Weak Gravity Conjecture from Unitarity and Causality

Toshifumi Noumi

(Kobe Univ, Wisconsin-Madison)

mainly based on 1810.03637 w/Y. Hamada, G. Shiu

6th Nov 2018 @ IPMU

in quantum gravity,

∃ a charged state satisfying

$$g^2 q^2 \ge \frac{m^2}{2M_{\rm Pl}^2}$$

for each U(1) gauge force

in quantum gravity,

B a charged state satisfying

for each U(1) gauge force

in quantum gravity,

∃ a charged state satisfying

$$g^2 q^2 \ge \frac{m^2}{2M_{\rm Pl}^2} \xrightarrow{M_{\rm Pl} \to \infty} 0$$

for each U(1) gauge force

in quantum gravity,

∃ a charged state satisfying

$$g^2 q^2 \ge \frac{m^2}{2M_{\rm Pl}^2}$$

for each U(1) gauge force

in QED, the electron trivially satisfies it:

$$10^{-2} \sim g^2 q^2 \ge \frac{m^2}{2M_{\text{Pl}}^2} \sim 10^{-44}$$

however, its generalization (ex. axion) constrains models of inflation, dark matter, \cdots

in this talk, I will argue [Hamada-TN-Shiu '18] existence of a charged state (BH) satisfying

$$g^2 q^2 > \frac{m^2}{2M_{\rm Pl}^2}$$

follows from unitarity & causality

in a wide class of theories

(ex. stingy setups w/dilaton or moduli stabilized below M_s)

plan

- 1. Introduction: Landscape & Swampland
- 2. Weak Gravity Conjecture
- 3. WGC from unitarity and causality
- 4. Summary and prospects

1. Landscape & Swampland

1. Landscape & Swampland

various QFT models w/quantum gravity ex. for particle physics and cosmology

QFT 3

QFT 4

QFT 1

Landscape : string theory has infinitely many vacual shape of extra dimensions, brane configurations, \cdots

QFT 2

string theory

= generator of QFT models w/quantum gravity

Q. every QFT model is realized in string theory?

A. NO!!!

no global symmetry in string theory

continuous symmetries in string theory are gauged!

- world sheet theory analysis [Banks-Dixon '88, …]

conserved current \rightarrow gauge boson vertex operator

- if we assume AdS/CFT \cdots

conserved current J^{μ} in CFT \rightleftharpoons gauge field A_M in AdS

holographic proof including discrete symmetries
[Harlow-Ooguri 18']

more generally,

black hole (BH) thought experiments motivate no global symmetry in quantum gravity!

global vs gauge in the BH context

global symmetry ex. B - L

gauge symmetry ex. U(1)EM Q

no-hair theorem:

event horizon \rightarrow global symmetry charge is not observable cf. EM fluxes outside the horizon tell us the EM charge

no global symmetry in quantum gravity

global charge is not conserved due to BH evaporation

 \rightarrow global symmetry is approximate symmetry (if exists)

cf. for gauge symmetry, Hawking radiation is not neutral

in this way,

nontrivial constraints on symmetry & matter contents

in string theory (quantum gravity in more general)

→ Landscape & Swampland [Vafa '06]

swampland : apparently consistent, but not UV completable when coupled to gravity

THE AND A PARTY

landscape : QFT models consistent w/quantum gravity

- where is the boundary?
- phenomenological implications?

swampland

landscape

web of swampland conjectures

web of swampland conjectures

web of swampland conjectures

plan

- 1. Introduction: Landscape & Swampland 🖌
- 2. Weak Gravity Conjecture
- 3. WGC from unitarity and causality
- 4. Summary and prospects

global symmetry = gauge symmetry @ g = 0 \rightarrow any lower bound on gauge coupling g ??

a simplest possibility will be $g^2q^2 \ge (\text{constant}) \times \frac{m^2}{M_{\text{Pl}}^2}$

BHs in Einstein-Maxwell theory

1) sub-extremal BH:
$$g |Q| < M / \sqrt{2} M_{\text{Pl}}$$

emit Hawking radiation ($T \neq 0$) to decay; unstable

2) extremal BH:
$$g |Q| = M / \sqrt{2}M_{\text{Pl}}$$

no Hawking radiation (T = 0)

 \rightarrow stable unless \exists some other decay mechanism

 $\Re |Q| > M/\sqrt{2}M_{\text{Pl}}$: naked singularity (cf. cosmic censorship)

a proposal by [ArkaniHamed-Motl-Nicolis-Vafa 06']: postulate that extremal BHs have to decay

unless not protected by some symmetry (ex. SUSY)

- "∞ stable states w/o sym protection" seems strange
- revisit from unitarity & causality perspective later

[ArkaniHamed-Motl-Nicolis-Vafa 06']

in the unit $Q_{\text{ext}} = M_{\text{ext}}$ for simplicity

[ArkaniHamed-Motl-Nicolis-Vafa 06']

in the unit $Q_{\text{ext}} = M_{\text{ext}}$ for simplicity

- no rigorous proof, so it is still a conjecture
- but consistent with all known examples in string theory
- if true, various phenomenological implications

ex. mili-charged dark matter, axion inflation, axion DM, \cdots

- no rigorous proof, so it is still a conjecture
- but consistent with all known examples in string theory
- if true, various phenomenological implications

ex. mili-charged dark matter, axion inflation, axion DM, ...

$$\text{``charge > mass'' \iff } \frac{1}{f} > \frac{S_{\text{inst}}}{M_{\text{Pl}}} \iff \frac{f}{M_{\text{Pl}}} \cdot S_{\text{inst}} < 1$$

implications to axion inflation

inflaton potential has to be flat enough (slow-roll condition)

$$V(\phi) \propto e^{-S_{\text{inst}}} \left(1 - \cos\frac{\phi}{f} \right) + \sum_{n \ge 2} e^{-nS_{\text{inst}}} \left(1 - \cos\frac{n\phi}{f} \right)$$

- negligible higher harmonics ($n\geq 2$) $\rightarrow S_{\rm inst}>1$
- long enough periodicity $\rightarrow f > M_{\rm Pl}$

$$\therefore$$
 inconsistent with WGC $\frac{f}{M_{\rm Pl}} \cdot S_{\rm inst} < 1$

loophole and prediction

<u>axion monodromy</u> (ex. pure natural inflation) multi-valued potential

$$V(\phi) = V_{\text{s.r.}}(\phi) + e^{-S_{\text{inst}}} \left(1 - \cos\frac{\phi}{f}\right)$$

spectator instanton

add an instanton satisfying the WGC bound

$$V(\phi) = e^{-S_{\text{inst}}} \left(1 - \cos\frac{\phi}{f}\right) + e^{-S'_{\text{inst}}} \left(1 - \cos\frac{\phi}{f'}\right)$$

- large field inflation is realized by

$$V_{\text{s.r.}}$$
 or $e^{-S'_{\text{inst}}} \left(1 - \cos\frac{\phi}{f'}\right) (f' > M_{\text{Pl}})$

- WGC is satisfied by the instanton with $S_{inst} \cdot \frac{f}{M_{Pl}} \lesssim 1$ \rightarrow wiggy potential \rightarrow oscillating feature in power spectrum

plan

- 1. Introduction: Landscape & Swampland 🖌
- 2. Weak Gravity Conjecture 🖌
- 3. WGC from unitarity and causality
- 4. Summary and prospects

3. WGC from unitarity and causality

[Hamada-TN-Shiu '18]

constraints on signs and/or amplitudes

of effective interactions (ex. positivity bound)

3. WGC from unitarity and causality [Hamada-TN-Shiu '18] $\exists \text{ heavy BHs satisfying the WVC bound } g|Q| > \frac{M}{\sqrt{2}M_{\text{Pl}}}$ if higher derivative interactions have a certain sign [Kats-Motl-Padi '06]

higher derivative corrections to Einstein-Maxwell theory $S = \int d^4x \sqrt{-g} \left[\frac{1}{4}R - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \alpha_1(F_{\mu\nu}F^{\mu\nu})^2 + \alpha_3F_{\mu\nu}F_{\rho\sigma}W^{\mu\nu\rho\sigma} + \cdots \right]$ $+ \alpha_2(F_{\mu\nu}\widetilde{F}^{\mu\nu})^2 + \alpha_3F_{\mu\nu}F_{\rho\sigma}W^{\mu\nu\rho\sigma} + \cdots \right]$ % work in the unit $2M_{\rm Pl}^2 = 1$, g = 1 in the following % higher order terms are negligible for heavy BHs

$$F^2 \sim R \sim 1/M^2$$

higher derivative corrections to Einstein-Maxwell theory $S = \int d^4x \sqrt{-g} \left[\frac{1}{4}R - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \alpha_1(F_{\mu\nu}F^{\mu\nu})^2 + \alpha_3F_{\mu\nu}F_{\rho\sigma}W^{\mu\nu\rho\sigma} + \cdots \right]$ $\rightarrow \text{ modify BH solutions and the horizon structure}$ $\text{ no naked singularity if } \frac{|Q|}{M} \leq 1 + \frac{2}{5}\frac{(4\pi)^2}{O^2}(2\alpha_1 - \alpha_3) + \mathcal{O}(1/Q^4)$

higher derivative corrections to Einstein-Maxwell theory $S = \int d^4x \sqrt{-g} \left[\frac{1}{4}R - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \alpha_1(F_{\mu\nu}F^{\mu\nu})^2 + \alpha_3F_{\mu\nu}F_{\rho\sigma}W^{\mu\nu\rho\sigma} + \cdots \right]$ $\rightarrow \text{ modify BH solutions and the horizon structure}$ $\text{no naked singularity if } \frac{|Q|}{M} \le 1 + \frac{2}{5}\frac{(4\pi)^2}{Q^2}(2\alpha_1 - \alpha_3) + \mathcal{O}(1/Q^4)$ if we can derive $2\alpha_1 - \alpha_3 > 0$,

- an existence proof of WGC (more precisely, mild version)

- decay of heavy extremal BH is kinematically allowed

in the following, I demonstrate

that the inequality follows from unitarity & causality

in a class of theories including

- theories with light neutral particles (ex. dilaton, moduli)
- open string theory type UV completion

setup and assumptions

particle spectrum

- BH dynamics is controlled by photon and graviton at IR
- Λ_{QFT} : scale beyond which QFT description breaks down
- assume a weakly coupled UV completion of gravity

Sources of higher dimensional operators

(a) neutral light bosons (dilaton, axion)

(b) loop effects (charged particles)

Sources of higher dimensional operators

(a) neutral light bosons (dilaton, axion)

 $\alpha_{1,2}: F^4, \ \alpha_3: F^2W$

(b) loop effects (charged particles)

Sources of higher dimensional operators

(a) neutral light bosons (dilaton, axion)

 $\alpha_{1,2}: F^4, \ \alpha_3: F^2W$

$$|\alpha_i| \gtrsim \frac{1}{m^2}$$

(b) loop effects (charged particles)

(c) UV effects (stringy states)

$$|\alpha_i| \gg 1$$
 for $z \gg 1$
 $\alpha_i = \mathcal{O}(1)$ for $z = \mathcal{O}(1)$

$$\alpha_{1,2} \sim \frac{1}{\Lambda_{\rm QFT}^4}, \ \alpha_3 \sim \frac{1}{\Lambda_{\rm QFT}^2}$$

loop effects (b) dominates only when $z \gg 1$

- this particle satisfies the WGC bound z > 1 (\checkmark WGC satisfied)
- \rightarrow let's focus on the case either (a) or (c) is dominant
- even in this case $2\alpha_1 \alpha_3 \simeq 2\alpha_1 > 0$ follows from unitarity

$$\alpha_1 : (FF)^2, \ \alpha_2 : (F\tilde{F})^2, \ \alpha_3 : F^2W$$

Causality constraints

the FFW coupling α_3 is significantly constrained by causality! [Camanho-Edelstein-Maldacena-Zhiboedov '14]

- generates a new 3pt helicity amplitudes
- leads to causality violation (time-advancement) unless \exists an infinite tower of higher spin particles with the mass $m \sim \alpha_3^{-1/2}$ just like string theory!

cf. this amplitude is incompatible with SUSY, so $\alpha_3 = 0$ in SUSY theories

$$\alpha_1 : (FF)^2, \ \alpha_2 : (F\tilde{F})^2, \ \alpha_3 : F^2W$$

Causality constraints

the FFW coupling α_3 is significantly constrained by causality!

[Camanho-Edelstein-Maldacena-Zhiboedov '14]

- generates a new 3pt helicity amplitudes
- leads to causality violation (time-advancement)

unless \exists an infinite tower of higher spin particles with the mass $m \sim \alpha_3^{-1/2}$ just like string theory!

cf. the same bound is available from conformal bootstrap [Meltzer-Poland '17, Afkhami-Jeddi et al '18] the Wilson coefficients enjoy the hierarchy $|\alpha_1|, |\alpha_2| \gg |\alpha_3|$

- if the effect (a) of light neutral particles is dominant
- if photon and graviton carry different sets of Regge states and the photon Regge state effect is dominant

 $2\alpha_1 - \alpha_3 \simeq 2\alpha_1 > 0$ causality unitarity

$$\alpha_1 : (FF)^2, \ \alpha_2 : (F\tilde{F})^2, \ \alpha_3 : F^2W$$

Unitarity constraints

unitarity implies positivity of $\alpha_1(F_{\mu\nu}F^{\mu\nu})^2$ and $\alpha_2(F_{\mu\nu}\widetilde{F}^{\mu\nu})^2$!

 \times sign of α depends on sign of propagator (norm positivity)

ex. exchange of dilaton and axion

$$\begin{aligned} \mathscr{L}_{\phi} &= -\frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m_{\phi}^{2} \phi^{2} + \frac{\phi}{f_{\phi}} F_{\mu\nu} F^{\mu\nu} & \longrightarrow \qquad \frac{1}{|p^{2}| \ll m^{2}} & \frac{1}{2m_{\phi}^{2} f_{\phi}^{2}} (F_{\mu\nu} F^{\mu\nu})^{2} \\ \mathscr{L}_{a} &= -\frac{1}{2} (\partial_{\mu} a)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + \frac{a}{f_{a}} F_{\mu\nu} \widetilde{F}^{\mu\nu} & \longrightarrow \qquad \frac{1}{|p^{2}| \ll m^{2}} & \frac{1}{2m_{a}^{2} f_{a}^{2}} (F_{\mu\nu} \widetilde{F}^{\mu\nu})^{2} \end{aligned}$$

Unitarity constraints

unitarity implies positivity of $\alpha_1(F_{\mu\nu}F^{\mu\nu})^2$ and $\alpha_2(F_{\mu\nu}\widetilde{F}^{\mu\nu})^2$!

more generally, we can explicitly show [Hamada-TN-Shiu '18]

 $\alpha_1 > 0 \ (\alpha_2 > 0)$ follows from unitarity

when photon is coupled to parity even (odd) neutral scalars

or spin $s \ge 2$ neutral particles

by using factorization and UV mildness of scattering amplitudes, and assuming that graviton Regge states are subdominant effects cf. spinning polynomials basis of [ArkaniHamed-Huang-Huang '17] to summarize, unitarity and causality implies $2\alpha_1 - \alpha_3 \simeq 2\alpha_1 > 0$ \approx WGC bound is satisfied by heavy extremal BHs! \approx decay of heavy extremal BH is kinematically allowed in the following classes of theories:

- theories with light neutral particles

(parity even scalar or spin $s \ge 2$ particles; dilaton, moduli, KK-graviton)

- open string theory type UV completion

(photon Regge state effect dominates over graviton Regge state one)

4. Summary and prospects

Summary

- in open string theory type UV completion

 extension to higher dimension, multiple U(1)'s
 entropy correction is positive in these theories (cf. [Cheung-Liu-Remmen 18'])

Prospects

enlarge applicability of our argument

- heterotic string type setup was not covered (photon and graviton are from closed string)
- detailed study of Regge amplitudes will be necessary

connection to non-SUSY AdS conjecture [Ooguri-Vafa '16]

- AdS = near horizon limit of extremal BHs
- decay of extremal BHs is kinematically allowed

in the aforementioned theories

extension to WGC for axion

- corrections to extremality condition of black instantons

Thank you!