM} |H|^4 - m_H^2 |H|^2$

Assume that the SM is valid up to high energy scale

Small boundary condition

Flat potential

Some new physics to explain $\lambda \sim 0$?

Higgs parity

Introduce Z₂ symmetry $H \leftrightarrow H'$ $SU(2) \leftrightarrow SU(2)'$ Higgs parity

 $V(H, H') = \lambda(|H|^2 + |H'|^2)^2 + \lambda'|H|^2|H'|^2 - m^2(|H|^2 + |H'|^2)$

Let us assume m >> v_{EW}

 $V(H, H') = \lambda(|H|^2 + |H'|^2)^2 + \lambda'|H|^2|H'|^2 - m^2(|H|^2 + |H'|^2)$

$$\langle H' \rangle^2 = \frac{m^2}{2\lambda} \equiv {v'}^2 \qquad m_H^2 \simeq 0 \to \lambda' \simeq 0$$

 $V(H, H') \simeq \lambda (|H|^2 + |H'|^2)^2 - m^2 (|H|^2 + |H'|^2)$

Accidentally SU(4) symmetric 4 = (H, H')

 $SU(4) \rightarrow SU(3)$ by $\langle H' \rangle$

SM Higgs is a Nambu-Goldstone boson

 $\lambda_{\rm SM}=0$ (up to quantum correction)

Fine-tuning

 $V(H, H') = \lambda(|H|^2 + |H'|^2)^2 + \lambda'|H|^2|H'|^2 - m^2(|H|^2 + |H'|^2)$

Same as that of SM

Fermions and gauge groups

 $q \leftrightarrow q' = (\bar{u}, \bar{d}), \ \ell \leftrightarrow \ell' \supset \bar{e}$

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \supset SO(10)$

 $q, \bar{u}, d, q', \bar{u}', d', \cdots$

 $SU(3)_c$ or $\times SU(3)_c \times SU(3)_c'$

 $\times SU(2)_L \times SU(2)' \times$

U(1)or $U(1) \times U(1)'$

Summary so far $\lambda \sim 0$ Accidental SU(4)

Higgs parity and its SSB

Higgs parity and its SSB

Higgs parity from SO(10)

Remnant of SO(10) $H, H' \subset 16$ SO(10) $q, \ell, q', \ell' = 16$ $q' = (\bar{u}, \bar{d}), \ell' \supset \bar{e}$ $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ Left-right symmetry

 $\langle H' \rangle \neq 0$

 $H \leftrightarrow H'$

 $SU(3)_c \times SU(2)_L \times U(1)_Y$

Top-down perspective

SUSY GUT

3 parameters $g_{\text{GUT}}, M_{\text{GUT}}, m_{\text{SUSY}}$

4 parameters

 $g_1, g_2, g_3, v_{\rm EW}$

(You can replace V_{EW} with Ω_{DM})

Higgs parity GUT 4 parameters $g_{GUT}, M_{GUT}, v', y_t$

5 parameters

 $g_1, g_2, g_3, y_t, \lambda_{\text{higgs}}$

Top-down perspective

SUSY GUT

3 parameters

 $g_{\rm GUT}, M_{\rm GUT}, m_{\rm SUSY}$

4 parameters

 $g_1, g_2, g_3, v_{\rm EW}$

Comparable to SUSY GUT? Higgs parity GUT 4 parameters 5 parameters

 $g_{\rm GUT}, M_{\rm GUT}, v', y_t$

 $g_1, g_2, g_3, y_t, \lambda_{\text{higgs}}$

Intermediate Pati-SalamSO(10) $H, H' \subset 16$ $q, \ell, q', \ell' = 16$ $q' = (\bar{u}, \bar{d}), \ell' \supset \bar{e}$

 $SU(4) \times SU(2)_L \times SU(2)_R$

 $\begin{array}{c|c} H(1,2,1,-\frac{1}{2}) \subset (4,2,1) \\ H'(1,1,2,\frac{1}{2}) \subset (\bar{4},1,2) \end{array} & & & & & & \\ SU(3)_c \times SU(2)_L \times U(1)_Y \end{array} = \begin{pmatrix} 0 & 0 & 0 & v' \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Coupling Unification

~2σ smaller top mass

Yukawa couplings

H(2,1), H'(1,2), q(2,1), q'(1,2)

 $\frac{c_{ij}}{M}HH'q_iq'_j$

Yukawa couplings

X

	$SU(3)_c$	$SU(2)_L$	$SU(2)_R$	U(1)	SU(4)	SO(10)	coupling
up	3	1	1	2/3	15	45	$\bar{X}qH^{\dagger} + Xq'H'^{\dagger}$
	3	2	2	-1/3	6/10	45, 54, 210/210	$\left \bar{X}qH'^{\dagger} + Xq'H^{\dagger} \right $
down	3	1	1	-1/3	6/10	10,126/120	$\bar{X}qH + Xq'H'$
	3	2	2	2/3	15	120, 126	$\bar{X}qH' + Xq'H$
electron	1	1	1	-1	10	120	$\bar{X}\ell H + X\ell' H'$
	1	2	2	0	$\fbox{1/15}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$X\ell H' + X\ell' H$
neutrino	1	1	1	0	$\boxed{1/15}$	$\left 1, 54, 210/45, 210 \right $	$X(\ell H^{\dagger} + \ell' H'^{\dagger})$
	1	2	2	-1	10	210	$\left \bar{X}\ell H'^{\dagger} + X\ell' H^{\dagger} \right $
	1	3	1	0	1	45	$X\ell H^{\dagger}$
	1	1	3	0	1	45	$X\ell' H'^{\dagger}$

Yukawa couplings

X

Small enough not to blow up the gauge coupling

	$SU(3)_c$	$SU(2)_L$	$SU(2)_R$	U(1)	SU(4)	SO(10)	coupling
up	3	1	1	2/3	15	(45)	$\bar{X}qH^{\dagger} + Xq'H'^{\dagger}$
	3	2	2	-1/3	6/10	45, 54, 210/210	$\left \bar{X}qH'^{\dagger} + Xq'H^{\dagger} \right $
down	3	1	1	-1/3	6/10	10,126/120	$\bar{X}qH + Xq'H'$
	3	2	2	2/3	15	120,126	$\bar{X}qH' + Xq'H$
electron	1	1	1	-1	10	120	$\bar{X}\ell H + X\ell' H'$
	1	2	2	0	1/15	10, 120/120, 126	$X\ell H' + X\ell' H$
neutrino	1	1	1	0	$\left 1/15 \right $	1, 54, 210/45, 210	$\left X(\ell H^{\dagger} + \ell' H'^{\dagger}) \right $
	1	2	2	-1	10	210	$\left \bar{X}\ell H'^{\dagger} + X\ell' H^{\dagger} \right $
	1	3	1	0	1	45	$X\ell H^{\dagger}$
	1	1	3	0	1	45	$X\ell' H'^{\dagger}$

Higgs Parity and the strong CP problem

SO(10) is not required in this story

 $SU(3) \leftrightarrow SU(3)$

Space Parity $H(t, x) \leftrightarrow H'(t, -x)$

 $q(t,x) \leftrightarrow i\sigma_2 q'^*(t,-x)$

Assume $SU(3) \leftrightarrow SU(3)$

 $G\tilde{G} \rightarrow -G\tilde{G}$

 $\theta_{\rm QCD} = 0$

Yukawa coupling?

Left-Right symmetry $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

$$q \leftrightarrow q' = (\bar{u}, \bar{d}), \ \ell \leftrightarrow \ell' \supset \bar{e}$$

Yukawa coupling? $q, \bar{u}, \bar{d}, q', \bar{u}', \bar{d}', \cdots$ $q(t, x) \leftrightarrow i\sigma_2 q^{'*}(t, -x)$ $\mathcal{L} = yHQ\bar{u} + y^*H'Q'\bar{u}' + y^*H^{\dagger}Q^{\dagger}\bar{u}^{\dagger} + yH^{'\dagger}Q^{'\dagger}\bar{u}^{'\dagger}$

 $\det y \times \det y^*$ is real

Parity solutions

* 1978, Beg and Tsao, Mohapatra and Senjanovic
Parity can solve the strong CP problem, H(2,2).

Dangerous contribution from complex phase in the Higgs vev (1991, Barr, Chang and Senjanovic)

* 1989, Babu and Mohapatra

H(2,1) + H'(1,2)

with explicit soft Z2 breaking

Loop correction to
$$\theta$$

For $q' = (\bar{u}, \bar{d})$

 $\delta\theta \sim 10^{-11}$

Suppressed by loop factors, flavor mixing

Embedding into SO(10)

SO(10) with 16 fermion is chiral. How can we obtain Parity?

Start from SO(10) + CP

Embedding into SO(10)

 $q(t,x) \leftrightarrow q'(t,x)$ Part of SO(10)

 $q(t,x) \leftrightarrow i\sigma_2 q^*(t,-x)$

 $q(t,x) \leftrightarrow i\sigma_2 q'^*(t,-x)$

 $SO(10) \times CP \xrightarrow{\phi_{45}} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times P_{LR}$

CKM phase

 $SO(10) \times CP \xrightarrow{\phi_{45}^-} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times P_{LR}$

Real yukawas, without CP symmetry breaking...

A simple renormalizable example to obtain CP phases

$$\mathcal{L} = \left(M^{ij} + i\lambda^{ij}\phi_{45} \right) X_{10,i} X_{10,j}$$

Backup

$V = \lambda_{\rm SM} |H|^4 - m_H^2 |H|^2$

Might be requirement for us to emerge, rather than a prediction of a theory

e.g. Agrawal, Barr, Donoghue and Seckel (1998) Hall, Pinner, Ruderman (2014)

Not established nor denied

The electroweak scale may not be a guiding principle

Correction to the gauge coupling unification by high dimensional operator

 $SO(10) \xrightarrow{\phi_{210}} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times C_{LR}$

$$\frac{210^{abcd}}{M_*} F_{10}^{ab} F_{10}^{cd} \qquad \Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 10$$

 $SO(10) \times CP \xrightarrow{\phi_{45}} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times P_{LR}$

$$\frac{45^{ac}}{M_*} \frac{45^{bd}}{M_*} F_{10}^{ab} F_{10}^{cd} \qquad \Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 1$$

Correction to the gauge coupling unification by high dimensional operator

 $SO(10) \xrightarrow{\phi_{54}} SU(4) \times SU(2)_L \times SU(2)_R \times C_{LR}$

$$\frac{54^{ab}}{M_*} F_{10}^{ac} F_{10}^{bc} \qquad \qquad \Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 1$$

 $SO(10) \times CP \xrightarrow{\phi_{210}} SU(4) \times SU(2)_L \times SU(2)_R \times P_{LR}$

 $\frac{210}{M_*} \frac{210}{M_*} F_{10} F_{10}$

$$\Delta\left(\frac{2\pi}{\alpha}\right) \ll 1$$