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Introduction: Penrose on extra dimensions

In 2002, as a present to S.W. Hawking, Penrose argued that spatial
compact extra-dimensions are likely to be unstable
[2003 On the instability of extra space dimensions, The Future of Theoretical
Physics and Cosmology, ed G W Gibbons et al]

He ended up asserting:

(... a 4 + n-dimensional product spacetime) M4 × Y is highly
unstable against small perturbations. If Y is compact and of
Plack-scale size, then spacetime singularities are to be expected
within a tiny fraction of a second!

To reach such conclusion he used the celebrated
singularity theorems.
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The classical Hawking-Penrose theorem

Theorem (Hawking and Penrose 1970)

If the convergence, causality and generic conditions hold and if
there is one of the following:

a closed achronal set without edge,
a closed trapped surface,
a point with re-converging light cone

then the space-time is causal geodesically incomplete.



Penrose’s argument

To use the singularity theorems, Penrose starts with a
(4 + n)-dimensional direct product M4 × Y = R× R3 × Y
with metric as in e.g.

g = −dt2 + dx2 + dy2 + dz2 + gY

and perturbs initial data given on a slice R3 × Y (say t = 0)
such that they do not ‘leak out’ into the R3-part: they only
disturb the Y-geometry.

He then forgets about the 3-dimensional typical space (in red)
and considers a (1 + n)-dimensional “reduced spacetime”
(Z, gred) whose metric gred is the evolution (e.g. Ricci-flat
solution) of the initial data specified at Y (t = 0).
the entire spacetime would be given by R3 ×Z with direct
product metric

gpert = gred + dx2 + dy2 + dz2
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Penrose’s argument (continued)

But then, the H-P singularity theorem applies to (Z, gred) as it
contains a compact slice and satisfies the convergence
condition (because Rµν = 0).

He concluded that “if we wish to have a chance of perturbing
Y in a finite generic way so that we obtain a non-singular
perturbation of the full (4+n)-spacetimes M4 × Y, then we
must turn to consideration of disturbances that significantly
spill over into the M4 part of the spacetime”.
However, he claimed that such general disturbances are even
more dangerous (due to the large approaching Planck-scale
curvatures that are likely to be present in Y).
He defended that there is good reason to believe that these
general perturbations will also result in spacetime singularities
using again the H-P singularity theorem, but now using the
point with reconverging light cone condition.
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Penrose’s argument (ended)

such condition can be understood as the existence of a point
whose future light cone ‘curls around and meet itself in all
directions’

In the exact, unperturbed, models this fails (of course, the
models are non-singular), but it just fails. Only a ‘tiny’
2-dimensional subfamily of null geodesics generating the cone
fail to wander into the Y-part and back — thus curling into
the interior of the cone.

“I believe that it is possible to show that with a
generic but small perturbation (...) this saving property
will be destroyed, so that the (...) singularity theorem will
indeed apply, but a fully rigorous demonstration (...) is
lacking at the moment. Details of this argument will be
presented elsewhere in the event that it can be succinctly
completed”.
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Other arguments

Almost simultaneously Carroll et al argued that (large) extra
dimensions must be dynamically governed by classical GR
[S.M.Carroll, J. Geddes, M.B.Hoffman, and R.M.Wald, Classical stabilization of homogeneous
extra dimensions, Phys. Rev. D 66 (2002) 024036]

They showed that is extremely difficult to achieve static extra
dimensions which are dynamically stable to small perturbations
Since then, there have been several works analyzing this
potential problem. For instance, Steinhardt and Wesley
discussed how accelerated expansion imposes strong
constraints on compact extra dimensions. [P.J.Steinhardt and D. Wesley,
Dark energy, inflation, and extra dimensions, Phys. Rev. D 79 (2009) 104026]

Their conclusions were criticized by Koster and Postma, where
one can find references to many other no-go and instability
theorems. [R. Koster and M. Postma, A no-go for no-go theorems prohibiting cosmic

acceleration in extra dimensional models, JCAP 12 (2011) 015]

I want to concentrate here on the arguments based on the
existence of singularities.
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The classical Hawking-Penrose theorem (again)

Theorem (Hawking and Penrose 1970)

If the convergence, causality and generic conditions hold and if
there is one of the following:

a closed achronal set without edge, (co-dimension 1)
a closed trapped surface, (co-dimension 2)
a point with re-converging light cone (co-dimension D)

then the space-time is causal geodesically incomplete.

What about co-dimensions 3, . . . , D − 1 — for instance, closed
spacelike curves?
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The Penrose singularity theorem

Theorem (The 1965 Penrose singularity theorem)

If the spacetime contains a non-compact Cauchy hypersurface and
a closed trapped surface, and if the null convergence condition
holds, then there exist incomplete null geodesics.

Here, the germinal and very fruitful notion of closed trapped
surface was introduced.

These are closed surfaces (that is, compact without boundary) such
that their area tends to decrease locally along any possible future

direction. (There is a dual definition to the past).
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“Normal situation”
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Possible trapping in contracting worlds
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Trapped submanifolds of arbitrary dimension?

It is clear that such a property (inevitable decrease of length, area,
volume, etc.) can be attached to submanifods of any dimension

Some time ago, Galloway and I started to analyze the reasons
behind the absence of other co-dimensions in the H-P singularity
theorem, and we realized that the three conditions (on the point

with reconverging light cone, on the closed trapped surface, and on
the spacelike compact slice) can be unified into one single criterion

of geometrical basis.
And that this criterion is valid for any other co-dimension!

The unification concept of trapping for arbitrary co-dimension:
=⇒ The mean curvature vector ~H !
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Mathematical interlude: trapped submanifolds

Consider an embedded spacelike submanifold ζ of any
co-dimension m with first fundamental form γAB.

Decomposing the derivatives of tangent vector fields {~eA} into
its tangent and normal parts we have

eρA∇ρe
µ
B = Γ

C
ABe

µ
C −K

µ
AB

The mean curvature vector (Notice that Hµ is normal to ζ)

Hµ ≡ γABKµ
AB

An expansion of ζ relative to any normal vector ~n is:

θ(~n) ≡ nµHµ

There are m independent expansions.
If they correspond to (future) null normals, they are called
(future) null expansions.
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Future-trapped subamanifolds: ~H is future on ζ

Definition (Trapped submanifold)

A spacelike submanifold ζ is said to be future trapped (f-trapped
from now on) if ~H is timelike and future-pointing everywhere on ζ,
and similarly for past trapped.

Equivalently
θ(~n) < 0 for every future pointing normal ~n.

Now that we have trapped submanifolds of any
dimension, can we still get singularity theorems based

on them?
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Closed trapped
submanifolds at work:

XXI-century singularity
theorems



The parallel propagated projector P µν

Notation
nµ: future-pointing normal to the spacelike submanifold ζ,
γ: geodesic curve tangent to nµ at ζ
u: affine parameter along γ (u = 0 at ζ).
Nµ: geodesic vector field tangent to γ (Nµ|u=0 = nµ).
~EA: vector fields defined by parallel propagating ~eA along γ
( ~EA|u=0 = ~eA)
By construction gµνE

µ
AE

ν
B is independent of u, so that

gµνE
µ
AE

ν
B = gµνe

µ
Ae

ν
B = γAB

P νσ ≡ γABEνAEσB (at u = 0 this is the projector to ζ).



Notation on a picture

ζ
~n

γ

~N
~EA

~eA



Generalized Hawking-Penrose singularity theorem

Theorem (Generalized Hawking-Penrose singularity theorem)

If the chronology, generic and convergence conditions hold and
there is a closed f-trapped submanifold ζ of arbitrary co-dimension
such that

RµνρσN
µNρP νσ ≥ 0 (1)

along every null geodesic emanating orthogonally from ζ then the
spacetime is causal geodesically incomplete.
(G.J. Galloway and J.M.M. Senovilla, Singularity theorems based on trapped submanifolds of arbitrary
co-dimension. Class. Quantum Grav. 27 (2010) 152002)



Remarks:

RµνρσN
µNρP νσ ≥ 0 (1)

1 Spacelike hypersurfaces: m = 1, there is a unique timelike
orthogonal direction nµ. Then Pµν = gµν − (NρN

ρ)−1NµNν

and (1) reduces to
RµνN

µNν ≥ 0

(the timelike convergence condition along γ).

2 Spacelike ‘surfaces’: m = 2, there are two independent null
normals on ζ, say nµ and `µ. (Define Lµ parallelly propagating
`µ on γ). Then, Pµν = gµν − (NρL

ρ)−1(NµLν +NνLµ) and
again (1) reduces to

RµνN
µNν ≥ 0

(the null convergence condition along γ).
3 points: m = D, (1) could be rewritten as a ‘generic’ condition
RµνρσN

µNρ > 0.
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The generalized Penrose singularity theorem

Theorem (Generalized Penrose singularity theorem)

If (M, g) contains a non-compact Cauchy hypersurface Σ and a
closed f-trapped submanifold ζ of arbitrary co-dimension, and if

RµνρσN
µNρP νσ ≥ 0 (1)

holds along every future-directed null geodesic emanating
orthogonally from ζ, then (M, g) is future null geodesically
incomplete.

(G.J. Galloway and J.M.M. Senovilla, ibid.)



2nd generalized Penrose singularity theorem

No need for trapped submanifold!

The conclusion of the generalized Penrose theorem remains valid if
the curvature condition and the trapping condition assumed there
are jointly replaced by∫ a

0
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null geodesically complete, then for every closed spacelike
submanifold ζ there exists at least one null geodesic γ with initial
tangent nµ orthogonal to ζ along which∫ ∞

0
RµνρσN

µNρP νσdu ≤ θ(~n) .

Observe that there is no restriction on the sign of θ(~n).
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Higher-dimensional
spacetimes:

(warped) products



Direct product: “it just fails”

Consider a spacetime M = M1 ×M2, xµ = (xa, xi), with
direct product metric

gµνdx
µdxν = ĝab(x

c)dxadxb + ḡij(x
k)dxidxj

Rαβµν =
(
R̂abcd, R

i
jkl

)
Let ς ⊂M2 be compact and dim ς = k, and let eiA be tangent
vectors to ς. Then, their parallel transports along geodesics are
such that ~EA = (0, E

i
A)

Geodesics decompose too, tangent vectors are ~N = (N̂a, N
i
),

with N̂a and N i geodesic in (M1, ĝ) and (M2, ḡ), respectively.
Then RµνρσNµNρP νσ = RijklN

i
N
k
P jl, P jl = γABEjAE

l
B.

But, there are ⊥ ς-null geodesics with ni = N
i
(0) = 0, and for

these N i
(u) = 0, and θ(~n) = 0, so that any of the two

conditions would read

0 > 0 (just fails)
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Perturbations: warped products

Consider perturbing the previous spacetime. The simplest way
to do it (geometrically) is by breaking the direct product
structure and letting one of the two pieces influence the other:

gµνdx
µdxν = ĝab(x

c)dxadxb + f2(xc)ḡij(x
k)dxidxj

These are called warped products M1 ×f M2, with Base M1,
Fiber M2 and warping function f : M1 → R.
There are two possibilities here:

1 Extra-dimension spreading: the fiber (M2, ḡ) is Lorentzian.
2 Dynamical: the base (M1, ĝ) is Lorentzian.

They imply very different physical consequences! Actually,
case 1 does not lead to singularities.
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k)dxidxj

These are called warped products M1 ×f M2, with Base M1,
Fiber M2 and warping function f : M1 → R.
There are two possibilities here:

1 Extra-dimension spreading: the fiber (M2, ḡ) is Lorentzian.
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Extra-dimension spreading: “just fails” too

For case 1 , extra-dimension spreading over the Lorentzain part,
either the latter is geodesically incomplete by itself or not, the extra
dimensions being unable to turn it into null geodesically incomplete.

This follows for instance from a known result that if the
Riemannian base of a warped product is complete —which is
always the case for compact base— then the spacetime is

geodesically complete if and only if the fiber so is.

[A. Romero and M. Sánchez, On completeness of certain families of semi-Riemannian manifolds, Geom.

Dedicata 53 (1994) 103-117]

Thus, Penrose’s suggestion that “disturbances that significantly spill
over into the 4-dimensional part of the spacetime” would be more
dangerous and will result in singularities does not seem to sustain

—at least in this warped-product situation.
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Warped products: Curvature

Recall gµνdxµdxν = ĝab(x
c)dxadxb + f2(xc)ḡij(x

k)dxidxj

a, b, . . . , h indices on 4-dimensional M1; i, j, k, l indices
on n-dimensional M2. Total dimension D := 4 + n

Raijk = 0, Riabc = 0, Rijab = 0

Raibj = −f∇̂b∇̂af ḡij
Rijkl = R

i
jkl − ∇̂af∇̂af

(
δikḡjl − δil ḡjk

)
Rabcd = R̂abcd

Rab = R̂ab − n
1

f
∇̂a∇̂bf

Rai = 0

Rij = R̄ij − ḡij
(
f∇̂b∇̂bf + (n− 1)∇̂bf∇̂bf

)
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Warped products: null geodesics

Let γ : xµ = xµ(u) be an affinely parametrized null geodesic
with tangent vector dxµ/du := Nµ = (N̂a, N̄ i)

N̄ j∇jN̄ i = −2N̂a∂a(ln f) N̄ i = −2
d ln f |γ
du

N̄ i

This states that the curve projected to M2 is itself a
geodesic (non-affinely parametrized).
In particular, if the M2-initial velocity vanishes
N̄ i(0) = ni = 0, then N̄ i(u) = 0 for all u.

N̂ b∇̂bN̂a = −(ĝbcN̂
bN̂ c) ∇̂a(ln f)

This tells us that the acceleration of the M1-projected curve is
always parallel to the gradient of f .
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Warped products: null geodesics (2)

From the above one knows that

ḡijN̄
iN̄ j =

C

f4
, C = const.

Then, from gµνN
µNν = 0:

ĝabN̂
aN̂ b = − C

f2

For the relevant case 2 , “dynamical” : C ≥ 0.
C = 0 means that the null geodesic lives exclusively in the
Lorentzian part (M1, ĝ) of the warped product.



Warped products: null geodesics (2)

From the above one knows that
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Parallel transport along null geodesic ⊥ ς, case 2

As (M1, ĝ) is Lorentzian, we choose ζ ⊂M2 compact with
co-dimension m

{~eA} ON basis of vector fields tangent to ζ: eµA = (0, ēiA).
One can prove then that

EµA = (0, ĒiA‖/f)

where ĒiA‖ are the parallel transports of ēiA along the
projected curve γ : xi(u): N̄ j∇jĒi‖ = 0, Ēi‖(0) = ēi.

gµνN
µEνA = 0 =⇒ ḡijN̄

iĒjA‖ = 0.

gµνE
µ
BE

ν
A = δBA =⇒ ḡijĒ

i
A‖Ē

j
B‖ = δAB.

In this case the tensor Pµν = γABEµAE
ν
B reads

P ab = 0, P ia = 0, P ij =
1

f2
δABĒiA‖Ē

j
B‖
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i
A‖Ē

j
B‖ = δAB.

In this case the tensor Pµν = γABEµAE
ν
B reads

P ab = 0, P ia = 0, P ij =
1

f2
δABĒiA‖Ē
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Expression (1), case 2
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l
B‖− (D−m) 1

f
d2f
du2
|γ

This is written in terms of properties of the Riemannian
extra-dimensions in (M2, ḡ) and the projected geodesic γ̄ plus
the second derivative of the warping function along the null
geodesic γ.
A simple computation gives, for the initial expansion along ~n:
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df
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where θ̄n̄ is “expansion of ζ as submanifold of (M2, ḡ)”.
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extra-dimensions in (M2, ḡ) and the projected geodesic γ̄ plus
the second derivative of the warping function along the null
geodesic γ.
A simple computation gives, for the initial expansion along ~n:

θ(~n) = θ̄n̄ + (D −m)
1

f0

df

du
(0)

where θ̄n̄ is “expansion of ζ as submanifold of (M2, ḡ)”.

The integrated condition in the singularity theorem reads then∫ ∞
0

(
δABRijklN̄

iN̄kĒjA‖Ē
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The integrated condition in the singularity theorem reads then∫ ∞

0

(
δABRijklN̄

iN̄kĒjA‖Ē
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Singularity theorems in warped products

Theorem
Let M = M1 ×f M2 be a null geodesically complete D-dimensional
warped product spacetime with Riemannian fiber (M2, ḡ) and
metric

gµνdx
µdxν = ĝab(x

c)dxadxb + f2(xc)ḡij(x
k)dxidxj

containing a non-compact Cauchy hypersurface. Then, every
compact submanifold ζ ⊂M2, of any possible co-dimension m,
launches at least one future-directed null geodesic emanating
orthogonally to ζ satisfying the inequality∫ ∞

0

(
δABRijklN̄

iN̄kĒjA‖Ē
l
B‖ − (D −m)

1

f

d2f

du2
|γ
)
du

≤ θ̄n̄ + (D −m)
1

f0

df

du
(0) .



Analysis of the inequality condition

The negation of the condition:∫
γ

(
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B‖ − (D −m)
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f

d2f

du2
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du

> θ̄n̄ + (D −m)
1

f0

df

du
(0)

(There is also a version to the past).
For any ζ ⊂M2, there are always ζ-orthogonal null geodesics
with n̄i = 0 and thus with N̄ i(u) = 0 (those with C = 0).

For these geodesics, the above simplifies to

−
∫
γ

1

f

d2f

du2
du >

1

f0

df

du
(0)

in more geometrical terms this is

−
∫
γ

1

f
N̂aN̂ b∇̂a∇̂bf >

(
1

f
N̂a∇̂af

)
(0)
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Analysis of the inequality condition (continued)

The last is, therefore, a necessary condition (along all null
geodesics ⊥ to ζ with C = 0) for the singularities to appear.

If this condition actually holds for all null geodesics starting at
a given “M2” (i.e., for a choice of xa =const.), then this M2 is
itself a compact submanifold leading to null geodesic
incompleteness.
Nevertheless, if this does not happen for any choice of “M2”, it
can happen for an appropriate subset and one can still have
null incompleteness if the corresponding null geodesics are
orthogonal to particular submanifolds ζ ⊂M2.
In this case, one still needs to check that the found inequality
condition holds for the remaining null geodesics orthogonal to
ζ, those with C > 0.
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Analysis of the necessary condition for C = 0

Recall: −
∫
γ

1
f N̂

aN̂ b∇̂a∇̂bf >
(

1
f N̂

a∇̂af
)

(0)

If the extra dimensions start, say, contracting along M1-null
directions (i.e. N̂a∇̂af(0) < 0) then it is enough that the
Hessian of f be non-positive on those null directions on
average.
Observe that, from the expression of the Ricci tensor and as
Nµ = (N̂a, 0) for these null geodesics, the null energy
condition (NEC) on them reads

RµνN
µNν = R̂abN̂

aN̂ b − n 1

f
N̂aN̂ b∇̂a∇̂bf ≥ 0

This immediately implies

−
∫
γ

1

f
N̂aN̂ b∇̂a∇̂bf ≥ −

1

n

∫
γ
R̂abN̂

aN̂ b≤ 0

where the last inequality follows if the NEC holds on average
in the noticeable, observed, 4-dimensional spacetime.
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Back to the inequality condition

This allows us to analyze in greater detail when the necessary
condition will hold (easy for instance if R̂ab = Λĝab on
(M1, ĝ)).

Even if some of the extra dimensions stay stationary, or expand
while the others contract, there may be many situations where
it also holds
Still, as mentioned before, we must consider the rest of null
geodesics emanating orthogonal to ζ, those with C > 0, and
thus with N̄ i(u) 6= 0.
Recall:∫

γ

(
δABRijklN̄

iN̄kĒjA‖Ē
l
B‖ − (D −m)

1

f

d2f

du2

)
du

> θ̄n̄ + (D −m)
1

f0

df

du
(0)

Hence, we need an analysis of the behaviour of d2f/du2 along
these null geodesics.
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Back to the inequality condition

The general expression for this second derivative along the
given geodesics is

d2f/du2|γ = (C/f3)∇̂bf∇̂bf + N̂aN̂ b∇̂a∇̂bf

The last summand is analyzed as before, but taking into
account that N̂a are now timelike
The first summand on the righthand side favors the singularity
if the gradient of f is non-spacelike: this is the case if the
perturbation is truly dynamical (i.e., the dynamical part
dominates over other possible accompanying perturbations).
Actually, keeping the values of the coupling constants (and the
Planck mass) independent of position in space implies f
should depend only on time and thus ∇̂bf∇̂bf < 0.
In consequence, d2f/du2|γ will become negative in a large
class of reasonable situations.
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A useful form of the inequality

An important remark is that one only needs that the
combination of the two summands is non-negative.

Furthermore, one actually needs this only on average along γ
Assume then that

X2 := (D −m)

(
1

f0

df

du
(0) +

∫
γ

1

f

d2f

du2
du

)
> 0

can be proven to be strictly positive for the family of null
geodesics orthogonal to a given compact ζ. It follows that the
condition such that singularities arise according to the theorem
becomes ∫

γ̄
δABR̄ijklN̄

iN̄kĒjA‖Ē
l
B‖du > θ̄n̄ −X2

The importance of this form is that the lefthand side is a
quantity relative to the extra-dimensional space (M2, ḡ)
exclusively.
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geodesics orthogonal to a given compact ζ. It follows that the
condition such that singularities arise according to the theorem
becomes ∫

γ̄
δABR̄ijklN̄

iN̄kĒjA‖Ē
l
B‖du > θ̄n̄ −X2

The importance of this form is that the lefthand side is a
quantity relative to the extra-dimensional space (M2, ḡ)
exclusively.
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dynamical perturbations: instability!?

Observe that it is enough to find one compact submanifold
with the required property

And that the submanifold can have any dimension
If the co-dimension is 5, that is dimension n− 1, then
δABR̄ijklN̄

iN̄kĒjA‖Ē
l
B‖ = R̄ijN̄

iN̄ j (Ricci-flat M2 OK!)

Or if dim ζ = 1, i.e. a circle, then
δABR̄ijklN̄

iN̄kĒjA‖Ē
l
B‖ = R̄ijklN̄

iN̄kĒjĒl is just sectional
curvature along the projected γ̄
As M2 is compact, the integral may be the sum of an infinite
number of integrals on closed geodesics.
Therefore, one can find many (physical) situations where this
incompleteness arises.
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l
B‖ = R̄ijN̄

iN̄ j (Ricci-flat M2 OK!)

Or if dim ζ = 1, i.e. a circle, then
δABR̄ijklN̄

iN̄kĒjA‖Ē
l
B‖ = R̄ijklN̄
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iN̄kĒjA‖Ē
l
B‖ = R̄ijN̄

iN̄ j (Ricci-flat M2 OK!)

Or if dim ζ = 1, i.e. a circle, then
δABR̄ijklN̄

iN̄kĒjA‖Ē
l
B‖ = R̄ijklN̄
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Concluding remarks

Allowing for arbitrary dynamical perturbations the function f
can satisfy the “destroying” conditions in physically interesting
situations. How to avoid the destroying power of generic
dynamical f should thus be analyzed

The main conclusion is therefore that the generalized
singularity theorem considerably broadens the situations where
the geodesic incompleteness arises, providing support to
arguments by Carroll et al (not so Penrose’s)
In essence, dynamical perturbations can sometimes lead to the
appearance of singularities, destroying the stationary classical
stability of the extra-dimensional space.
On a positive side, the condition as given involving quantities
of only the extra-dimensional space may help in finding the
stable possibilities, providing information on which classes of
compact extra-dimensions may be viable and why —and for
which warping functions f(t).
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Thank you for your attention!
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