Searching for Dark Matter with X-ray lines

Perseus Cluster (Chandra)

Kenny C.Y. NG, IPMU 2018

Dark Matter problem

BBN/CMB

• Clusters

Galaxies/Local

Dark Matter Detection

Direct Detection

Collider Search

• Indirect Detection

Dark Matter Indirect Detection

X-ray Searches of Dark Matter

Sensitive instruments

- Well Motivated Candidates
 - Sterile Neutrino (keV)
 - Axion-like Dark Matter
 - Gravitino
 - Exciting Dark Matter
 - +++++

Suzaku (2005 - 2015)

Sterile Neutrino Dark Matter Production

- Non-resonant production
 - Dodelson Widrow 1994
 - Warm DM
- Resonant production
 - Shi Fuller 1999
 - Modified by primordial lepton asymmetry
 - Cool DM
- Decay of heavy particles
 - E.g., Petraki Kusenko 2008
 - Collider signatures

Sterile Neutrino Dark Matter

3.5 keV line excess!

• Bulbul et al (2014)

Sterile Neutrino DM

Stacked 73 clusters XMM-MOS (4-5 σ)

Also Chandra Perseus 2.5σ and 3.4σ

3.5 keV line excess!

Boyarsky et al (2014)

Sin²(2 theta) ~ 2-20 x 10⁻¹¹

Follow-up Observations (2014)

- 1. Rimer-Sorensen [1405.7943] Chandra GC
- 2. Jeltema, Profumo [1408.1699] XMM GC
- 3. Boyarsky + [1408.2503] XMM GC
- 4. Malyshev + [1408.3531] XMM dwarfs
- 5. Anderson + [1408.4115] Chandra+XMM Galaxies
- 6. Urban + [1411.0050] Suzaku Clusters
- 7. Tamura + [1412.1869] Suzaku Perseus

Follow-up Observations (15-17)

- 1. Sekiya+ [1504.02826] Suzaku Diffuse Background
- 2. Figueroa-Feliciano+ [1506.05519] XQC MW
- 3. Riemer-Sorensen+ [1507.01378] NuSTAR Bullet Clusters
- 4. lakubovskyi+ [1508.05186] XMM Individual Clusters
- 5. Jeltema Profumo [1512.01239] XMM Draco
- 6. Ruchayskyiy+ [1512.07217] XMM Draco
- 7. Franse+ [1604.01759] Suzaku Perseus
- 8. Bulbul+ [1605.02034] Suzaku Stacked Clusters
- 9. Hofmann+ [1606.04091] Chandra Stacked Clusters
- 10. Neronov+ [1607.07328] NuSTAR MW
- 11. Aharonian+ [1607.07420] Hitomi Perseus
- 12. Perez+ [1609.00667] NuSTAR GC
- 13. Cappelluti [1701.07932] Chandra Deep field 10 Ms (3 sigma)

And some that I may have missed.....

Kenny C.Y. NG, IPMU 2018

Everything

What is the 3.5 keV line?

- New astrophysical lines
 - Sulphur charge exchange line?

Gu + 2015, Shah+ 2016

- Atomic abundance/emissivity
 Systematics? Urban + 2015
- Particle Physics Models
 - ALP magnetic conversion [B-field]? Cicoli+ 2014......
 - Exciting Dark Matter [Velocity]? Finkbeiner & Weiner 2014
 - +++++

What to do next?

- New Instruments?
 - Astro-H (Hitomi)
 - Sounding Rockets
 - NuSTAR
 - Insight/HXMT ??

other detections (Bu14a, Franse et al. 2016). Studying the origin of the 3.5 keV line with CCD resolution observations of galaxy clusters and other astronomical objects appears to have reached its limit; the problem requires higher-resolution spectroscopy such as that expected from *Hitomi* (Astro-H).

Bulbul+ 2016

- New Techniques?
 - Velocity Spectroscopy

Astro-H (Hitomi)

Simulation

- Launched in Feb 17, 2016
- 10[^]-3 energy resolution

Astro-H (Hitomi)

- Launched in Feb 17, 2016
- 10^-3 energy resolution

Mark

May not 100% answer the dark matter question

Kitayama+ 1412.1176

Dark Matter Velocity Spectroscopy

Milky Way Gas (Background)

 Gas and the Sun co-rotate in a disk

 $-V^2 \sim GM/r$

Astro-physical line
 – Red shifted in + longitude!

Milky Way DM

- Velocity of the Sun

 (+)220km/s, +longitude
- Mean dark matter velocity ~ 0

- DM line
 - Blue shifted for +longitude

Dark Matter Velocity Spectroscopy

Need to model both line shifts and line widths

$$\frac{dF}{dE} = \frac{1}{4\pi} \frac{\Gamma}{m_{\chi}} \frac{dN}{dE} \int d\Omega \int d\ell \rho_{\chi}[r(\ell)]$$
Line shift
Atomic tomography

$$\frac{1}{R_{\odot}\rho_{\odot}} \int ds \, \rho_{\chi}(r[s,\psi]) \frac{d\tilde{N}(E - \delta E_{\rm MW}, r[s,\psi])}{dE}$$
Line dispersion
- MW Gravitational potential

DM – Astro Separation (MW)

- Clean separation
 - -DM
 - Astro
 - Detector effect
- Two obs. -> 3.6σ

 Minimal theoretical uncertainty

Spectrum

- 2Ms Astro-H observation
 > 5 sigma detection
- Taken into account both intrinsic and detector line dispersion.

DM Velocity Spectroscopy

- Extra handle for testing line-like signal
 - The "smoking gun" sometimes is not enough

- If DM decay/annihilation produces a line.
 - HERD (GeV-TeV)
 - Photons and electrons
 - 2020?

Dark astronomy/cosmology

A Series of Unfortunate Events.....

The Jupan Aerospace Exploration Agency is investigating the factors that led to Hitomi's demise.

Software error doomed Japanese Hitomi spacecraft

Space agency declares the astronomy satellite a loss.

18 | NATURE | VOL 533 | 5 MAY 2016

© 2016 Macmillan Publishers Limited. All rights reserved

Kenny C.Y. NG, IPMU 2018

A new Mission!

- Two detectors
- 2020-2021?

The XRISM project initiated by JAXA

JAXA has established the project team for X-Ray Imaging and Spectroscopy Mission (XRISM, p spectroscopy capability of ASTRO-H, which had been in preparation under the name X-ray Astroheld in June, JAXA confirmed that all aspects of project implementation, including the managem mitigation system are all satisfactory, and that the necessary countermeasures for the ASTRO-H project team dated 2018 July 1.

XRISM is scheduled for launch during the Japanese Fiscal Year 2020 (April 2020-March 2021).

Sounding rocket (XQC, Micro-X)

http://space.mit.edu/micro-x/open-house/files/Micro-X-Pup-A-2.png

Sounding Rockets

- XQC (2011, 106s)
- Micro-X

- Will likely detect the line!

Figueroa-Feliciano+ [1506.05519]

Velocity Spectroscopy with Micro-X?

• Wide FOV

- Tested with Nbody simulation
 Micro-X

 - 6 obs, >3σ
- Looks promising!

1611.02714 Powell, Laha, KCYN, Abel

11/21/18

Kenny C.Y. NG, IPMU 2018

Sterile Neutrino Dark Matter

Nuclear Spectroscopic Telescope Array

- Neronov, Malyshev, Eckert [1607.07328]
 Diffuse sky, MW halo
- Perez, KCYN, Beacom, Hersh, Horiuchi, Krivonos [1609.00667]
 – Galactic Center

NuSTAR

Focusing observations

Zero Bounce Photons

1000cm2
 -> 10cm2

16

- 0.1deg
 -> 2deg
- Diffuse
 Dark
 Matter
 NUSTAR

NuSTAR MW GC Observation

Perez, KCYN, Beacom, Hersh, Horiuchi, Krivonos 2016 (1609.00667)

6 observations ~ 0.5Ms combining two detectors

Spectra

• A + B detector

Perez+ 2016

NuSTAR Background Model?

- Default background model from Wik et al 2014
- Phenomenological model

Neronov+ 2016

Line energy, keV	Significance	Width, keV	F. 10 ⁻⁴ ets/cm ² /s	Fundami 10 ⁻⁶ cts/cm ² /s		Ghost?	Comments
$3.51^{\circ} \pm 0.02$	111	0.08 ± 0.05	77 + 13	10 5 2.5			lower edge of
							sensitivity hand
$4.46^{*} \pm 0.05$	15.7	0.12 ± 0.03	5.9 ± 0.5	3.7 ± 0.5	Y.		Ti Ko
$4.7^*\pm0.1$	9.8	0.6 ± 0.1	8.9 ± 1.8	8.2 ± 1.9			
6.32 ± 0.08	6.7	0.	1.2 ± 0.2	0.66 ± 0.23	Y.		Fe Ko 7
7.96 ± 0.06	4.0	0.	0.5 ± 0.1	0.23 ± 0.18	× 1		Ca Ko 7
$10.44^* \pm 0.05$	8.9	0.2 ± 0.05	1.4 ± 0.2	1.7 ± 0.3			W L-edge residuals [50]
14.2 ± 0.1	3.3	0.	0.51 ± 0.18	0.6 ± 0.2			Sr Ka?
14.75 ± 0.05	5.9	6.	0.9 ± 0.2	1.0 ± 0.2		37	23 keV ghost?
15.7 ± 0.1	3.7	0.	0.57 ± 0.36	0.6 ± 0.2		17	24.5 leV ghost, Zr Koll
16.7 ± 0.1	5.5	0.	0.9 ± 0.2	1.2 ± 0.2		Y2.	25.3 keV ghost, Nb Kol
$19.66^{o} \pm 0.06$	9.5	0.06 ± 0.14	1.3 ± 0.3	1.3 ± 0.3		. ¥?	28.5 keV ghost?

Checking 3.5 keV in more detail

Occulted data in GC obs (Earth blocked)

- Not as significant (less statistic)
- Flux consistent

3.5 keV in NuSTAR

- Work in progress
- But this suggest:
 - Detector artifact
 - Detector emission
 - Maybe Solar
- Not sure about the other instruments
 - Very different detector design!

Spectra

• A + B detector

Perez+ 2016

Dark Matter Limit

Perez+ 2016

NuSTAR Andromeda

- 8 observations
- 1.2 Ms (A + B module)

KCYN, Roach, Perez, Beacom, Horiuchi, Krivonos, Wik 181X.XXXXX

NuSTAR M31 Spectrum

- O-bounce + 2 bounce!
 1.5x (decay) 2.5x (ann.) signal boost
- > 5keV
 - Understanding the low energy background (in prep.)
- Lower astrophysical background
- Statistically combined (not stacked)

1 observation, det A, 80ks

NuSTAR M31 Constraints

- Closing in the nuMSM window
 - New production method for SnuDM

- Updated production computation
 - Venumadhav et al.2016

Conclusion

- Jury is still out for the 3.5 keV line.
- New Hitomi (maybe 2021)
 Apply Velocity Spectroscopy
- Micro-X (1 flight launched Jul 2018)
- NuSTAR may be surprisingly powerful at 3.5keV – Or maybe not
- NuMSM under siege
- Athena (~ 2029)

Thanks you!

STROPHYSICS OF THE

Europe's next generation X-RAY OBSERVATOR

HOT AND ENERGETI

UNIVERSE

Correction factor

NuSTAR

Focusing observations

Parameter	Value			
Energy range	3 - 78.4 keV			
Angular resolution (HPD)	58 "			
Angular resolution (FWHM)	18"			
FoV (50% resp.) at 10 keV	10 ?????????			
FoV (50% resp.) at 68 keV	6'			
Sensitivity (6 – 10 keV) $[10^6 \text{ s}, 3\sigma, \Delta E/E = 0.5]$	$2 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$			
Sensitivity (10 - 30 keV) $[10^6 \text{ s}, 3\sigma, \Delta E/E = 0.5]$				
Background in HPD (10 - 30 keV)	1.1×10^{-3} cts s ⁻¹			
Background in HPD (30 - 60 keV)	$8.4 \times 10^{-4} \text{ cts s}^{-1}$			
Spectral resolution (FWHM)	400 eV at 10 keV, 900 eV at 68 keV			
Strong source (> 10σ) positioning	$1.5''(1\sigma)$			
Temporal resolution	$2 \ \mu s$			
Target of opportunity response	< 24 hr			
Slew rate	$0.06^{\circ} s^{-1}$			
Settling time	200 s (typ)			

Zero Bounce Photons

FIG. 2: The ratio of the aperture and the focused parts of the dark matter signal as a function of energy.

Neronov+ 2016

NuSTAR diffuse MW

Neronov+ 2016

[Latest] Chandra Deep Sky 1701.07932

~3 sigma detection

Velocity Spectroscopy

- 10⁻³ E resolution <-> Typical MW velocity (~100km/s)
 - Velocity effects become important!

• CO, AL26

[Latest] Chandra Deep Sky 1701.07932

 Morphology consistent with NFW

Consistent rates

