Effect of Non-Holomorphic Soft Interactions on Supersymmetry Phenomenology

Samadrita Mukherjee

School of Physical Sciences Indian Association for the Cultivation of Science, Kolkata, India. (With Utpal Chattopadhyay, AseshKrishna Datta, Debottam Das, Abhaya Kumar Swain) Based on JHEP10(2018)202 & JHEP01(2018)158

Kavli IPMU, Kashiwanoha, Japan

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 1 / 46

Outline

Standard Model

Supersymmetry

- Generalized Soft Breaking Sector
- Non Analytic Soft Interactions
- Mass Matrices in NHSSM

Sparticle Phenomenology

- Corrections to bottom Yukawa coupling
- Effect of NH terms in parton level yields
- Impact on Higgs mass and top squark mass
- Status of low-energy Observables
- Non-Holomorphic GMSB
 Effect of SUSY Breaking Scale
 NLSP Decays

Wrap-Up

Cheers to Standard Model @!

ightarrow governed by strong, electromagenetic, weak interactions.

ELE NOR

Cheers to Standard Model @!

- \rightarrow governed by strong, electromagenetic, weak interactions.
 - Higss boson
 - W & Z bosons
 - ✓ Various decay channels of Z bosons.

- 🗸 charm & top quark
- 🗸 gluon

ELE SQC

・ 同 ト ・ ヨ ト ・ ヨ ト

Cheers to Standard Model @!

ightarrow governed by strong, electromagenetic, weak interactions.

- Higss boson
- W & Z bosons
- ✓ Various decay channels of Z bosons.

- 🗸 charm & top quark
- 🗸 gluon

But, Beyond Standard Model Particle Physics is going a long way to explain many more "why"!!

Phenomenology of \tilde{b} in NHSSM

JOC ELE

イヨト イモト イモト

Still there are some concerns :

(日) (周) (三) (三)

- X Interactions between Higgs & SM particles tend to make the Higgs very heavy.
- X Neutrinos are massless.
- X No viable dark matter particle candidate.
- X Matter-Antimatter asymmetry.
- **X** EW vacuum stability and criticality.

ELE SQC

Overview

Standard Model

2 Supersymmetry

- Generalized Soft Breaking Sector
- Non Analytic Soft Interactions
- Mass Matrices in NHSSM

Sparticle Phenomenology

- Corrections to bottom Yukawa coupling
- Effect of NH terms in parton level yields
- Impact on Higgs mass and top squark mass
- Status of low-energy Observables
- Non-Holomorphic GMSB
 - Effect of SUSY Breaking Scale
 - NLSP Decays

5 Wrap-Up

MSSM : Different parts of Lagrangian

The general form of Lagrangian density :

$$\mathcal{L}_{MSSM} = \mathcal{L}_{SUSY} + \mathcal{L}_{SOFT}$$

$$\mathcal{L}_{SUSY} = \mathcal{L}_{gauge} + \mathcal{L}_{matter} + \mathcal{L}_{Higgs} - Yukawa$$

$$\begin{array}{c} \texttt{Standard particles} \\ \texttt{U} \subset \texttt{t} \quad \texttt{V} \\ \texttt{H} \\ \texttt{d} \quad \texttt{s} \quad \texttt{b} \quad \texttt{g} \\ \texttt{W} \\ \texttt{v} \\$$

Superpotential : $W_{MSSM} = \mathbf{y}_{\mathbf{u}} Q \cdot H_u \bar{U} - \mathbf{y}_{\mathbf{d}} Q \cdot H_d \bar{D} - \mathbf{y}_{\mathbf{e}} L \cdot H_d \bar{E} + \mu H_u \cdot H_d$

$$-\mathcal{L}_{soft}^{MSSM} = \frac{1}{2} (M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B} + c.c) + (\tilde{q}_{iL} \cdot h_u \mathbf{A}_{\mathbf{u} ij} \tilde{u}_{jR}^* + \tilde{q}_{iL} \cdot h_d \mathbf{A}_{\mathbf{d} ij} \tilde{d}_{jR}^* + \tilde{\ell}_{iL} \cdot h_d \mathbf{A}_{\mathbf{e} ij} \tilde{e}_{jR}^* + h.c.) + \tilde{q}_{iL}^{\dagger} \mathbf{m}_{\mathbf{q} ij}^2 \tilde{q}_{jL} + \tilde{\ell}_{iL}^{\dagger} \mathbf{m}_{\mathbf{l} ij}^2 \tilde{\ell}_{jL} + \tilde{u}_{iR} \mathbf{m}_{\mathbf{u} ij}^2 \tilde{u}_{jR}^{\dagger} + \tilde{d}_{iR} \mathbf{m}_{\mathbf{d} ij}^2 \tilde{d}_{jR}^{\dagger} + \tilde{e}_{iR} \mathbf{m}_{\mathbf{e} ij}^2 \tilde{e}_{jR}^{\dagger} + m_{h_u}^2 h_u^* h_u + m_{h_d}^2 h_d^* h_d + (B_\mu h_u.h_d + c.c)$$

Possible origin & type of "soft" terms

The MSSM Lagrangian is usually claimed to include all possible "soft supersymmetry breaking" terms, i.e. terms which split the masses of the particles and their superpartners, but which do not remove the supersymmetric protection against large radiative corrections to scalar masses.

Nature	Term	order of magnitude	origin
	$\lambda\lambda$	$rac{F}{M}\sim m_w$	$\frac{1}{M}[XW^{\alpha}W_{\alpha}]_{F}$
soft	$\phi^*\phi$	$rac{ F ^2}{M^2}\sim m_w^2$	$\tfrac{1}{M^2}[XX^*\Phi\Phi^*]_D$
	ϕ^2	$rac{\mu {\sf F}}{M} \sim m_w$	$\frac{\mu}{M}[X\Phi^2]_F$
	ϕ^3	$rac{F}{M}\sim m_w$	$\frac{1}{M}[X\Phi^3]_F$

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Possible origin & type of "soft" terms

The MSSM Lagrangian is usually claimed to include all possible "soft supersymmetry breaking" terms, i.e. terms which split the masses of the particles and their superpartners, but which do not remove the supersymmetric protection against large radiative corrections to scalar masses.

Nature	Term	order of magnitude	origin
	$\lambda\lambda$	$rac{F}{M}\sim m_w$	$\frac{1}{M}[XW^{\alpha}W_{\alpha}]_{F}$
soft	$\phi^*\phi$	$rac{ F ^2}{M^2} \sim m_w^2$	$\tfrac{1}{M^2}[XX^*\Phi\Phi^*]_D$
	ϕ^2	$rac{\mu F}{M} \sim m_w$	$\frac{\mu}{M}[X\Phi^2]_F$
	ϕ^3	$rac{F}{M}\sim m_w$	$\frac{1}{M}[X\Phi^3]_F$

Are there any more possible soft terms? [Ref: S. Martin, Phys. Rev D., 2000; Possible non-holomorphic soft SUSY breaking terms]

Possible origin & type of "soft" terms

The MSSM Lagrangian is usually claimed to include all possible "soft supersymmetry breaking" terms, i.e. terms which split the masses of the particles and their superpartners, but which do not remove the supersymmetric protection against large radiative corrections to scalar masses.

Nature	Term	order of magnitude	origin
	$\lambda\lambda$	$rac{F}{M} \sim m_w$	$\frac{1}{M}[XW^{\alpha}W_{\alpha}]_{F}$
soft	$\phi^*\phi$	$rac{ F ^2}{M^2} \sim m_w^2$	$\tfrac{1}{M^2}[XX^*\Phi\Phi^*]_D$
	ϕ^2	$rac{\mu {\sf F}}{M} \sim m_w$	$\frac{\mu}{M}[X\Phi^2]_F$
	ϕ^3	$rac{F}{M}\sim m_w$	$\frac{1}{M}[X\Phi^3]_F$

Are there any more possible soft terms? [Ref: S. Martin, Phys. Rev D., 2000; Possible non-holomorphic soft SUSY breaking terms]

Nature	Term	order of magnitude	origin	
	$\phi^2 \phi^*$	$\frac{ F ^2}{M^3} \sim \frac{m_w^2}{M}$	$\frac{1}{M^3} [XX^* \Phi^2 \Phi^*]_D$	
"may be" soft	$\psi\psi$	$rac{ F ^2}{M^3} \sim rac{m_w^2}{M}$	$\frac{1}{M^3} [XX^* D^\alpha \Phi D_\alpha \Phi]_D$	
	$\lambda\psi$	$rac{ F ^2}{M^3} \sim rac{m_w^2}{M}$	$\frac{1}{M^3} [XX^* D^\alpha \Phi W_\alpha]_D$	
			▲□▶ ▲圖▶ ▲圖▶ ★ 團	▶ 문(권)
erice (IACS Kolkata))	Phenomenology of \tilde{h} in NHSSM	December 12	2018

Taking these terms in account,

$$\begin{aligned} &-\mathcal{L}'_{soft}^{\phi^{2}\phi^{*}} \supset \tilde{q} \cdot h_{d}^{*} \mathsf{A}'_{u} \tilde{u}^{*} + \tilde{q} \cdot h_{u}^{*} \mathsf{A}'_{d} \tilde{d}^{*} + \tilde{\ell} \cdot h_{u}^{*} \mathsf{A}'_{e} \tilde{e}^{*} + h.c \\ &-\mathcal{L}'_{soft}^{\psi\psi} = \mu' \tilde{h}_{u} \cdot \tilde{h}_{d} \end{aligned}$$

But these interactions are not considered generally....

ELE NOR

Taking these terms in account,

$$\begin{aligned} &-\mathcal{L}'_{soft}^{\phi^{2}\phi^{*}} \supset \tilde{q} \cdot h_{d}^{*} \mathsf{A}'_{u} \tilde{u}^{*} + \tilde{q} \cdot h_{u}^{*} \mathsf{A}'_{d} \tilde{d}^{*} + \tilde{\ell} \cdot h_{u}^{*} \mathsf{A}'_{e} \tilde{\varepsilon}^{*} + h.c \\ &-\mathcal{L}'_{soft}^{\psi\psi} = \mu' \tilde{h}_{u} \cdot \tilde{h}_{d} \end{aligned}$$

But these interactions are not considered generally.... Let us see why?

High Scale Suppression:

In a hidden sector based SUSY breaking, Non-Holomorphic trilinear terms and bare higgsino mass term go as $\sim \frac{m_W^2}{M}$. M is a high scale, can be as large as Planck Scale.

Taking these terms in account,

$$\begin{aligned} &-\mathcal{L}'_{soft}^{\phi^{2}\phi^{*}} \supset \tilde{q} \cdot h_{d}^{*} \mathsf{A}'_{u} \tilde{u}^{*} + \tilde{q} \cdot h_{u}^{*} \mathsf{A}'_{d} \tilde{d}^{*} + \tilde{\ell} \cdot h_{u}^{*} \mathsf{A}'_{e} \tilde{\varepsilon}^{*} + h.c \\ &-\mathcal{L}'_{soft}^{\psi\psi} = \mu' \tilde{h}_{u} \cdot \tilde{h}_{d} \end{aligned}$$

But these interactions are not considered generally.... Let us see why?

High Scale Suppression:

In a hidden sector based SUSY breaking, Non-Holomorphic trilinear terms and bare higgsino mass term go as $\sim \frac{m_W^2}{M}$. M is a high scale, can be as large as Planck Scale.

Reappearance of divergences:

If any of the chiral supermultiplets are singlets under the entire gauge group, these terms may lead to large radiative corrections.

$$\sim rac{m_X^2}{m_s^2} ln(rac{m_X^2}{m_s^2})$$

 m_s : mass of the singlet field, m_X : mass of some heavy field.

If $m_s \ll m_X$, then the correction becomes very large. However if $m_s \sim m_X$, then there is no problem. [Hetherington, 2001]

Taking these terms in account,

$$\begin{aligned} &-\mathcal{L}'_{soft}^{\phi^{2}\phi^{*}} \supset \tilde{q} \cdot h_{d}^{*} \mathbf{A}'_{\mathbf{u}} \tilde{u}^{*} + \tilde{q} \cdot h_{u}^{*} \mathbf{A}'_{\mathbf{d}} \tilde{d}^{*} + \tilde{\ell} \cdot h_{u}^{*} \mathbf{A}'_{\mathbf{e}} \tilde{\varepsilon}^{*} + h.c \\ &-\mathcal{L}'_{soft}^{\psi\psi} = \mu' \tilde{h}_{u} \cdot \tilde{h_{d}} \end{aligned}$$

But these interactions are not considered generally.... Let us see why?

High Scale Suppression:

In a hidden sector based SUSY breaking, Non-Holomorphic trilinear terms and bare higgsino mass term go as $\sim \frac{m_W^2}{M}$. M is a high scale, can be as large as Planck Scale.

Reappearance of divergences:

If any of the chiral supermultiplets are singlets under the entire gauge group, these terms may lead to large radiative corrections.

$$\sim rac{m_X^2}{m_s^2} ln(rac{m_X^2}{m_s^2})$$

 m_s : mass of the singlet field, m_X : mass of some heavy field.

If $m_s \ll m_X$, then the correction becomes very large. However if $m_s \sim m_X$, then there is no problem. [Hetherington, 2001]

MSSM contains no singlet under the entire gauge group, so we can always include \mathcal{L}^{NH} & $\mathcal{L}^{\psi\psi}$ with the usual soft terms.

Early analyses : Hall and Randall PRL 1990, Jack and Jones PRD 2000; PLB 2004: General analyses with NH terms involving RG evolutions.

ELE SOC

b 4 = b

Early analyses : Hall and Randall PRL 1990, Jack and Jones PRD 2000; PLB 2004: General analyses with NH terms involving RG evolutions.

• For **Constrained MSSM**, the suppression is of the order of $M_{GUT} = 10^{16} \text{ GeV}.$ So, $\phi^2 \phi^*$ and $\psi \psi$ soft terms are suppressed in supergravity scenario.

[Graham Ross, K. Schimdt-Hoberg, F. Staub: Phys.Lett. B759 (2016) & JHEP 1703 (2017) 021]

Early analyses : Hall and Randall PRL 1990, Jack and Jones PRD 2000; PLB 2004: General analyses with NH terms involving RG evolutions.

• For **Constrained MSSM**, the suppression is of the order of $M_{GUT} = 10^{16} \text{ GeV}.$ So, $\phi^2 \phi^*$ and $\psi \psi$ soft terms are suppressed in supergravity scenario.

[Graham Ross, K. Schimdt-Hoberg, F. Staub: Phys.Lett. B759 (2016) & JHEP 1703 (2017) 021]

 If the SUSY breaking effect is communicated at a lower energy, then such suppression weakens. This is the case with Gauge Mediated Supersymmetry Breaking [U Chattopadhyay, D. Das, SM : JHEP01(2018)158].

Early analyses : Hall and Randall PRL 1990, Jack and Jones PRD 2000; PLB 2004: General analyses with NH terms involving RG evolutions.

• For **Constrained MSSM**, the suppression is of the order of $M_{GUT} = 10^{16} \text{ GeV}.$

So, $\phi^2 \phi^*$ and $\psi \psi$ soft terms are suppressed in supergravity scenario. [Graham Ross, K. Schimdt-Hoberg, F. Staub: Phys.Lett. B759 (2016) & JHEP 1703 (2017) 021]

- If the SUSY breaking effect is communicated at a lower energy, then such suppression weakens. This is the case with Gauge Mediated Supersymmetry Breaking [U Chattopadhyay, D. Das, SM : JHEP01(2018)158].
- One can also work in entirely EW scale input parameters, in an unbiased approach.
 [UC, A Dey : JHEP 1610 (2016) 027 & UC, AD, SM, AKS : JHEP10(2018)202]
- Some studies have been done with NH terms in electroweak scale, but otherwise mass spectra was generated under minimal supergravity (mSUGRA). [Solmaz et. al. PRD 2005, PLB 2008, PRD 2015.]

Structures of Mass Matrices: Scalars & Electroweakinos

squarks =
$$M_{\tilde{u}}^2 = \begin{pmatrix} m_{\tilde{Q}_L}^2 + (\frac{1}{2} - \frac{2}{3}\sin^2\theta_W)M_Z^2\cos 2\beta + m_u^2 & -m_u(A_u - (\mu + A'_u)\cot \beta) \\ -(A_u - (\mu + A'_u)\cot \beta)m_u & m_{\tilde{u}}^2 + \frac{2}{3}\sin^2\theta_W M_Z^2\cos 2\beta + m_u^2 \end{pmatrix}$$

Similarly for down-type squark and sleptons we have in off-diagonal, $-m_d(A_d - (\mu + A'_d) \tan \beta)$ The Higgs mass up to one loop :

$$m_{h,top}^{2} = m_{Z}^{2} \cos^{2} 2\beta + \frac{3g_{2}^{2} \bar{m}_{t}^{4}}{8\pi^{2} M_{W}^{2}} \left[\ln \left(\frac{m_{\tilde{t}_{1}} m_{\tilde{t}_{2}}}{\bar{m}_{t}^{2}} \right) + \frac{\chi_{t}^{\prime 2}}{m_{\tilde{t}_{1}} m_{\tilde{t}_{2}}} \left(1 - \frac{\chi_{t}^{\prime 2}}{12m_{\tilde{t}_{1}} m_{\tilde{t}_{2}}} \right) \right].$$

Here, $X'_t = A_t - (\mu + A'_t) \cot \beta$. The Neutralino & Chargino mass matrices are,

$$M_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -M_Z \cos\beta \sin\theta_W & M_Z \sin\beta \sin\theta_W \\ 0 & M_2 & M_Z \cos\beta \cos\theta_W & -M_Z \sin\beta \cos\theta_W \\ -M_Z \cos\beta \sin\theta_W & M_Z \cos\beta \cos\theta_W & 0 & -(\mu + \mu') \\ M_Z \sin\beta \sin\theta_W & -M_Z \sin\beta \cos\theta_W & -(\mu + \mu') & 0 \end{pmatrix}$$

$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & (\mu + \mu') \end{pmatrix}$$

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Overview

Standard Model

2 Supersymmetry

- Generalized Soft Breaking Sector
- Non Analytic Soft Interactions
- Mass Matrices in NHSSM

Sparticle Phenomenology

- Corrections to bottom Yukawa coupling
- Effect of NH terms in parton level yields
- Impact on Higgs mass and top squark mass
- Status of low-energy Observables

Non-Holomorphic GMSB

- Effect of SUSY Breaking Scale
- NLSP Decays

5 Wrap-Up

3 × + 3 × 3 = 1 = 000

Non-trivial contributions through y_b

 \checkmark y_b has the usual dependence on tan β as in the MSSM case.

In NHSSM, y_b becomes a function of A'_b quite similar to tan β reliance. Neutralino loop and gluino loop has A'_b dependence.

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

Non-trivial contributions through y_b

Variation of y_b as a function of A'_b (NHSSM with $A_b = 0$; bold lines) and A_b (MSSM; broken lines) for tan $\beta = 10$ (in blue) and for tan $\beta = 40$ (in red). Some of the fixed input parameters are $\mu = 200$ GeV, $\mu' = 0$, $M_1 = 500$ GeV and $M_2 = 1.1$ TeV.

= 200

Non-trivial contributions through y_b

Variation of y_b as a function of A'_b (NHSSM with $A_b = 0$; bold lines) and A_b (MSSM; broken lines) for tan $\beta = 10$ (in blue) and for tan $\beta = 40$ (in red). Some of the fixed input parameters are $\mu = 200$ GeV, $\mu' = 0$, $M_1 = 500$ GeV and $M_2 = 1.1$ TeV.

$$\tilde{b}_{j}-b-\tilde{\chi}_{j}^{0} \text{ coupling:}$$

$$C_{L} = -\frac{i}{6}(-3\sqrt{2}g_{2}N_{j2}^{*}Z_{i3}^{d} + 6N_{j3}y_{b}Z_{i6}^{d} + \sqrt{2}g_{1}N_{j1}Z_{i3}^{d}$$

$$C_{R} = -\frac{i}{3}(3y_{b}Z_{i3}^{d}N_{j3} + \sqrt{2}g_{1}Z_{i6}^{d}N_{j1})$$

$$\tilde{b}_i$$
-t- $\tilde{\chi}_j^-$ coupling:

$$C_L = i(y_t Z_{i3}^d V_{j2}),$$

$$C_R = i(-g_2 U_{j1}^* Z_{i3}^d + U_{j2}^* y_b Z_{i6}^d)$$

 N_{ij}, U_{ij}, V_{ij} & Z_{ij} 's are diagonalizing mass matrices of neutralino, charginos and sbottoms respectively.

Features of the couplings:

- ✓ Strength of sbottom state to a higgsino-like neutralino is always $\propto y_b$.
- ✓ For top quark and a higgsino-like chargino, it depends on the chiral admixture it possesses. Such a coupling for a <u>left-like</u> sbottom $\propto y_t$ while that for a right-like sbottom $\propto y_b$.
- ✓ A left-like sbottom dominantly decays to $t\tilde{\chi}_1^- \implies$ small branching fraction for the $b\tilde{\chi}_{1,2}^0$ final state when $\tilde{\chi}_{1,2}^0$ are both higgsino-dominated and light.
- ★ NHSSM ⇒ the presence of a non-vanishing A'_b alters the composition of the sbottom states in a nontrivial way.
- $\pmb{\times}$ Another competing decay mode of $\tilde{b}_1: \, \tilde{b}_1 \to \tilde{t}_1 W^-$ is taken to be kinematically forbidden.

i.e. $m_{\tilde{b}_1} < m_{\tilde{t}_1} + m_{W^-}$.

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

Behaviour of Branching Fractions :

 $(100 < \mu < 350 \text{ GeV}, M_1 = 500 \text{ GeV}, M_2 = 1000 \text{ GeV}.)$ Branching fractions of \tilde{b}_1 as a function of A'_b follow the same profile of vertex strengths.

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 15 / 46

Masses, Mixings and Mass-splittings :

Higgsino Like LSP

$$(\mu = 200 \text{ GeV}, M_1 = 500 \text{ GeV}, M_2 = 1000 \text{ GeV}.)$$

Common Backdrop : The variation of $m_{\tilde{b}_1}$ as a function of A'_b (A_b) in the NHSSM (MSSM). Flatter lines at the top of these plots illustrate the MSSM. $m_{\tilde{b}_L} = m_{\tilde{b}_R} = 1.2$ TeV. $\cos \theta_{\tilde{b}}$ ranges between $\frac{1}{\sqrt{2}} \approx 0.7$ (maximal mixing) and 1 signifying $\tilde{b}_{\tilde{b}}$ to be \tilde{b}_L dominated. $E_{\tilde{b}_R} = 0.0$ (Maximal Mukherjee (IACS, Kolkata) Phenomenology of \tilde{b} in NHSSM December 12, 2018 16 / 46

Masses, Mixings and Mass-splittings :

Gaugino Like LSP

 $(\mu = 900 \text{ GeV}, M_1 = 500 \text{ GeV}, M_2 = 1000 \text{ GeV}.)$

The specific choice of ' μ ' also ensures that the decay mode $\tilde{b}_1 \to t \tilde{\chi}_1^$ could be opened or closed depending upon varying $m_{\tilde{b}_1}$ as a function of A'_{b} .

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 17 / 46

Masses, mixings and Mass-splittings :

✓ Over the range of variation of A'_b , $m_{\tilde{b}_1}$ could vary by ≤ 160 GeV.

Samadrita Mukherjee (IACS, Kolkata)

< (T) > <

↓ ∃ | = \ < ∩ < ∩</p>

Masses, mixings and Mass-splittings :

- ✓ Over the range of variation of A'_b , $m_{\tilde{b}_1}$ could vary by ≤ 160 GeV.
- ✓ It is a significant variation : Corresponding number in the MSSM as a $f(A_b)$, reaches at most 20 GeV.

Masses, mixings and Mass-splittings :

- ✓ Over the range of variation of A_b' , $m_{\tilde{b}_1}$ could vary by ≤ 160 GeV.
- ✓ It is a significant variation : Corresponding number in the MSSM as a $f(A_b)$, reaches at most 20 GeV.
- ★ It may appear that a comparable range of variation in $m_{\tilde{b}_1}$, in the MSSM, could be found just by allowing ' μ ' to vary over a larger range thereby compensating for the missing A'_b . However, this is not correct.

$$egin{aligned} M_{ ilde{d}12}^2 &= -m_b(A_b-(\mu+A_b') aneta)\ &= -m_b(A_b-(\mu_{eff}-\mu'+A_b') aneta)\ &= -m_b(A_b-(\mu_{eff}-(\mu'-A_b')) aneta)) \end{aligned}$$

✓ The major effect, in the NHSSM, does not come directly from A'_b , per se, in the off-diagonal element of the mass-squared matrix. Rather, a significant variation of y_b with A'_b , induces such a big change in $m_{\tilde{b}_1}$.

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\underbrace{ \frac{\text{Signal Strengths}}{\text{pairs at the LHC and each decaying to a bottom quark and an LSP.} }_{\text{pairs at the LHC and each decaying to a bottom quark and an LSP.}$

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 19 / 46

Effect of μ' :

Gives rise to a relatively heavier higgsino-like neutralino (\sim 1 TeV) LSP without requiring ' μ ' to be large.

 $\begin{aligned} [\mu = 200 \text{ GeV}, \ A_b = 0 \text{ with } \tan \beta = 10 \text{ (left) and } 40 \text{ (right)}]. \\ (\sigma \times \mathrm{BR}^2) \text{ as a function of } \mu' \text{ and } A'_b. \end{aligned}$

The blank vertical bands in the middle are roughly excluded by searches of the lighter chargino at LEP , where the second secon

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 20 / 46

$$\boxed{\alpha_{\tilde{b}_1} = \frac{(\sigma_{\tilde{b}_1\tilde{b}_1} \times \mathrm{BR}[\tilde{b}_1 \to b\tilde{\chi}_1^0]^2)_{NHSSM}}{(\sigma_{\tilde{b}_1\tilde{b}_1} \times \mathrm{BR}[\tilde{b}_1 \to b\tilde{\chi}_1^0]^2)_{MSSM}}}$$

- Up to a four-fold increased rates could be possible over the expected MSSM rates in the final state under consideration.
- The largest deviation is expected for $-A'_b$ for which y_b is much enhanced.
- Variations of α closely mimic that of $\sigma imes BR^2$ figure
- Finds similar explanations in terms of how the effective interaction strengths vary.

Samadrita Mukherjee (IACS, Kolkata)

Role of \tilde{b}_2 production:

- We consider $m_{\tilde{b}_L} \& m_{\tilde{b}_R}$ to be degenerate (= 1200 GeV).
- To check what role could \tilde{b}_2 possibly play in the analysis.
- For the ranges of various parameters (like A'_b and $\tan \beta$), $m_{\tilde{b}_1}$ and $m_{\tilde{b}_2}$ may not be too different.
- The mass-split is largely independent of tan β.
- For extreme value of $|A'_b|$ (=1200 GeV) in the present analysis, the split between $m_{\tilde{b}_1}$ and $m_{\tilde{b}_2}$ cannot be more than around 170 GeV.

Contours of constant mass-split $(\Delta m_{\tilde{b}_1-\tilde{b}_2})$ between \tilde{b}_1 and \tilde{b}_2 in the A'_b -tan β plane.

ELE SOC

Comparison between BR's of $\tilde{b}_{1,2}$:

The largest difference - around vanishing A'_b where $BR[\tilde{b}_2 \rightarrow b\chi_1^0]$ peaks while $BR[\tilde{b}_2 \rightarrow b\chi_1^0]$ touches the minimum. The phenomenon could be understood in terms of the sharply increasing dominance of \tilde{b}_R in \tilde{b}_2 as $|A'_b| \sim 0$. This suppresses $BR[\tilde{b}_2 \rightarrow t\chi_1^-]$ in favour of $BR[\tilde{b}_2 \rightarrow b\chi_1^0]$.

 $(100 < \mu < 350$ GeV, $M_1 = 500$ GeV, $M_2 = 1000$ GeV.)

The Total Relative Rate : α_{total}

$$\alpha_{\textit{total}} = \frac{((\sigma_{\tilde{b}_1\tilde{b}_1} \times \mathrm{BR}[\tilde{b}_1 \to b\tilde{\chi}_1^0]^2) + (\sigma_{\tilde{b}_2\tilde{b}_2} \times \mathrm{BR}[\tilde{b}_2 \to b\tilde{\chi}_1^0]^2))_{\textit{NHSSM}}}{((\sigma_{\tilde{b}_1\tilde{b}_1} \times \mathrm{BR}[\tilde{b}_1 \to b\tilde{\chi}_1^0]^2) + (\sigma_{\tilde{b}_2\tilde{b}_2} \times \mathrm{BR}[\tilde{b}_2 \to b\tilde{\chi}_1^0]^2))_{\textit{MSSM}}}$$

The plots reveal that up to a eight-fold (six-fold) increased rates could be possible for $\tan \beta = 10$ (40) over the expected MSSM rates in the final state under consideration.

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 24 / 46

how the rates would compare when the masses of the sbottoms vary:

 $\Rightarrow \alpha_{\text{total}}$ in the NHSSM and in the MSSM in the $m_{\tilde{b}_L} - m_{\tilde{b}_R}$ plane for two fixed values of A'_b and for tan $\beta = 40$. Contours of constant $m_{\tilde{b}_1} (m_{\tilde{b}_2})$ are overlaid with solid (dashed) lines along the right (left) edges of the plots.

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 25 / 46

Implication for stop searches:

Variations of the ratio of branching fractions for the decay $\tilde{t}_1 \rightarrow b\chi_1^+$ in the NHSSM and the MSSM in the $\tilde{t}_L - \tilde{t}_R$ plane for $A'_b = \pm 1$ and for fixed values of tan β (=40) and μ (=200 GeV).

Samadrita Mukherjee (IACS, Kolkata)

December 12, 2018 26 / 46

Impact on Higgs Sector:

Magenta points are of NHSSM and Cyan points are of MSSM.

- Off-diagonal term in stop sector : $A_t (\mu + A'_t) \cot eta$
- Correct Higgs mass obtained for reasonably smaller A_t for tan $\beta = 10$.
- Higgs mass affected marginally for $\tan \beta = 40$.
- $10 \le \mu \; [\text{GeV}] \le 500, \; -2 \le \mu' \; [\text{TeV}] \le 2, \; -3 \le A'_t \; [\text{TeV}] \le 3$

Figure courtesy : JHEP 1610(2016) 027 by UC, A. Dey

Imposing $Br(B \rightarrow X_s + \gamma)$ constraints after Higgs mass:

- Essentially unaltered scenario for $\tan \beta = 10$.
- for tan $\beta = 40$, $Br(B \rightarrow X_s + \gamma)$ constraints always take away large A_t zones of MSSM.
- A'_t recovers the discarded area via L-R mixing of top squarks in NHSSM.
- Br(B_s → μ⁺μ⁻) constraints are not so important once Br(B → X_s + γ) is considered.
 2.99 ≤ Br(B → X_s + γ) × 10⁴ ≤ 3.87 (2σ).

Figure courtesy : JHEP 1610(2016) 027 by UC, A. Dey

Results of $(g-2)_{\mu}$:

Long standing deviation (~ 3σ) from SM : $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = (29.3 \pm 8) \times 10^{-10}$. One loop contributions come from :

loops involving $(\tilde{\mu}, \tilde{\nu_{\mu}}, \tilde{\chi}^0, \tilde{\chi}^{\pm})$ are important in analyzing the $(g - 2)_{\mu}$ in MSSM.

- smuon left-right mixing in MSSM $-m_{\mu}(A_{\mu} - \mu \tan \beta)$
- ✓ smuon left-right mixing in NHSSM $-m_{\mu}(A_{\mu} - (\mu + A'_{\mu}) \tan \beta)$

- $\Delta a_{\mu}(\tilde{\mu}_L, \tilde{\mu}_R, \tilde{B}) \propto \tan \beta \frac{M_{1}\mu}{m_{\mu_L}^2 m_{\mu_R}^2}$ [Ref : 1303.4256 by Endo, Hamaguchi et al.]
- So, large tan β, μ and sizeable smuon left-right mixing can help in enhancing (g − 2)_μ.

ヘロト 不過 ト イヨト イヨト しきょうのの

$(g-2)_{\mu}$ in pMSSM :

Blue points are at 1σ , Green points are at 2σ , Brown points are at 3σ . Only very light smuon can satisfy the muon g - 2 constraint at 1σ for $\tan \beta = 10$. The upper limit of smuon mass is about 250 GeV for $\tan \beta = 40$.

$$A'_{\mu}=0\,\,{
m GeV}$$

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

 $(g-2)_{\mu}$ in NHSSM :

 $\begin{array}{l} \underline{A'_{\mu}=50~{\rm GeV}}\\ {\rm Upper~limit~of}~m_{\tilde{\mu}_1}~{\rm reaches~400~GeV}~{\rm at}~1\sigma~{\rm at~tan}~\beta=10\\ {\rm and}\\ 500~{\rm GeV}~{\rm at}~1\sigma~{\rm at~tan}~\beta=40. \end{array}$

Phenomenology of \tilde{b} in NHSSM

 $(g-2)_{\mu}$ in NHSSM :

 $\begin{array}{l} \underline{A'_{\mu}=300~{\rm GeV}} \\ {\rm Upper~limit~of}~m_{\tilde{\mu}_1}~{\rm reaches~700~GeV}~{\rm at}~1\sigma~{\rm at~tan}~\beta=10\\ {\rm and}\\ 800~{\rm GeV}~{\rm at}~1\sigma~{\rm at~tan}~\beta=40. \end{array}$

JIN NOR

A = A < = A</p>

Overview

2 Supersymmetry

- Generalized Soft Breaking Sector
- Non Analytic Soft Interactions
- Mass Matrices in NHSSM
- Sparticle Phenomenology
 - Corrections to bottom Yukawa coupling
 - Effect of NH terms in parton level yields
 - Impact on Higgs mass and top squark mass
 - Status of low-energy Observables

Non-Holomorphic GMSB Effect of SUSY Breaking Scale

NLSP Decays

Wrap-Up

⇒ ↓ ∃ ► ↓ ∃ ⊨ √ Q ∩

: Features of GMSB :

 SUSY breaking effects are communicated to observable sector via usual gauge interactions through Messengers.

Samadrita Mukherjee (IACS, Kolkata)

: Features of GMSB :

- SUSY breaking effects are communicated to observable sector via usual gauge interactions through Messengers.
- Interactions are flavor-blind.

: Features of GMSB :

- SUSY breaking effects are communicated to observable sector via usual gauge interactions through Messengers.
- Interactions are flavor-blind.

► $W_{mess} = \sum \lambda_i S \overline{\Phi}_i \Phi_i$, $i = 1...N_m$, The scalar and auxiliary components of the chiral superfield S will acquire VEVs, $S = \langle S \rangle + \theta \theta \langle F \rangle \rightarrow$ thereby creating a mass splitting between scalars and fermions of Φ_i in the Messenger sector. This breaking of SUSY is then communicated to the observable sector via loops.

ELE SOC

Features of GMSB: Continued...

- The gauginos and sfermions acquire their masses at one loop and two loop order respectively. The loops involve messenger scalar & fermions, gauginos & SM gauge bosons.
 - $$\begin{split} M_{\alpha} &= \frac{g_{\alpha}^2}{16\pi^2} \Lambda N_5 \, \left[1 + O(x^2) \right] \\ m_{\tilde{f}}^2 &= 2\Lambda^2 N_5 \sum_{\alpha} \left(\frac{g_{\alpha}^2}{16\pi^2} \right)^2 C_{\alpha} \, \left[1 + O(x^2) \right] \qquad \alpha = 1, 2, 3 \end{split}$$
- ► $x_i = |F/\lambda_i S^2|$ for each messenger coupling λ_i and $x_i < 1$ implied. $\Lambda = |\frac{\langle F \rangle}{\langle S \rangle}|$ sets the scale for soft SUSY breaking felt by the low-energy sector. The messenger mass scale $M_{mess} = |\lambda_i \langle S \rangle| \equiv \frac{\Lambda}{x_i}$.
- > The trilinear soft SUSY breaking couplings A terms tend to rise at two loop order. Hence, $A_0 = 0$ at messenger scale.
- For mGMSB the set of free parameters are: { Λ, M_{mess}, tan β, N₅, sgn(μ)}

Non-Holomorphic mGMSB (NHmGMSB)

The mGMSB scenario is augmented with Non-Holomorphic soft breaking terms and a higgsino mass term at messenger scale, i.e.

- $\tilde{q} \cdot h_d^* A'_u \tilde{u}^*, \ \tilde{q} \cdot h_u^* A'_d \tilde{d}^*, \ \tilde{\ell} \cdot h_u^* A'_e \tilde{e}^* \text{ and } \mu' \tilde{h}_u. \tilde{h}_d$
 - Like holomorphic trilinear ones, the NH trilinear couplings $A'_{t,b,\tau}$ also arise at two loop level. Hence, $A'_0 = 0$ at the messenger scale.
 - With an additional free parameter at M_{mess}, NHmGMSB can be realized with the following set of free parameters:
 { Λ, M_{mess}, tan β, N₅, sgn(μ), μ'}.
 - We are considering μ' from a phenomenological standpoint. μ' can take both positive and negative values.

Ranges of Scan and Constraints for NHGMSB:

We perform uniform random scan over the following set of free parameters: $\{\Lambda, M_{mess}, \mu'\}$ for two fixed values of tan β .

$$\begin{array}{l} 3.0\times10^5~{\rm GeV}\leqslant\Lambda\leqslant1.2\times10^6~{\rm GeV}\\ 2\times10^6~{\rm GeV}\leqslant M_{mess}\leqslant10^8~{\rm GeV}\\ N_5=1\\ \tan\beta=10~{\rm and}~40\\ A_0'=0\\ \mu>0\\ -4000~{\rm GeV}\leqslant\mu'\leqslant4000~{\rm GeV} \end{array}$$

Experimental bounds : 122 GeV $\leqslant m_h \leqslant$ 128 GeV, $m_{\tilde{\chi}^{\pm}} \geqslant$ 104 GeV,

 $2.99 \leqslant Br(B
ightarrow X_s + \gamma) imes 10^4 \leqslant 3.87 \ (2\sigma), \ 1.5 \leqslant Br(B_s
ightarrow \mu^+ \mu^-) imes 10^9 \leqslant 4.3 \ (2\sigma)$

Interplay between Higgs boson and top squark:

The variation of Higgs mass with stop mass is shown, when Λ , M_{mess} , μ' are scanned, while tan $\beta = 10$ & 40. The **blue** and **orange** coloured regions correspond to NHSSM and MSSM spectra respectively.

∧ dependence

Scatter plot of the lighter Stop mass with Λ for tan $\beta = 10 \& 40$. All the scalar mass parameters as well as gaugino mass parameters are proportional to Λ in this model. A'_t can be obtained at the EWSB scale. With RGE running we get, $-550 (-600) \text{ GeV} \leq A'_t \leq 550 (600) \text{ GeV}$ for tan $\beta = 10 (40)$. Color coding is same of the previous figure.

EL OQO

くほと くほと くほと

Λ dependence

Figures represent the dependence of Higgs mass with the SUSY breaking scale Λ . NH terms help to get a rise $\sim 0.7 - 1.0$ GeV in Higgs mass for a particular value of Λ over mGMSB spectrum for tan $\beta = 10$. For tan $\beta = 40$ we obtain a 0.5 GeV lift in Higgs Mass for any given Λ .

Parametric variation of $Br(B \rightarrow X_s + \gamma)$:

In SM : dominant contribution is from t-W loops. For MSSM : $t - H^{\pm}$ and $\tilde{t} - \tilde{\chi}^{\pm}$ loops contribute significantly.

Analytical dependence is like - $Br(B \to X_s + \gamma) \sim \mu A_t \tan \beta f(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, m_{\tilde{\chi}^{\pm}}^2)$. Up & down type higgsino mixing involves $\mu + \mu'$, stop left-right mixing $\to (A_t - (\mu + A'_t) \cot \beta)$.

Figure: $b \rightarrow s + \gamma$ loop relevant to this discussion

ELE NOR

Results of $(g-2)_{\mu}$:

Neutralino & chargino masses involve μ' and the effect is clearly seen. Lighter electroweakino mass $\downarrow \Rightarrow (g - 2)_{\mu} \uparrow$.

As, $A_0' = 0$ at messenger scale, A_μ' does not get a large value after RGE running.

On the contrary, in phenomenological study of NHSSM, A'_{μ} is a free parameter. So, it helps in the enhancement of Δa^{SUSY}_{μ} significantly. $(g-2)_{\mu}$ is within 1σ range for A'_{μ} as low as ~ 100 GeV.

ヘロト 不過 ト イヨト イヨト しきょうのの

Impact of NH terms on higgsino like NLSP Decays

• Gravitino is the lightest supersymmetric particle in GMSB.

The interaction Lagrangian of the gravitino with other sparticles and SM particles:

$$\mathcal{L}_{int} = -\frac{i}{\sqrt{2}M_{\rho}} [D_{\mu}\phi^{*i}\bar{\psi}_{\nu}\gamma^{\mu}\gamma^{\nu}\chi^{i}_{L} - D_{\mu}\phi^{i}\bar{\chi}^{i}_{L}\gamma^{\nu}\gamma^{\mu}\psi_{\nu}] - \frac{i}{8M_{\rho}}\bar{\psi}_{\mu}[\gamma^{\rho},\gamma^{\sigma}]\gamma^{\mu}\lambda^{(\alpha)a}F^{(\alpha)a}_{\rho\sigma}$$

where,

$$\begin{split} D_{\mu}\phi^{i} &= \partial_{\mu}\phi^{i} + igA^{a}_{\mu}T_{aij}\phi^{j} \\ F^{a}_{\mu\nu} &= \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} - gf^{abc}A^{b}_{\mu}A^{c}_{\nu} \end{split}$$

Some decay widths of NLSP:

$$\begin{split} &\Gamma(\widetilde{\chi}^0_1 \to \widetilde{G} \, Z) \simeq \frac{m_{\widetilde{\chi}^0_1}^5}{96\pi \, m_{\widetilde{G}}^2 M_{\rho l}^2} \left| -N_{13} \cos\beta + N_{14} \sin\beta \right|^2 \left(1 - \frac{m_Z^2}{m_{\widetilde{\chi}^0_1}^2} \right)^4 \\ &\Gamma(\widetilde{\chi}^0_1 \to \widetilde{G} \, h) \simeq \frac{m_{\widetilde{\chi}^0_1}^5}{96\pi \, m_{\widetilde{G}}^2 M_{\rho l}^2} \left| -N_{13} \sin\alpha + N_{14} \cos\alpha \right|^2 \left(1 - \frac{m_h^2}{m_{\widetilde{\chi}^0_1}^2} \right)^4 \end{split}$$

where the gravitino mass is given by, $m_{\tilde{G}} = \frac{\Lambda M_{mess}}{\sqrt{3}M_{Pl}} = \frac{F}{\sqrt{3}M_{ol}}$

Samadrita Mukherjee (IACS, Kolkata)

Lifetime of NLSP :

 $\begin{array}{l} 10^{-22} \leq \Gamma_{tot} \; [\text{GeV}] \leq 10^{-12} \implies 10^{-13} \leq \frac{1}{\Gamma_{tot}} \; [\text{sec}] \leq 10^{-3} \\ \Gamma_{tot} = \Gamma(\tilde{\chi}_1^0 \to \widetilde{G} + Z) + \Gamma(\tilde{\chi}_1^0 \to \widetilde{G} + h). \end{array}$

(a) Scatter plot of decay width Γ^{tot} vs. χ_1^0 for a higgsino dominated NLSP over the scanned parameter region. The higgsino fraction is shown in graded color. (b) Similar scatter plot in the plane of Γ^{tot} vs. *F* where the NLSP mass is shown with a reference color bar on the right.

Overview

2 Supersymmetry

- Generalized Soft Breaking Sector
- Non Analytic Soft Interactions
- Mass Matrices in NHSSM
- Sparticle Phenomenology
 - Corrections to bottom Yukawa coupling
 - Effect of NH terms in parton level yields
 - Impact on Higgs mass and top squark mass
 - Status of low-energy Observables
- Non-Holomorphic GMSB
 - Effect of SUSY Breaking Scale
 - NLSP Decays

3 × 4 3 × 3 1 × 9 0 0

Discussions :-

- In the present work we mostly adopt a scenario in which the SUSY conserving parameter ' μ ' has a relatively small value (\leq 350 GeV) which help keep the scenario 'natural'.
- The two important classes of non-holomorphic soft terms (μ' and A'_i) appear in the NHSSM Lagrangian
- To extract information about them, one should undertake a precision study of the interactions of the sfermions with the electroweakinos.
- ✓ An enhanced y_b , which is rather characteristic of the NHSSM scenario for large negative A'_b and large tan β , could boost the yield in the $2b + \notin_T$ final state beyond its MSSM expectation, for similar masses of the lighter sbottom and the LSP.
- ✓ In general mGMSB models require large squark masses to radiatively generate Higgs mass from tree level value. Here NH scalar trilinear couplings (mainly A'_t) may relax the requirement.
- ✓ Unlike mGMSB, where NLSP is mostly Bino like, here bilinear higgsino term greatly helps in achieving higgsino like NLSP throughout the canvas.
- ✓ A suitably designed multichannel study could turn out to be more efficient in search for a powerful discriminator in the present exercise.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Discussions :-

- In the present work we mostly adopt a scenario in which the SUSY conserving parameter ' μ ' has a relatively small value (\leq 350 GeV) which help keep the scenario 'natural'.
- The two important classes of non-holomorphic soft terms (μ' and A'_i) appear in the NHSSM Lagrangian
- To extract information about them, one should undertake a precision study of the interactions of the sfermions with the electroweakinos.
- ✓ An enhanced y_b , which is rather characteristic of the NHSSM scenario for large negative A'_b and large tan β , could boost the yield in the $2b + \not \in_T$ final state beyond its MSSM expectation, for similar masses of the lighter sbottom and the LSP.
- ✓ In general mGMSB models require large squark masses to radiatively generate Higgs mass from tree level value. Here NH scalar trilinear couplings (mainly A'_t) may relax the requirement.
- ✓ Unlike mGMSB, where NLSP is mostly Bino like, here bilinear higgsino term greatly helps in achieving higgsino like NLSP throughout the canvas.
- ✓ A suitably designed multichannel study could turn out to be more efficient in search for a powerful discriminator in the present exercise.

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 46 / 46

3 × 4 3 × 3 1 × 0 0 0

Back Up Slides.....

三日 のへで

 $\exists \rightarrow b$

・ロト ・回 ・ ・ 回 ・ ・

Early analyses : Hall and Randall PRL 1990, Jack and Jones PRD 2000; PLB 2004: General analyses with NH terms involving RG evolutions.

• For Constrained MSSM, the suppression is of the order of $M_{GUT} = 10^{16} \text{ GeV}.$

So, $\phi^2 \phi^*$ and $\psi \psi$ soft terms are suppressed in supergravity scenario. [Graham Ross, K. Schimdt-Hoberg, F. Staub: Phys.Lett. B759 (2016) & JHEP 1703 (2017) 021]

✓ If the SUSY breaking effect is communicated at a lower energy, then such suppression weakens.

This is the case with Gauge Mediated Supersymmetry Breaking.

One can also work in entirely EW scale input parameters, in an unbiased approach.
 [U Chattopadhyay, Abhishek Dey : JHEP 1610 (2016) 027]

• Some studies have been done with NH terms in electroweak scale, but otherwise mass spectra was generated under minimal supergravity (mSUGRA). [Solmaz et. al. PRD 2005, PLB 2008, PRD 2015.]

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ◆ ● ●

A separate higgsino mass term !!

• MSSM Superpotential already contains $\mu H_u \cdot H_d$. This term gives masses to both Higgs and higgsinos.

Then the presence of $\mu' \tilde{h_u} \cdot \tilde{h_d}$ is questionable. There exists a reparametrization invariance in \mathcal{L} between μ' and other soft terms: $\mathcal{L} \supset (\mu + \mu')\tilde{h_1}\tilde{h_2} + (\mu^2 + m_{h_1}^2)|h_1|^2 + (\mu^2 + m_{h_2}^2)|h_2|^2$

$$\begin{split} \mu &\rightarrow \mu + \delta \\ \mu' &\rightarrow \mu' - \delta \\ m_{h_{1/2}}^2 &\rightarrow m_{h_{1/2}}^2 - 2\mu\delta + \delta^2 \end{split}$$

A reparametrization would however involve ad-hoc correlations between unrelated parameters. [Jack and Jones 1999, Hetherington 2001 etc.]

✓ Higgs scalar potential depends on μ but is independent of μ' . So, the bilinear higgsino mass term is important in light of fine tuning. This term sequesters fine-tuning $(\Delta_{\mu} = \frac{\mu^2}{M_z^2})$ from higgsino mass term $(\mu + \mu')$.

In particular, there may be scenarios where definite SUSY breaking mechanisms generate bilinear higgsino mass terms whereas it may keep the scalar sector sequestered. [Graham G. Ross et. al. 2016, 2017, Antoniadis et. al. 2008, Perez et. al. 2008 etc].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへの

Effect of μ' :

Zoomed-in on the higgsino-like LSP region \Leftrightarrow altering nature of the yield and its extent across the region.

- This can be traced back to similar profile in $C_L^2 + C_R^2$.
- 5 to 7 fold variation in the yield is possible over the indicated range.
- The blank vertical bands in the middle are roughly excluded by searches of the lighter chargino at LEP.

Samadrita Mukherjee (IACS, Kolkata)

Effect of μ' in $C_L^2 + C_R^2$

Zoomed-in on the higgsino-like LSP region \Leftrightarrow altering nature of the yield and its extent across the region.

Again the blank vertical bands in the middle are roughly excluded by searches of the lighter chargino at LEP.

Samadrita Mukherjee (IACS, Kolkata)

Phenomenology of \tilde{b} in NHSSM

December 12, 2018 5 / 0

RGE equations for NH trilinear coupling:

$$\beta_{T'_{u}}^{(1)} = +3T'_{u}Y_{d}^{\dagger}Y_{d} + T'_{u}Y_{u}^{\dagger}Y_{u} + 2Y_{u}Y_{d}^{\dagger}T'_{d} - 4\mu'Y_{u}Y_{d}^{\dagger}Y_{d} + 2Y_{u}Y_{u}^{\dagger}T'_{u} - \frac{6}{5}Y_{u}\Big(\Big(5g_{2}^{2} + g_{1}^{2}\Big)\mu' - 5\mathrm{Tr}\Big(T'_{u}Y_{u}^{\dagger}\Big)\Big) + T'_{u}\Big(3\mathrm{Tr}\Big(Y_{d}Y_{d}^{\dagger}\Big) - \frac{4}{15}\Big(20g_{3}^{2} + g_{1}^{2}\Big) + \mathrm{Tr}\Big(Y_{e}Y_{e}^{\dagger}\Big)\Big)$$
(1)

$$\beta_{T'_{u}}^{(2)} = 0$$

$$\beta_{T'_{d}}^{(1)} = +T'_{d}Y_{d}^{\dagger}Y_{d} + 3T'_{d}Y_{u}^{\dagger}Y_{u} + 2Y_{d}Y_{d}^{\dagger}T'_{d} + 2Y_{d}Y_{u}^{\dagger}T'_{u} - 4\mu'Y_{d}Y_{u}^{\dagger}Y_{u}$$

$$+Y_{d}\left(2\text{Tr}\left(T'_{e}Y_{e}^{\dagger}\right) + 6\text{Tr}\left(T'_{d}Y_{d}^{\dagger}\right) - \frac{6}{5}\left(5g_{2}^{2} + g_{1}^{2}\right)\mu'\right)$$

$$+ \frac{1}{15}T'_{d}\left(2g_{1}^{2} + 45\text{Tr}\left(Y_{u}Y_{u}^{\dagger}\right) - 80g_{3}^{2}\right)$$

$$(3)$$

$$\beta_{T'd}^{(2)} = 0 \tag{4}$$

$$\beta_{T'_{e}}^{(1)} = +T'_{e}Y_{e}^{\dagger}Y_{e} + 2Y_{e}Y_{e}^{\dagger}T'_{e} + Y_{e}\left(2\mathrm{Tr}\left(T'_{e}Y_{e}^{\dagger}\right) + 6\mathrm{Tr}\left(T'_{d}Y_{d}^{\dagger}\right) - \frac{6}{5}\left(5g_{2}^{2} + g_{1}^{2}\right)\mu'\right) + T'_{e}\left(3\mathrm{Tr}\left(Y_{u}Y_{u}^{\dagger}\right) - \frac{6}{5}g_{1}^{2}\right) \beta_{T'_{e}}^{(2)} = 0$$
(5)

(日) (周) (日) (日) (日) (日) (000)

RGE equation for Bilinear higgsino term:

$$\beta_{\mu'}^{(1)} = 3\mu' \operatorname{Tr} \left(Y_d Y_d^{\dagger} \right) - \frac{3}{5}\mu' \left(5g_2^2 - 5\operatorname{Tr} \left(Y_u Y_u^{\dagger} \right) + g_1^2 \right) + \mu' \operatorname{Tr} \left(Y_e Y_e^{\dagger} \right)$$
(6)
$$\beta_{\mu'}^{(2)} = \frac{1}{50}\mu' \left(207g_1^4 + 90g_1^2g_2^2 + 375g_2^4 - 20\left(-40g_3^2 + g_1^2 \right) \operatorname{Tr} \left(Y_d Y_d^{\dagger} \right)$$
$$+ 60g_1^2 \operatorname{Tr} \left(Y_e Y_e^{\dagger} \right) + 40g_1^2 \operatorname{Tr} \left(Y_u Y_u^{\dagger} \right)$$
$$+ 800g_3^2 \operatorname{Tr} \left(Y_u Y_u^{\dagger} \right) - 450 \operatorname{Tr} \left(Y_d Y_d^{\dagger} Y_d Y_d^{\dagger} \right) - 300 \operatorname{Tr} \left(Y_d Y_u^{\dagger} Y_u Y_d^{\dagger} \right)$$
$$- 150 \operatorname{Tr} \left(Y_e Y_e^{\dagger} Y_e Y_e^{\dagger} \right) - 450 \operatorname{Tr} \left(Y_u Y_u^{\dagger} Y_u Y_u^{\dagger} \right) \right)$$
(7)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □