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Argyres-Douglas (AD) theories




e 4d N=2 Superconformal theories (SCFTs)

* Describe the low energy physics at special loci on the Coulomb branch
Of generic 4d N=2 theo rieS [Argyres-Douglas "95] [Argyres-Plesser-Seiberg-Witten ‘95]

* At these special loci, magnetic monopoles and electrically charged
particles simultaneously become massless






Simplest AD theory

e Supersymmetric U(1) gauge theory + electron + monopole/dyon

* AD point on the Coulomb branch of N=2 SU(2) gauge theory with 1
dOU bIEt hyper [Argyres-Douglas "95] [Argyres-Plesser-Seiberg-Witten ‘95]

* Often called as the H, theory



* Hy has a single Coulomb branch operator with scaling dimension
A 6
0O~ &
5
e central charges are given by (aharony-Tachikawa '08] [shapere-Tachikawa ‘0]
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Minimal 4d theory with N=2 SUSY

* Hy is believed to be the minimal 4d superconformal theory with 8
supercharges

* 4d N=2 SCFTs obey an analytic lower bound on their central charge

[Liendo-Ramirez-Seo "15]

* Hy theory saturates this bound



AD theories from type |IB

* AD theories can be obtained by compactification of type |IB on
with an isolated singularity

CY; C C? . W(ZEZ) =0
* Gives a (G, G") classification of AD theories (cecotti-Neitzke-vafa10]

Wi(x,y,z,w) =Wa(xz,y) + Wg/(z,w) =0



* Wa(x,y) Iisthe superpotential defining ADE singularities

Wa, (z,y) =" + 97
Wp. (z,y) = 2" 1 + zy?
Wee(z,y) = 23 + y*
Wg. (z,y) = 2° + zy?



AD theories are Non-Lagrangian

* Impossible to write a manifestly Lorentz invariant Lagrangian with
electrons as well as monopoles as elementary degrees of freedom

* Therefore AD theories are inherently non-perturbative

* Their Coulomb phase is well understood; much less is known about
their conformal phase

« How to compute their partitions function on S%, S3 x S! etc?



N=1 preserving nilpotent

deformations




e Start with any given 4d N=2 SCFT Ty , with a flavor symmetry F

* The superconformal current multiplet contains a scalar : u

* Deformation: Introduce chiral superfields M, in adjoint irrep. of F

 Superpotential: 6W = Mpu

* Give M a nilpotent vev
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® The |OW energy Su perpotentia| becomes [Gadde-Maruyoshi-Tachikawa-Yan "13]

OW = Trp(0 " ) pjm1m=—1 + D Mj—jrttj ik

* This explicitly breaks supersymmetry down to N=1

* [ SU(2)g and U(1), remain unbroken
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* N=1 R-symmetry U(1)y : some linear combination of I5 and U(1),
* Fix the linear combination via a-maximization qintritigator-wecht ‘03]

* IR Central Charges are given by [Anselmi-Freedman-Grisaru-Johansen ‘97]

a = 55 (3TrR? — TrR)

¢ = 35(9TrR> — 5TrR)
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N=1 deformations of N=2 Lagrangian SCFTs

* Tyy = SUMm). + 2n hypers Ty, = USp(2n),. + (4n + 4) half-hypers
F =5SU(2n) F=502n+4)
p = principal p = principal
Tir = (A, Agn- ) Tir = (A1, Azp)

[Maruyoshi-Song'16]
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N=1 deformations of N=2 Lagrangian SCFTs

* Tyy =SUMN), + 2n hypers  * Tyy = USp(2n),. + (4n + 4) half-hypers
F=SU(2n) F=S502n+4)
p:2n—->(2n—1)P 1 p=02n+1)P1P1P1
Tir= (A1, D2y) Tir = (A1, D2nt1)

[PA-Maruyoshi-Song 16]
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e N=1 Lagrangians for (44, 4,,) and (44, D,,) AD theories

 use these to compute RG protected quantities such as the superconformal
index

* In all 4 cases, the Coulomb branch operators of Ty, decouple in the IR
* Some of the gauge singlets M; _; ; also decouple

* The remaining gauge singlets map to the Coulomb branch operators of the
AD theory obtained in the IR
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3d reduction of N=1 Lagrangians




* Decoupling of an operator O can be automatically accounted for by
including a flipping field S
5W —_ ,80 0

* 0 may or may not decouple upon dimensional reduction

* In 3d, R-charges are fixed via Z- extremization

* Generically, extremization point is different if the flipping field S is
included or not
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* Proposal: the flipping fields are necessary for correct dimensional
redUCtiOn [Benvenuti-Giacomelli “17]

* (A4, A5, _1) Lagrangians : no SUSY enhancement in 3d without
f|lpplng f|€|ds [Benvenuti-Giacomelli "17]

* RG flow to the mirror of (44, A,,,—1) AD theory upon including the
f|lpplng f|€|ds [Benvenuti-Giacomelli “17]

* Let’s study the expected necessity of including flipping fields further
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Lagrangian for the (4, D3) AD theory

fields | SU(2)color | SOB)y | UL)r | U(L)g | UQ)r | UQ)r — 32U(1),
o | 2 | 8 | & | 4| 1-% -
w | 2 1 | | § o ja-mee)
¢ ad] 1 — — T 1
M 1 i 1 —2 M 4
& 1 i 1 2 2 —2r, ~2

W =Tr q¢q: + M5 Tr q20q, + B Tre?

In 4d, non-anomalous R-charge: 1y, —4 714, =0



* The mirror of the (A4, D3) theory: T[SU(2)] theory (self-mirror)

* Thus we expect the above Lagrangian to flow to the T|SU(2)] theory
upon 3d reduction
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0.6760 |,

* Upon Z — extremization:

RM3 ~ 0'95 ;R¢ ~ 0.67 06755 |

* The SU(2) monopole operator ¢

m 06750
decouples

0.6745
* Remove the monopole operator 2

contribution and re-extremize

0.6740 |

0.9490 09495 008500 0.9505 109510 09515 0.9520

R

3

Ry, ~ 0.92,Ry ~ 0.68
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* No SUSY enhancement to N=4 !

* How can we fix this?

e Let us try to find how the chiral operators in our Lagrangian are
expected to match with those of the T[SU(2)] theory
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* T[SU(2)] theory has an SU(2), flavor symmetry acting on its Higgs
branch

* Expect this to map to the SO(3), flavor symmetry of the (44, D3)
Lagrangian

e Constraint on SO(3), moment map R-charge:

rﬂ=rq1+rq2 =1
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* The Coulomb branch of T[SU(2)] has an SU(2); global symmetry
*In4d: M3 < Ocoutomp

* Thus, expect M5 to be one of the 3 components of the SU(2)
moment map

TM3=1
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* Solving the two constraints

e Solution : Tp=

* This implies :

g, T 7, = 1

1
E, TM3:1
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* If SUSY indeed enhances, then SO(3), moment map can only be
charged with respect to Cartan subgroup of SO(4)x

* Therefore, U(1), and U(1), should become the Cartan subgroup of
S0(4)g of the enhanced superalgebra

* U(1)7 should correspond to the Cartan of SU(2)

* Had normalized the U(1), and U(1) charges with this hindsight
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* What about the other two components of the SU(2); moment map?

e Upon reduction to 3d, the Coulomb branch chiral will also contain
SU(2) 010 Mmonopole operators: m, {m¢}

° The VariOUS Cha rges Of these are [Benini-Closset-Cremonesi * 11]
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* The monopole operator m decouples as a free field

* The operators M5 and {m¢} has the right charges to become the spin =1
and spin = 0 components of the SU(2); moment map

* Nothing has the right charges to give the spin = —1 component of the
SU(2)7 moment map

°Chargesof,8:rB:1, Tg=1, Q=2
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An Observation

* Delete the superpotential term 8 Tr¢?
* [ gets decoupled from the Lagrangian
* Now, Tr¢? is part of the chiral operator spectrum

* Tr¢? has just the right charges to become the spin = —1 component
of SU(2)r moment map
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/ — extremization without the flipping field

P -
0.51
& 0.50

0.49

048 \ i . - B S B L
0.98 0.99 1.00 1.01 1.02

* The superconformal Index also matches with T[SU(2)]



3d Mirror of Nilpotent

deformation




* (A1, D3) Lagrangian : from N=1 deformation of N=2 SCFT
* N=2 SCFT : SU(2) gquge *+ 4 fundamental hypers = SO(8) f1qvor

e Deformation:

oW = Hey—es T Hes—e, T Hegte, T M3 e, e,

* Ue;+e; : COMpoONnent of moment map corresponding to the root e; * e;
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* |n 3d,
SU(2) gauge *+ Mirror Symmetry e e

—p
4 fundamental hypers e

* SO(8) enhancement in the D, quiver is due to monopole operators

Mirror Symmetry
ﬂeiiej -— meiiej
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 Mirror of the deformation

5W — mez—eg + me3—e4 + me3+e4 + M3 m—ez—eg

* The topological charges of a monopole operator are given by its root
VECtorS in the a — baSiS [Cremonesi — Hanany — Zaffaroni 14 ]
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I T S T

Me,—e;

Me;—e, 0 0 1 0
Mes+e, 0 0 0 1
Meeye; O 1 1 1
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* 3d N = 2 U(N,) gauge theory with N, + 1 fundamental flavors and a
monopole superpotential W = m™ , undergoes confinement (senini- senvenuti-

Pasquetti "17 ]

* In our deformed quiver, we can therefore consider the following sequence
of nodes to confine

Node #3 > Node # 2 > Node # 4
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e Confinement of Node # 3

node #
ONO =
—_— 2
2 —:
—4
ONO —

e Confinement of Node # 2




e Confinement of node # 4

N— o

* We recover T[SU(2)] from mirror side

* More detailed analysis gives the correct superpotential
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Summary and Conclusion

* Argyres — Douglas theories are simplest N=2 SCFTs

* Their non-Lagrangianity poses a major hurdle in understanding their
conformal phase

* We have been successful in constructing N=1 Lagrangians whose IR
fixed points describe AD theories

e Can use these to compute RG protected quantities such as the
superconformal index

42



* [t is also interesting to study dimensional reduction of these
Lagrangians

* For (A4, A,,-1) type cases, correct dimensional reduction requires
flipping fields

* However, including the flipping field does not always work

* (A1, D3) Lagrangian is a counter example to this expected necessity

43



* Is there a uniform way to understand when to include the flipping
fields ?

* Need to understand the caveats which arise due non-commutation of
the RG flow and dimensional reduction
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