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and work in progress with:
L. Alvarez-Gaume (CERN/SCGP), D. Banerjee (Humboldt U.),
Sh. Chandrasekharan (Duke), S. Favrod (Bern), S. Hellerman (IPMU),
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TODAY: Introductory level

* Basic idea of the large-charge expansion, simplest

example and generalization to other examples with
the same type of behavior

Domenico’s talk: new exciting (unpublished) results

* qualitatively different behavior of large-charge
expansion



Introduction

field theories (CFTs) play an important role
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Introduction

BUT: most CFTs do not have small parameters in which
to do a perturbative expansion: couplings are O(l).

Difficult to access.
Possibilities: analytic (2d), conformal bootstrap (d>2),
lattice calculations, non-perturbative methods...

Make use of symmetries, look at special subsectors
where things simplify.

Here: study theories with a global symmetry group.
Hilbert space of the theory can be decomposed into
sectors of fixed charge Q under the action of the global
symmetry group.

Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a
perturbative expansion!



Introduction

The large-charge approach consists of 2 steps:

| identify the possible fixed-charge symmetry breaking
patterns for a given order parameter

2. write an effective action for the low-energy DOF and
compute physical quantities

Step |:start from the global symmetries of the system
and how they act on the order parameter.

For example, in the superfluid transition of 4He, it is
known that the system has an O(2) symmetry.
Assume that, just like in the UV, the order parameter is
a complex scalar that transforms the same way under

O(2).



Introduction

Write down Wilsonian effective action. In general:
infinitely many terms - not so useful.
Make self-consistent truncation at large charge:

* Set a cutoff A\ obeying __~ space dimension
typical scale of the 1 1 Qv
system \‘Z <K A < % — T

* write a linear sigma model action for the order
parameter.VWant to describe a second-order phase
transition: impose scale invariance of the action,
assuming that the fields have vanishing anomalous
dimension (at leading order in 1/Q)

* determine the fixed-charge ground state

* compute the quantum fluctuations to verify that they
are parametrically small when Q >> |.



Introduction

In a sector of fixed charge, the classical solution around
which the quantum fluctuations are computed will

generically break both spacetime (Lorentz) and global
symmetries.

Step 2: write down EFT.

Similar techniques to chiral perturbation theory.
Important difference: the symmetry breaking comes
from fixing the charge (NOT dynamical).

Use EFT to calculate the CFT data (anomalous
dimensions, 3-pt functions).

Wilsonian action has only a handful of terms that are
not suppressed by the large charge. Useful!



Introduction

Open questions:

Does it work!?

For what kinds of theories does it work!?

In how many space-time dimensions!?

For what kinds of global symmetries does it work!?
What happens if we fix several charges
independently?

What can we learn via this approach?



Overview

Introduction
The O(2) model
semi-classical treatment
quantum treatment
results and lattice comparison
The O(2N) vector model
counting Goldstone DoF
results and lattice comparison
Beyond the vector models
Nonrelativistic CFTs
SCFTs at large R-charge
Summary/Outlook
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The O(2) model

Consider simple model: O(2) model in (2+1)d.
Luv = 0,0" "¢ — g°(¢"9)°
Flows to Wilson-Fisher fixed point in IR.
Assume that also the IR DOF are encoded by cplx scalar
Global U(l) symmetry:  @rr =ae™  x — x + const.

Look at scales: put system in box of scale R
Second scale given by U(l) charge Q: p'/? ~ QY?/R

Study the CFT at the fixed point in a sector with

| 1/2 UV scale
= <AL QR < 2

cut-off of effective theory
Write Wilsonian action.




The O(2) model

Assume large vev for a: A<’ «g?
scalar curvature _infinitely many

RAQ/A

Lig = 2 0,a0"a+ $b%a” 0, O x — 1_671 gaG + higher derivative terms

dimensionless constants suppressed by large Q
Lagrangian is approximately scale-invariant.

 has approximately mass dimension |/2 and the action
has a potential term o |¢|°

Do semi-classical analysis: solve classical e.o.m. at fixed

Noether charge.
~ oLr
= =
Classical solution at lowest energy and fixed global

charge becomes the vacuum of the quantum theory.

b2a’x Q ~ 47 R*bV/ \a*



The O(2) model

= non-trivial condensate non-const. vev

/

@=v,  (=p=gog ()=t

Fixed charge ground state is homogeneous in space.
Determine radial vev by minimizing the classical

potential: (Q ) 2 1 p \

v

Vc ass — | : “q®
Va(v) : 202 16" T G

v~ QU4
large condensate is
compatible with our
assumption a > 1
s ,01/2

(V)



The O(2) model

Ground state at fixed charge breaks symmetries:

linear comb. of

SO(L 3)Spacetime X 0(2)global — SO(S)space X D time translation
and the global

Quantum story: study the low-energy spectrum 0(2)

Parametrize fluctuations on top of the classical vacuum

= v+ a X =ut+

massive mode, not relevant
for low-energy spectrum m ~ O(+/Q)

Go to NLSM: Integrate out a (saddle point for LO).

Dynamics is described by a single Goldstone field X:

(9,,x 9"y )3/ «— Can get this purely by

Lro = k3o
dimensional analysis



The O(2) model

Use dimensional analysis and scale invariance to
determine (tree-level) operators in effective action
beyond LO (scalar operators of scaling dimension 3,
including curvatures of the background metric)

Use p-scaling to determine which terms appear:

Ox ~p"?, 9...0x~p !
3/2y . O,y = |0y|3«—LO Lagrangian
O™ s/2 = 1A conf. inv.
O(p'/?) : O1/2 = R 8X|+2(8’ Ox|)” combination,
\ X negative p-scaling

scale-inv. but NOT
conformally inv.

For homogeneous solutions, there are no other terms
contributing to the effective Lagrangian at non-negative

p-scaling for d>1.



The O(2) model

Result:
L = ks3/2(0,x0"X)*? + k1 o R(0,x0"x)? + O(Q~Y?)

\

dimensionless parameters suppressed by

inverse powers of Q
To be understood as an expansion around the classical
ground state ut + x

Expand action to second order in fields:
L = ]{3/21LL3 + kl/gRILL + (875)2)2 — %(VSQ)%)Z + ...

Compute zeros of inverse propagator and get
dispersion relation. il

P2
Spontaneous breaking of time-translation invariance
= X is relativistic Goldstone (type |)

= superfluid phase of O(2) model



The O(2) model

Are also the quantum effects controlled?
All effects except Casimir energy are subleading
(negative p-scaling)

Effective theory at large Q:

vacuum + Goldstone + |/Q-suppressed corrections
Energy of classical ground state at fixed charge:

2 dimensionless parameters (b, A)
AN

€3/2 3/2 €1/2 1/2 —1/2
Ex(Q) = @ RVVQ7"+0(Q %)
v/ V- 2

dependence on manifold




The O(2) model

Use state-operator correspondence of CFT:

R° R x G-
anomalous -1 - He < > energy
dimension —™——|
~N
Sd—1

Anomalous dimension of lowest operator of charge Q:
one-loop vacuum
energy of Goldstone

C3/2 _
D(Q) =5 =@ +2vme12Q"* — 0094+ 0(Q)
S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]
1 dw — 1 0.0937...
Eyse = — ) 21+ D log(w? +1(1+1)) = —1/2|5%) = —
v = g | g L@ DIon? I+ 1) = g2l = -2



The O(2) model

C3/2 _
D(Q) =5 ZQ"* + 2T e10Q!/ ~ 0.094+ 0(Q /%)
Independent confirmation from the lattice:
14 T T T T T
12 | ]
10 | ]
5 °f ‘
a4 | Excellent
agreement!!
4 | _
2 MC data = ] 01/2 — 0075(10)
fit
O ] ] ] ] ]
works for small.~ 2 4 6 8 10
C h d rge ¢ W h)’? ? D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711

Large-charge expansion works extremely well for O(2).
Where else?
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The O(2n) vector
model



The O(2n) vector model

Generalize to O(2n).

2n
L=120,0"0"p" -1 (%R¢§+1—A2¢2>, a=1,....2n R; x R?
i=1
U(n) C O(2n)
1 . 1
¢1=ﬁ(gb1—l—z¢2), 90227(¢3+Z¢4)7 ceey

Fix £ <N U(Il) charges:

/dd "z (pip — i) = Q; = vol. X p;

Solution for homogeneous ground state:

sz‘:\%Aiei“t, i=1,...,k,
wrri =0, i=1,...n—Fk, same for all fields!




The O(2n) vector model

Fixing k charges explicitly breaks O(2n) to
O(2n-2k) x U(k).

We can always rotate ()= J5(41,...,4x,0,...)

by a U(k) transformation into (o,...,0, \/“‘3+ +450,...)

Vacuum breaks symmetry spontaneously to
O(2n-2k) x U(k-1).

We also see that all homogeneous states of minimal
energy with fixed total charge (Q: +Q2+---+Qx) are
related by an U(k) transformation and have the same
energies (and conformal dimensions).

What happens if instead, we choose a configuration with
k different chemical potentials that cannot be rotated
into the state (0,...,0, %,0,...,0)?

J \ . J
-~

k—1 n—k
Ground state must be inhomogeneous! Domenico’s talk!




The O(2n) vector model

For quantum description, write effective theory for
fluctuations around the ground state.

Expand Lagrangian around the ground state

(97"'797%797"'79)
k—1 n—k ) A
i ttidon /v f P2k—1 — P2K—1
U(1) sector: ox = o5 e#tow/ (” + ¢2k—1) - ;
( ) vz ok — Oor + 0,
U(k-1) sector: ¢ =, b = U7 @

Developing to second order in fields:

L® =3 (B=ip)e} (Ostin)pi + Y ¢igi— Y ViV
— ) 1P — 2Py,
1=1

Find inverse propagators and dispersion relations.



The O(2n) vector model

We expect dim[U(k)/U(k-1)] = 2k-1 Goldstone d.o.f.

Massless modes:

> _pt P 6
wn,,,:4—lu2—8—lu4—|—0(,u ) k—ltlmes
w2 = po + P’ + O(p™ %) one time
T2 32142

There are
+ | relativistic Goldstone w o« p
- k-1 non-relativistic Goldstones (count double) w o p?

Nielsen and Chadha; Murayama and Watanabe

1+2x (k—1)=2k—1=dim(G/H)

Non-relativistic Goldstones are suppressed by large Q.

Low-energy physics again governed by single relativistic
Goldstone.



The O(2n) vector model

Same formula for anomalous dimensions as for O(2):

n-dependent universal for O(2n)

C3 /‘2/ \

D(Q) = Q32 + 2y/m 1 2QY? — 0.094 + O(Q™/?)

N
L. Alvarez-Gaume, O. LoukalD. Orlando and S. R., arXiv:1610.04495 [hep-th]

Confirmation with old lattice data: verified at large n for
’ CP(n-1) model

I de la Fuente
3.0 f

2.5
20
1.5
10

05

Hasenbusch, Vicari

Coefficients ¢ become smaller for larger n.



The O(2n) vector model

New (preliminary) lattice results for O(4) model
(homogeneous GS):

12 .

10 |
e °
ON 63/2 — 1068(4)
. b7 1 ¢1/9 = 0.083(3)
~— 1/2 — Y-
S /
()

| | | | |
2 4 6 8 10
Q-I , Q2=O D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. to appear

Again very good agreement with large-Q prediction!



R(L/2)

The O(2n) vector model

Only total charge matters for homogeneous case:

(Q1,Q2)=(0,0) = *
5 (Q1,Q2)=(0,1) —<— |
10° ¢ (Q1,Q2)=(1,0) — o — ] (Q1,Q2)=(0,3) —=—
i (Q1,Q2)=(0,2) ] 3| (Q1,Q2)=(1,2) o
L (Q1,Q2)=(2,0) / 10°F  (Q1,Q2)=(2,1) — = —
- (Q1,Q2)=(1,1) , - (Q1,Q2)=(3,0) ——
R i (Q1,Q2)=(4,0) — <
! | - 1 (Q1,Q2)=(5,0) =
10-3 - 1 ~ i
[ | g
/ i 104 |
10 -
0.01
L 10_50.01
1/L
C orre I ati on fu N Cti on: D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. to appear
a(Q) Cq(r=1L/2)
Co(r) ~ R(L/2) = R(L) ~ 1/[2P(Q)=D(Q-1))
Q( ) |ﬂ2D(Q) ( / ) CQ—l(T _ L/2) ( ) /

Parallel lines in log/log plot: anomalous dimensions are the
same!



Beyond the vector
models



Matrix models

Want to go beyond vector models.

Study models with matrix-valued order parameter,
global SU(N) symmetry.

SU(3) matrix model in 3d: can fix only one U(1)-charge
if you want a homogeneous ground state.

Low-energy physics is again governed by a single
relativistic Goldstone boson.

Anomalous dimension has the same form as for the
vector model.

Calculated the 3-point functions as well.

O. Loukas, D. Orlando and S. R., [arXiv:1707.00710 [hep-th]]

SU(4) matrix model: new effects appear. Can fix more
than one U(l) charge independently. Can distinguish
more than one IR fixed point at large charge.

O. Loukas, [arXiv:1711.07990 [hep-th]]


http://arxiv.org/abs/arXiv:1711.07990
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Non-relativistic CFTs




Nonrelativistic CFTs

Motivation: unitary Fermi gas (3+1)D

Can be realized in the lab via cold atoms in a trap.
Tuning via Feshbach resonances: unitary point,

correlation length = 00, interaction length = 0

ALy
0.2 ' Condensation

ot &
.1V0\:'&P:./' o .". e‘
M JT?",‘.L‘; 5 ¢ 4 Y
Ry v e d
Superfluid ¢ wde
Unitarity:
0 S [ M |
-2 -1 0 1
<«— BCS 1/(kea,) BEC—>
Attraction—>
At unitary point: described by a non-relativistic

superfluid
Effective action (small momentum expansion)

Son & Wingate



Nonrelativistic CFTs

Non-relativistic systems are not invariant under the full
conformal group.

Schrodinger algebra: contains the Galilean algebra with
central extension plus scale and special conformal

transformations: _— real parameters
(t,z;) = (t',x}) = (e*"t, e ;)
t X
t,x;) = (¢, 2)) = ,
(t,2:) = (¢, z:) (1+)\t 1+)\t>

The Schrodinger Lagrangian (in d space-dim) is invariant
under Schrodinger symmetry:

' h k . a—2 d+2
L) = o (") — 60") — 5 0" 0t) — BT (479) T
\

scale



Nonrelativistic CFTs

System has again a global U(1) symmetry.
Follow the same recipe as for O(2): % =ae”
Homogeneous ground state:

0 — ut 1 g3 2E 2

P

d m

The leading piece of the effective action for O can be
found by dimensional analysis:

L£O) = ¢y BE=D/2d/277(d+2)/2

h
U = @té’ &ie 875‘9
2m

The first quantum correction to this (semi-classical)
result is the Casimir energy, it goes as Q'/¢



Nonrelativistic CFTs

Check for higher-derivative terms at tree level in the
effective action (here w/o curvature terms = flat space).

Use Schrodinger symmetry to constrain the terms that
can appear in the action (d=3):

Generic operator allowed by dimensional analysis and
compatible with scale and SC transformations:

04 x RB—1/2,,3/2=8 528 75/2—p
Invoke p-scaling to exclude highly suppressed termes:
U ~ U, 829 ~ ”_1/47 aZU ~ Iu_l/4

Term with highest p-scaling:
Op ™" RV 23RBS /2=B gng om0 ~ 2P n+m =28

For positive p-scaling, B<3.



Nonrelativistic CFTs

Check terms explicitly.

Result for d=2 and 3: 50

— 51

L(0) = coh' = 2md/2y (d+2)/2 /
4+ C1h2_d/2m_1+d/2U(d_4)/2 6ZU a@U/
+ 02h3_d/2m_2+d/2U<d_2)/2(av;az'e)Q T O(M_Q)

B=2

Check loop corrections to the effective action.

Both quantum corrections and tree-level higher
derivative terms are suppressed by inverse powers of |
for d>1.



Nonrelativistic CFTs

different from

2 i «— ..
2 _ 2N relativistic case!

Speed of sound (leading order): ¢; = o
NLO-correction to the dispersion relation:

A 2
W = CgP (1 —dZ— (2¢1 + des) £ + O(M_2)>
/ . g

again linear in p! from NLO tree-level terms

Quantum corrections enter at higher order.

Energy of ground state (on the torus): different from

o relativistic case!
h? 5 b d+ 2 b 1
_ (d+2)/d 1 = .1/d _9) 4 2 | -
Era = — V%\p S iy 5 P (ra(—2) A v2/d | | O<p2/d>
_ — -
| i

class. ground state energy ~Casimir energy

All other classical and quantum corrections are

suppressed by inverse powers of p.




Nonrelativistic CFTs

Large-Q expansion also works for non-relativistic CFTs.
Reproduce results of Son,Wingate (different approach)
Include curvature

Work in harmonic potential to use non-relativistic state-
operator correspondence Kravee, Pl

Make connection to experimental results.






SCFTs at large R-charge

Study supersymmetric CFTs.
Global symmetry: R-symmetry
SCFTs in sector of large R-charge!

Simplest example: N=2 theory in 3D with a single chiral

superfield ©:

W = 13 K o ®Td

3
Known to flow to interacting superconformal fixed pt
No marginal deformations or small parameters. o
No moduli space!

Concentrate on theory at IR fixed point:

W o ®° = &  [mass]?/? = K o |®]?/?

. Jafferis



SCFTs at large R-charge

Expand in component fields and parametrize the
complex scalar like for the O(2) model in terms of radial
and angular component:

Lrm =axlo2(0x)° + ax DO

L 9/2
g2 bKW

+ higher derivatives + fermions
For |¢| = const. this is minimized for \what about them?
(0x)* < |¢]” o< p

Same form of action as for the O(2) model!

Fermions decouple from dynamics as they receive large
masses via the Yukawa couplings and have rest energy

Ey ~ | Oox| ~ +/p



SCFTs at large R-charge

SUSY is spontaneously broken by fixing the charge!

Same dynamics as in O(2) model - same universality
class.

D(Q) = 5 2Q% + 2V e1pQ 7 0,094+ 0(Q )

Formula for anomalous dimension remains the same!

Surprising, as due to SUSY, we'd expect for BPS states

D(Q)=Q+0(Q"
Via a partition function calculation, it was instead found
that for BPS states, D(Q)=Q+ S +... e
—Q+Q*+...
BPS states appear at a much higher energy than our
ground state (no scalar BPS states!).




SCFTs at large R-charge

Unique ground state at large charge, same EFT as O(N)
vector model.

Things are very different for SCFTs with a moduli space:
Curvature of manifold always relevant: theory has a
dimensionful parameter.

How can we write an EFT? Need extra ingredient.
Make use of SUSY properties.

Simplest (class of) examples with moduli space:
N=2 SCFT in 4D with ID Coulomb branch.

More in Domenico’s talk on Thursday!!






Summary

Study CFTs in sectors of large global charge

Concrete examples where a strongly-coupled CFT
simplifies in a special sector.

O(2N) model in 3d:in the limit of large U(Il) charge Q,
we computed the conformal dimensions in a
controlled perturbative expansion:

D(Q) = Qci;%@gm + 2/ e12Q"? — 0.094 + O(Q™/?)

Can be applied beyond vector model: SU(N) matrix
models

Theory “classicalizes” at large charge
Excellent agreement with lattice results for O(2), O(4)



Summary
Study non-relativistic CFTs with global U(I).

Large-charge expansion exists, quantum corrections
and higher-derivative terms are suppressed

results in 3+ 1D match eff. theory for unitary Fermi gas
qualitatively different behavior to relativistic case

SCFTs without moduli space: works the same as for
vector models

Everything today: low-energy behavior encoded by one
relativistic Goldstone boson, all relativistic cases look
the same.

Thursday: will see inhomogeneous ground states,
different leading behavior for anomalous dimensions,
new results and work in progress...



Summary

Open questions:
 Does it work!?
- For all the examples, we tried, yes! Confirmation
from lattice data (O(2) and O(4))
* For what kinds of theories does it work?

- (S)CFTs and non-relativistic CFTs
* In how many space-time dimensions!

d>| space dimensions
* For what kinds of global symmetries does it work?

- we checked U(l), O(2n) vector models, SU(N)
matrix models



Summary

* What happens if we fix several charges!?

- k charges with same chemical potential:
homogeneous solution with type | and type |l
Goldstones. Different chemical potentials -
Domenico’s talk

* What can we learn via this approach!?

- calculate CFT data at large charge!



Outlook

Further study of non-homogeneous states

Hellerman et al.

- Domenico’s talk!

Further study of supersymmetric models at large R-
charge (higher-dim. moduli spaces)

Hellerman et al.

- Domenico’s talk!

Connection to holography (gravity duals)

oukas, Orlando, Reffert, Sarkar

Connection to large-spin results

Rattazzi et al.

Understanding dualities semi-classically at large charge
Use/check large-charge results in conformal laf?erga!:dszgll;ig
Comparison with large-N expansion

- Domenico’s talk!

Can large charge approach be used for QCD (e.g. large
baryon number)?



Thank you for your
attention!



