THE PROPERTIES OF EXTREMELY RED QUASARS OBSERVED DURING THE EPOCH OF PEAK GALAXY FORMATION

Andy D. Goulding — Princeton University

N. Zakamska, Ai-Lei Sun, J. Greene, R. Alexandroff, K. Nyland, R. Assef, M. Banerji, F. Hamann, D. Wylezalek, M. Strauss, W.N. Brandt, G. Lansbury, G. Richards, D. Stern

Department of Astrophysical Sciences

A KEY GOAL OF X-RAY ASTRONOMY : UNVEILING RADIATIVE/ MECHANICAL FEEDBACK — THE SUPPRESSION OF STAR FORMATION

Radio mode case is clear!

Powerful radio jets entrain & remove galaxy ISM (Nesvadba+08)

A KEY GOA MECHANIC

M82

$5555 (z \sim 0.1)$ Challenge: AGN-winds & Red, passive galaxies Blue, star-forming galaxi s DEEP2 (a ~ 1) starburst winds Blanton+ '06 Marg

/EILING RADIATIVE/ ION OF STAR FORMATION

Radio mode case is clear!

HST 435W

Mrk 231

sphere

5 kpc

Ν

E +

jets entrain & remove 1 (Nesvadba+08)

SPATIALLY RESOLVED [OIII] OUTFLOWS

MULTI WAVELENGTH FOLLOW-UP OF KPC-SCALE OUTFLOWS

Greene+ 2013; Greene+2014; Sun+16; Broome+in-prep

100ks Chandra 0.5-2keV

Requires high spatial resolution imaging even at z~0.1

SEARCHING FOR EXTENDED NARROW LINE REGIONS

IDENTIFYING EXTREMELY EXTENDED NL-REGIONS AT Z~0.5-1.5

[OIII]5007

r i z Composite

CRANKING UPTHE POWER AT HIGH-REDSHIFT...

Extremely Red Quasars (Ross+15; Hamann+17') At z>2 unusual line properties: 1) very large EWs 2) wingless profiles 3) strange line ratios

Analogs to... 2MASS AGN (Wilkes+) ...& F2M Quasars (Glikman+) ...& DOGs (Dey+) ...& HotDOGs (Stern+)

CRANKING UPTHE POWER AT HIGH-REDSHIFT...

Extremely Red Quasars (Ross+15; Hamann+17') At z>2 unusual line properties: 1) very large EWs 2) wingless profiles 3) strange line ratios

Analogs to... 2MASS AGN (Wilkes+) ...& F2M Quasars (Glikman+) ...& DOGs (Dey+) ...& HotDOGs (Stern+)

CRANKING UPTHE POWER AT HIGH-REDSHIFT...

VLT X-Shooter : Zakamska+16

Gemini GNIRS: Goulding+18; Alexandroff+18

0.1 kpc

0.1 Mpc

OUTFLOW SCALES

Outstanding questions:: 1) What are the intrinsic luminosities of ERQs? 2) Can the wind affect the X-ray emitting corona? 3) Does the wind obscure the central BH?

Broad-line region scales

Flvis 200

Narrow-line region scales

0.1 pc

Extended narrow-line region scales

0.1 kpc

0.1 Mpc

FOLLOW-UP X-RAY OBSERVATIONS OF A PILOT SAMPLE OF ERQS

Pilot Sample of ERQs (Goulding+18b)

Sample of 14 (16) ERQs at z~3:

- mixture of CXO/XMM
- 8 we were Pl for (15ks)
- 8 archival + serendipitous (5-70ks)
- 6/7 have follow-up NIR spectra
- All 6 show powerful [OIII] outflows (>2000km/s)
- Mid-IR 6um luminosities ~1047 erg/s

A DIFFICULT POPULATION TO OBSERVE...

Majority were only weakly detected with 10-50 counts

A DIFFICULT POPULATION TO OBSERVE...

Majority were only weakly detected with 10-50 counts

INFORMATION GLEANED FROM HARDNESS RATIOS

A DIFFICULT POPULATION TO OBSERVE...

Majority were only weakly detected with 10-50 counts

A DIFFICULT P

Majority were only w

FOLLOW-UP X-RAY OBSERVATIONS OF A PILOT SAMPLE OF ERQS

Scattered X-ray fraction ~ 5% N_H~(0.5–1.5)x10²⁴ cm⁻²

Mass outflow rate in the wind:

$$\dot{M} = 58M_{\odot}/\text{year} \times \left(\frac{r_{\text{in}}}{1 \text{pc}}\right) \left(\frac{N_{\text{H}}}{10^{24} \text{cm}^{-2}}\right) \left(\frac{v}{2000 \text{km s}^{-1}}\right) \left(\frac{v}{2000 \text{km s}^{-1}}\right)$$

Resulting kinetic power of the wind:

$$\dot{E}_{
m kin} = rac{\dot{M}v^2}{2} = 7 imes 10^{43}
m erg\,s^{-1}$$

FUTURE X-RAY OBSERVATIONS OF THE MOST POWERFUL KPC-SCALE OUTFLOWS AT REDSHIFT~2-3

2

FUTURE X-RAY OBSERVATIONS OF THE MOST POWERFUL KPC-SCALE OUTFLOWS AT REDSHIFT~2-3

SUMMARY

Broome+in-prep

Sun+18

HSC Broadband Images

[OIII]5007 Emission Line Image

[OIII]5007 Emission Line Image

