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Galaxy Clusters: 
A Standard Cannon for Cosmology



Galaxy clusters provide us the 
opportunity to directly or indirectly 

measure their gravitational potentials
l Weak and Strong 

Lensing

l Galaxy Dynamics

l Emission of the intra-
cluster medium

l Scattering of CMB 
photons by the ICM 
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measure their gravitational potentials



From Escape Velocity to Mass: the radius-
velocity phase space of clusters

Simulation: Wu et al.



Radius-Velocity Phase Space

Escape Speed

Miller et al. 2016; Diaferio 1997



How do we relate the potential to 
the escape velocity?

Consider the acceleration on a particle near some mass M in an expanding Universe:

Solve for the effective potential:

e.g. Lahav et al. 1991, Nandra et al. 2012; Behroozi et al. 2013

Key 2: Cluster potential depths are governed not only by the mass present,
But also by the accelerated expansion of space. Both of these bend space 
time and create curvature.



Aside: what is q?

q is the “deceleration parameter”, the deceleration of spacetime in the Universe:

Sandage (1961) suggests that
modern cosmology will be about
quantifying H0 and q0.



Instead of integrating from some distance r to infinity (typical case), go out to some radius, req:

Consider the concept of escape in a Universe that is accelerating away from all locations. 
Tracers no longer need to escape to infinity! They only need to reach a radius where the pull 
of gravity is balanced by the ”push” of the accelerating expansion of the Universe:

Behroozi et al. 2013



How do we relate the potential to 
the escape velocity?

The result of the Poisson equation for a point mass in an expanding Universe:

Where there is a boundary condition. Relative to the cluster, escape occurs at the 
equivalence radius:

The acceleration of the Universe at late times lowers the escape velocity.



Example: NFW

Predicting the phase-space escape 
velocity edge from the potential

Using the Millennium Simulation (Springel et al.)



Measuring the edge
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The edge is identified as the 
minimum of the two maximum 
surfaces defined by either 
particles or galaxies in the 
simulation. 

Outside the core, we find no 
difference in the location of 
the edge whether we use 
particles, sub-halos, or 
“galaxies” (in simulations)



How well can we infer the average
escape velocity given cosmology and 

an average cluster density profile?

Miller, et al. 2016
100 Clusters from the Millennium



How well can we infer the average
escape velocity given cosmology and 

an average cluster density profile?

5%

100 Clusters from the Millennium
Miller, et al. 2016



Precision Cosmology with Cluster 
Phase-spaces

Einasto

Gamma

Key 3: A good density profile needs to 
work in conjunction with the dynamical 
potential. In 3D, theory predictions are 
accurate to within a few percent.

5%



The NFW fails the test.

5%

The NFW outer shape does not match the observed (simulated) 
density profiles. NFW suggests that there is more mass 
associated with the cluster than is actually allowed by the 
Poisson equation.



The Evolution of the Escape Edge
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From z = 0.75 to z = 0



The Evolution of the Escape Edge

1. Outside the virial radius, 
the escape edge needs time 
to reach the expectation 
from the potential. 

2. Tracers (particles or sub-
halos) which have radial 
velocities above the 
potential escape. 
Everything else does not.

3. The predicted escape edge 
shrinks as acceleration of 
the Universe increases.

Miller, et al. 2016



Velocity Anisotropy and 2D reality

Gifford, Miller, Kern 2013



Velocity Anisotropy and 2D reality



Velocity Anisotropy and 2D reality



Escape Velocity Inferred Masses

technique described in §2.2.4.

We then choose the iso-density contour that satisfies equation 2.6. There is some

uncertainty in the determination of this surface, which we quantify in §2.3.2. We

note that we always use the same tracers when calculating the dispersions and the

phase-space density

Ideally, we could use the escape velocity profile, which we assume to be the po-

tential profile through equation 2.1, to estimate a mass by using the Poisson equation

r2�(x) = 4⇡G⇢(x) or some variation to arrive at the mass profile. However, this

ideal scenario involves the challenge of taking derivatives of a noisy estimate of �(r).

Instead, Diaferio & Geller (1997) introduce an alternative estimation through the

partial mass di↵erential equation dm = 4⇡⇢(r)r2dr. Invoking equation 2.1, we may

rewrite this di↵erential as:

dm = �2⇡v2
esc

(r)
⇢(r)r2

�(r)
dr (2.7)

and integrate to arrive at:

GM(< R) =

RZ

0

�2G⇡v
2
esc

(r)
⇢(r)r2

�(r)
dr (2.8)

After identifying the iso-density contour that describes the projected hvesc,losi(r),

we now have an estimate for �(r) by using equation 2.1 and g(�(r)) and our equation

now becomes:

GM(< R) =

RZ

0

�2G⇡g(�(r))hv2
los,esc

i(r)⇢(r)r
2

�(r)
dr (2.9)

GM(< R) =

RZ

0

F�(r)hv2los,esci(r)dr (2.10)
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We can invert the Poisson equation and solve for mass in 
terms of the escape velocity edge::

where

F�(r) = �2G⇡g(�(r))
⇢(r)r2

�(r)
(2.11)

Diaferio (1999) claim that F�(r) is roughly constant as a function of radius from 1-

3r200 as calibrated against simulations. For instance, Diaferio (1999) find hF�(r)i =

0.5 and Serra et al. (2011) find hF�(r)i = 0.7. We use a constant value calibrated

against the Millennium Simulations to be F� = 0.65 and discuss the implications of

both the assumption of a constant as well as its calibration in Section 2.4. For a

variation of the caustic technique that does not require this calibration, see Chapter

III.

2.2.2 Inferring Halo Masses from the Virial Relation

Evrard et al. (2008) show that the velocity dispersion of a dark matter halo obeys

a very tight virial relationship when compared with the critical dark matter mass

M200 of the form:

M200 = 1015h(z)�1

✓
�DM(M200, z)

�DM,15

◆↵

(2.12)

where �DM is the 1D velocity dispersion of the dark matter, or more precisely the 3D

velocity dispersion divided by the
p
3. For the Millennium Simulation, we use the

normalization �DM,15 = 1093.0 km/s and slope ↵ = 2.94. Evrard et al. (2008) find

these to be consistent between di↵erent cosmological simulations.

The scatter in �1D,DM at fixed M200 from the N-body simulations for equation

2.12 is ⇠ 5%. With slope ↵, this inherent scatter implies a mass scatter from the

virial relation to be ⇠ 15%. However, this amount of scatter only applies when the

3D velocity dispersion is known, which is never the case in the observed Universe.

Saro et al. (2013) show that the real scatter in mass as measured from the line-of-sight

velocity dispersion is closer to ⇠ 40% when 100 red-sequence galaxies are used. This

huge increase in scatter stems mostly from the projection of the galaxies and their
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Now, all of the messiness of the profile and the velocity 
anisotropies are absorbed into Fβ:

Key 4:  The projected escape edge becomes a tool to 
measure galaxy cluster masses with systematics  <5% if Fb 
can be calibrated.



Escape Velocity Inferred Masses:
Precision and Accuracy



Escape Velocity Inferred Masses:
Precision and Accuracy

If we assume GR and 
pick a (consistent) 
cosmology for ΛCDM, 
the bias between WL 
inferred cluster masses 
and escape-velocity 
masses is:

0.002 +/- 0.014 dex



Escape Velocity Inferred Masses:
Precision and Accuracy

If we allow for centering 
and profile shape 
uncertainties when 
measuring the masses, 
the error on the bias 
goes up to:

+/- 0.07 dex



Escape Velocity Inferred Masses:
Precision and Accuracy

If we allow for a mass 
dependent bias:

intercept: 0.01  +/- 0.07 dex

slope: 0.94 +/- 0.15 dex



Use Case #1: 
Constraining the Cluster Mass Function

§ The normalization of  the mass function on cluster scales is 
an important cosmological parameter. Planck and WMAP 
(and others) disagree on its value.

§ For this we need:

§ A cluster catalog 
§ We use the SDSS-C4 catalog

§ Simulations to calibrate the catalog selection
§ We calibrated against Millennium and MICE

§ Cluster phase-space masses marginalized over Fb
§ Using escape edges



The SDSS-C4 Cluster Mass Function

Miller et al. in prep
Gifford 2016, PhD Thesis



Use Case #2: 
Detecting Dark Energy

§ Compare theoretical predictions for the escape edge from weak 
lensing potentials to the edge. They should MATCH.

§ For this we need:
§ Cosmology from Planck or of  your choosing
§ Mass profile from weak lensing 

§ Allows us to make a theoretical prediction for escape velocity 
profile as a function of  cosmology

§ Galaxy redshifts from spectroscopy
§ Allows us to measure the observed escape velocity profile 

from phase-space 
§ Velocity Anisotropy

§ Free parameter



Use Case #2: 
Detecting Dark Energy

Stark et al. 2017



Key 5: Current data tell us that  Λ is required to make sense of 
the observations and ΛCDM theory.

No
Λ

Stark et al. 2016

Use Case #2: 
Detecting Dark Energy

data



Use Case #3: 
Constraining Dark Energy

§ Compare theoretical predictions for the escape edge from 
weak-lensing potentials to the edge. They should MATCH.

§ For this we need:
§ Mass profile from weak lensing 

§ Allows us to make a theoretical prediction for escape 
velocity profile as a function of  cosmology

§ Galaxy redshifts from spectroscopy
§ Allows us to measure the observed escape velocity 

profile from phase-space 
§ Velocity Anisotropy from other source (e.g., Jean’s analysis)

§ Allows us to infer the underlying 3D potential



Use Case #3: 
Constraining Dark Energy

Per Cluster Effect 

Stark et al. 2017



JLA Supernovae
Planck CMB
1000 Clusters

JLA Supernovae
Planck CMB
1000 Clusters

Stark et al. 2017

Key 6: Projected cluster phase-spaces are a powerful probe of cosmology and do not 
require a detailed understanding of the cluster selection process, centering accuracy, or 
mass function precision and accuracy. These are the three main challenges of 
traditional cluster cosmology.

Use Case #3: 
Constraining Dark Energy



modify the left hand side of  Einstein Field Equations:

DE

Use Case 4:
Testing Chameleon gravity on Mpc Scales



f(R) Gravity: Screening

Schmidt et al. 2009
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High mass clusters are 
mostly screened compared 
to low mass clusters.

Take the ratio of the 
potential in high mass and 
low mass  cluster samples.

Divide out the systematics,
including the velocity 
anisotropy.



f(R) Gravity: Predictions

2D galaxies, 100 clusters per mass bin

Stark et al. 2016



- An attempt to connect String Theory to Gravity
- Relies on space-time requiring “quantum entanglement (QE).”

- QE means that the quantum states of two particles are coupled.
- ”Action-at-a-distance”
- Experimentally verified over scales to as large as ~1000km (Yin et 

al. 2017).
- In EG, space-time is defined through the QE of vacuum particles.

- Space-time geometry is due to the entanglement structure of the 
microscopic quantum state 

- Entanglement is the “glue” for the connectivity of space-time
- Entropy plays an important role, as the information content reflecting the 

range of states (the number of microscopic degrees of freedom)
- EG (2011) originally developed in an Anti-de Sitter framework
- Verlinde Showed that there is a surface contribution of Entropy 

which allowed him to derive Newton’s Laws and General Relativity 
from first principals.

Use Case 5:
Testing Emergent gravity on Mpc Scales



- In 2016, Verlinde extended his theory to de Sitter space-time (i.e., 
accelerated expansion of space).

- Verlinde proposes that Λ and the accelerated expansion of the 
universe are due to the slow rate at which the emergent space-
time thermalizes (e.g., like in thermodynamics and Black Holes).

- This means that there is not only a surface contribution to the 
Entropy, but also a volume component, which is dominant at 
large-scales.

- Verlinde expresses the dark matter distribution as:

- On cosmological scales, Ω2DM – 4/3 ΩB, which is consistent with Planck

Use Case 5:
Testing Emergent gravity on Mpc Scales



Use Case 5:
Testing Emergent gravity on Mpc Scales

Key 7: The escape-edge tests GR and its extensions.  \



Modern precision cosmology is (and will be) about quantifying H and q.

4. The projected escape edge becomes a tool to measure galaxy cluster masses with 
systematics  <5%.

2. Cluster potential depths are governed not only by the mass present, but also by the 
accelerated expansion of space. Both of these bend space time and create curvature in 
the local space-time.

3. To understand and use the escape velocity of clusters, a “good” density profile needs to 
work well beyond the virial radius and must be a Poisson-pair to the potential. When doing 
so, theory is accurate to a few percent as tested in simulations.

6. Projected cluster phase-spaces are a powerful probe of cosmology and do not require a 
detailed understanding of the cluster selection process, centering accuracy, or mass function 
precision and accuracy. These are the three main challenges of traditional cluster cosmology.

7: The escape-edge is a test of GR and extensions to it like fR Chameleon gravity and gravity 
as an emergent property of space-time. .

5. Current data tell us that  Λ is required to make sense of the observations and ΛCDM theory.



Vitali Helanka—Physics
--Testing Gravity with Phase-spaces

Alejo Stark- Astronomy
--Constraining Cosmology

with phase-spaces

Jesse Golden-Marx-Astronomy
--Constraining Cluster Central

galaxy and halo masses

Rutuparna Das-Physics
--Measuring Weak Lensing

cluster masses

Anthony Kremin-Physics
--Measuring cluster phase-spaces

and dynamical masses

Dan Gifford->
Getty Images



The next generation of astronomical surveys



Cosmology directly via the potential 
instead of the mass density?

Angrick and Bartelmann 2009



Using Hectospec+SDSS Velocities 
for Weak-lensing Clusters

Data from SDSS & Geller et al. 2013



A real cluster



Density and Potential in N-body Halos

l Cluster-sized dark 
matter halos are not 
spherical in their 
density

l But they are nearly 
spherical in their 
local gravitational 
potential scalar field

Sphere

IsopotentialsIsodensities



Directly Measuring the Bias

Miller et al. preliminary

Tinker bias



Miller et al. preliminary

Without joint constraints on bias and σ8



Miller et al. preliminary

With joint constraints on bias and σ8


