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Supergravity, R-invariance and Fayet-lliopoulos terms

@ Rigid supersymmetry can be broken spontaneously using a U(1)
vector multiplet with a Fayet-lliopoulos (FI) term.
P. Fayet & J. lliopoulos (1974)

@ Locally supersymmetric extension of the Fl term is achieved by
gauging R-symmetry.
D. Freedman (1977)
e "...In order for a U(1) gauge theory with a Fl term to be consistently
coupled to supergravity, preserving gauge invariance, superpotential
must be R invariant. A supersymmetric cosmological term and
therefore an explicit mass-like term for the gravitino is forbidden by

gauge invariance.”
R. Barbieri, S. Ferrara, D. Nanopoulos & K. Stelle (1982)



FI terms in supergravity without gauged R-symmetry

Generalised Fayet-lliopoulos terms in supergravity, which do not require
gauged R-symmetry, were proposed in:
° N. Cribiori, F. Farakos, M. Tournoy & A. Van Proeyen
(22 December, 2017) [arXiv:1712.08601]
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T conformal compensator of any off-shell supergravity.

@ arXiv:1801.04794 was a natural extension of
SMK, I. McArthur & G. Tartaglino-Mazzucchelli [arXiv:1702.02423].

@ It is possible that Van Proeyen was looking for such a generalisation
ever since his 1983 work with Ferrara, Girardello & Kugo.



Off-shell formulations for supergravity: a review



Weyl-invariant formulation for Einstein's gravity

Einstein-Hilbert action with a cosmological term

1
Sen = = d4xeR—/\/d4xe
2k2
Weyl-invariant reformulation

S. Deser (1970)
B. Zumino (1970)

_1 4 a 1 2 4
S—E/dxe(v PVap+ Rp )\<p),

where ¢ is a nowhere vanishing conformal compensator.
Weyl transformations

0V,

= oV,+ (VI’J)M[,a , dp=o0p,
1 1
V, = eamam + Ewabchc 5 [Vayvb] = 5 adeMcd

Weyl invariance is part of the gauge freedom of conformal gravity.
In the case of Weyl-invariant formulation for Einstein's gravity, imposing
Weyl gauge ¢ = % = const takes us back to the original action.



Off-shell formulations for supergravity: a review

@ Pure 4D N =1 supergravity can be realised as conformal
supergravity coupled to a compensating supermultiplet.
M. Kaku & P. Townsend (1978)
T. Kugo & S. Uehara (1983)

o Different off-shell formulations for supergravity correspond to
different compensators.
W. Siegel & J. Gates (1979)
S. Ferrara, L. Girardello, T. Kugo & A. Van Proeyen (1983)

@ The simplest way to describe A/ = 1 conformal supergravity in
superspace is to make use of the geometry proposed by
R. Grimm, J. Wess & B. Zumino (1978)
This superspace geometry was used in the very first published work
on the old minimal formulation for N" = 1 supergravity:
J. Wess and B. Zumino, Phys. Lett. B 74, 51 (1978)
Old minimal supergravity was independently developed by
K. Stelle & P. West, Phys. Lett. B 74, 330 (1978)
S. Ferrara & P. van Nieuwenhuizen, Phys. Lett. B 74, 333 (1978)



Grimm-Wess-Zumino superspace geometry

Superspace covariant derivatives Dy = (D,, Do, D%) have the form
M - A -
Da = EAVOm —|—QAﬁ’YMB,Y + QAﬁ'YMB;y .
Graded commutation relations

{D,,Ds} = —2iDys »
{Do,Ds} = —4RM,5 , {Ds, Dy} = 4RM,;

. [p— 6 -_— 6 -
(D, Dys] = ieas(RD; + G 5Dy — (DG )My + 2W, 1,5 )
+i(DgR)Mag -
Torsion superfields R, Gag = Gag and W, 3, obey the Bianchi identities:
DyR=0, DeWap, =0, DGy = Do R

R, Gaa and W, are supergravity analogues of the scalar curvature,
traceless Ricci tensor and self-dual Weyl tensor, respectively.



Super-Weyl transformations

P. Howe & R. Tucker (1978)
_ 1 8
0Dy = (7 — *O’)Da + (Do) Mg ,

86Ds = (00— *U)D —l—('Dﬁ MY R

06Dae = =(0 4+ 7)Dos + 2(D 7)Da + = (D 0)Dq

1
2
+(DP40)Map + (D5)M,

2
R

where o is an arbitrary covariantly chiral scalar superfield, Dyo = 0.
The torsion tensors transform as follows:

dsR = 20R + %(152 —4R)7 ,
1
00 Goa = §(U+5')Gad —‘riDad(O' —5’) s

3
50— WO(,B’Y = EJWO‘:B’Y .



Off-shell formulations for supergravity: a review

@ Old minimal supergravity
Its conformal compensator is a chiral scalar superfield Sy, Dy Sp = 0,
with the super-Weyl transformation

5050 = 0'50

Pure supergravity action
3 - =

SomsG = ——5 /d4xd29d29 E SoSo + {% /d4xd29553 + c.c.} ,
K K

where E~1 = Ber(Ea") and & is the chiral density.

@ New minimal supergravity
Its conformal compensator is a real linear superfield,
L —L = (D? - 4R)L = 0, with the super-Weyl transformation

d,L=(0c+37)L

Pure supergravity action (no cosmological terms is allowed)

3 4 ,12n12p L
SNMSG:E/d xd“6d eELlnw



Fayet-lliopoulos term in off-shell supergravity



Fayet-lliopoulos term in new minimal supergravity

Consider new minimal supergravity coupled to a nonlinear o-model and a
U(1) vector multiplet with a Fayet-lliopoulos. The action is

- 3 L
_ 412072
5_/dxd9d0EL{ln|5|2

+K(¢', )} + 51V,
where S[V/] denotes the vector multiplet action,
S[V] = /d4xd29d295{8 VDY(D? — 4R)D,V — 2ﬂLV} :

All ¢' are assumed to be neutral under the super-Weyl transformations,
0s0" = 0.
The action is invariant under Kahler transformations

K(d,0) — K(d, ) + F(¢) + F(9) ,

with F(¢) an arbitrary holomorphic function.
It is also invariant under the gauge transformations of V/,

HV =X+, DA =0.



Fayet-lliopoulos term in old minimal supergravity

Applying a superfield Legendre transformation to the theory considered
above, we end up with a dual formulation whihc describes old minimal
supergravity coupled to a nonlinear o-model and a U(1) vector multiplet
with FI term. The resulting action is

2

s- 3 /d4xd20d2§E§o exp (%fnz V) So exp ( - %K(¢v 55))

T R2
_ 1 _
+ / d*xd?0d%0 E 3 VD*(D? — 4R)D,V .

Kahler invariance:

M)

Gauge invariance

Vo VAEAEN, Sy e ifirg,



Fayet-lliopoulos term in new minimal supergravity

We now consider the case of chiral matter with a superpotential W/(¢').
Realisation I: Supergravity-matter action is

_ 412912 3 i gV i
5_/dxdodoE1L{ Ny (e qs)}

+{ /d4xd295 W(6') + c.c.} +S[V],
where S[V] is the same vector multiplet action,
S[v] = /d4xd20d2§E {% VDO (D? — 4R)D.V — 2fLV} .

In the presence of superpotential, ¢’ and V vary under the super-Weyl

transformations (containing local U(1)g transformations),
50’¢i:qia¢i7 5UVZ_U_5a

with real U(1)g charges g;. The K(¢,¢) and W(¢) have the properties

m qe'dK=0, Y qé'oW=3W.



Fayet-lliopoulos term in new minimal supergravity

We now consider the case of chiral matter with a superpotential W/(¢').
Realisation II: Supergravity-matter action is

S = /d4xd29d2éEL{;1n|5H;|2 + K(Liip, Lf,-i/z)}

+{ /d4xd295 W(e') + c.c.} +S[V],

where S[V] is the same vector multiplet action,
_ (1 _
S[V] = /d4xd29d29 E {§ VD (D? — 4RYD,V — 2ﬂL,v} .

In the presence of superpotential, ¢’ vary under the super-Weyl
transformations (containing local U(1)g transformations),

5o¢' = giog', &V =0,
with real U(1)g charges g;. The K(¢,¢) and W(¢) have the properties

Im ) qi¢'0K=0, > aqid oW =3w .



Fayet-lliopoulos term in old minimal supergravity

“... The new minimal auxiliary field formulation is equivalent to the
restricted class of old minimal formulation, namely the one with R
symmetry. This symmetry is a necessary and sufficient condition for the
Fayet-lliopoulos term to be introduced.”

S. Ferrara, L. Girardello, T. Kugo & A. Van Proeyen (1983)



Nilpotent real scalar supermultiplet



Nilpotent real scalar supermultiplet

N =1 Goldstino superfield model proposed in

SMK, |. McArthur & G. Tartaglino-Mazzucchelli [arXiv:1702.02423]
is described in terms of a real scalar superfield V with properties:
(i) it is super-Weyl invariant, §,V = 0; and (ii) it is constrained by

VZ=0, VDDV =0, VDADgDcV =0 .

In order for V' to serve as a Goldstino supermultiplet, the real descendant
DW :=D*W,, = Dy W be nowhere vanishing, with

1 - -
W, = —Z(D2—4R)Dav, DyWo =0.
Dynamics is governed by the super-Weyl invariant action

S[V] = /d4xd29d2é E {% VDY(D? — 4RYD,V — szv} .

S[V] also describes a U(1) vector multiplet with the Fl term
in the case when V' is unconstrained. Then S[V] is gauge invariant.



Nilpotent real scalar supermultiplet

@ Super-Weyl transformation laws:

5, V=0,  6,Wa— gawa . 0. (DW) = (0 +5)DW .

e Constraints V2 =0, VDaDgV =0, VDsDgDcV =0 imply

W2 w? ) N
V:—4m, W:WWa

@ Important by-product:
Consider a massless vector supermultiplet described by
gauge-invariant chiral field strength W, such that DW # 0.
Then the following composite
W2 W2

is super-Weyl invariant, 0,0 = 0.



Constructing alternative Fl terms in supergravity



Constructing alternative Fl terms in supergravity

Consider a massless vector supermultiplet coupled to conformal
supergravity. It is described by a real prepotential V' with properties:

o It is defined modulo gauge transformations
HV=X+X, DyA=0

o It is super-Weyl inert, 6,V = 0.
@ Top component of V (D-field) is assumed to be nowhere vanishing,

_ . 1 -
DW :=D*W, =D W* #0, W, = —Z(DQ —4R)D,V

Example: Vector supermultiplet model with Fl term in new minimal
supergravity with action

S[V] = /d4xd29d2é E {% VDY(D? — 4RYD,V — szv} .

Equation of motion for V: DW = —2fL # 0.



Constructing alternative Fl terms in supergravity

Since DW is nowhere vanishing, we can introduce real scalar composite

W2 W2 > N
Qj::—4m, we.=w Wa~

The properties of U are as follows:
@ ‘U is gauge invariant, 0,0 = 0;
@ Y is super-Weyl invariant, 6,0 = 0;
@ ‘U obeys the nilpotency conditions

Y2 =0, VDDV =0, VBDDgDcUV=0

and, therefore, U may be interpret as a Goldstino superfield.

We can use U to construct a super-Weyl invariant functional
J= / d*xd?0d?0 ETY

T may be identified with a compensator: (i) T = 5,5y in OMSG; and
(i) T =1L in NMSG. More general choices are possible.



U as Goldstino supermultiplet

Nilpotency conditions

B2 =0, VDDV =0, YDsDgDcYV =0

imply

22912 1=
Y= —4— W, = —=(D* - 4R)D,V
(DAW)3 4( )
Interpretation of U as a Goldstino superfield is consistent provided its
D-field is nowhere vanishing (equivalently, (D20)~! exists). This holds if
D2W?2 is nowhere vanishing.

0 has only two independent component fields: photino/Goldstino
Yo X Welo=o and auxiliary scalar D o« D*2,, |p—0.



Component analysis

Let’s analyse the component content of U following the component

reduction procedure described, e.g., in
SMK & S. McCarthy [hep-th/0501172]

@ Component fields of the vector supermultiplet

N

1 A o a
Wol =% , —D*W,| =D, DuWs|=2iFas = i(0®)asFas

Bar-projection U| means switching off the Grassmann variables 6, 0.

e U(1) field strength
. 1 - T 1 7 D
Fap = Fap — 5 (Vaowt + 60Ws) + 5 (Vs0at) + 0, Ws)

Fab = VoV = VpV, — TabCVc )
with V, = e,™(x) Vin(x) the gauge one-form, and W,# the gravitino.

@ V, denotes spacetime covariant derivative with torsion.



Component analysis

V., denotes spacetime covariant derivative with torsion
c 1 cd
[Vaa vb] = 7-ab vc + 5 Rabch 5
i _ _
7-abc = _E(waocwb - wbo'cwa) .

where R,peq is the curvature tensor and 7,y is the torsion tensor.
Component expressions:

1
_ZD2 W?| = D> — 2F*PF, 5 + fermionic terms .

The D component field of U is

FoBFop 2
D2

1
—EDQm =D|1-2 + fermionic terms ,

where W, = 7%( - 4R) U



Component analysis

J=2 / d*xd?0d’I E T

FePF, L
%/d‘lxeD‘l—Z D2 b + fermionic terms



Constructing alternative Fl terms in supergravity

Our construction of

W2Ww? » o
%::74m, we .= W Wa.

can naturally be generalised by introducing a gauge invariant and
super-Weyl invariant composite operator
(D W)4n - W2 V_VQ (D W)4n—3

Vn =T [DZ W2D2 VI_/2] n [(D2 W?2)(D? Wz)} n

for a real parameter n, with Uy = 0.
Super-Weyl invariance follows from the following observation: Given a
nowhere vanishing real scalar U with super-Weyl transformation law

U= (c+a)U,
the composite operator
_\ W?2
2
( —4R>W

is super-Weyl invariant. S. Cecotti & S. Ferrara (1987)



Component analysis

I, =2 / d*xd?04%0 E T3,

2—2n . .
+ fermionic terms

FePF,
z/d4xeD’1—2 20"6

Choice n =1 is special:
3, =2 / d*xd?0d?0 E TU, ~ / d*x e D + fermionic terms

N. Cribiori, F. Farakos, M. Tournoy & A. Van Proeyen [1712.08601]



U, as Goldstino supermultiplet

Nilpotency conditions

0,0,=0, UV, DaDpV, =0, UV, DaDgDcV,=0

imply

QU%Q_U% « 1 YA «
%n = _4W 5 Qﬂ,—, = _Z(D - 4R)D SZ]’_’

2 has only two independent component fields: photino/Goldstino
Y* o W,*|p=o and auxiliary scalar D o<« D, |g=0.



Constructing alternative D? terms in supergravity

@ Introduce super-Weyl invariant kinetic-like term

K, = / d*x 2020 E %mnm(z‘)? —4R)D,V

—% / d*xd?04%0 Esg, DW

@ Component reduction

Fe Faﬂ 2—2n

K, ~ §/d4 xe D2‘1 -2 + fermionic terms

@ Functional K, can be added to the action only with a non-negative
overall coefficient since K, contains the fermionic kinetic terms.



U(1) duality invariant models and Fl-type terms




U(1) duality invariant models and Fl-type terms

General family of U(1) duality invariant models for a massless vector
supermultiplet coupled to off-shell supergravity, old minimal or new
minimal.

SMK & S. McCarthy (2005)

1 1 _ W2 wa2 ~
SWﬂ1=§/&m%6W2+Z/HM¥M%E = A(ﬁnﬁ>

Here w := $D?W?, and A(w,®) is a real analytic function satisfying the

differential equation SMK & S. Theisen (2000)
_ A(wAN)
—_ 2 = =
Im {F wl } 0, M R

Supersymmetric Born-Infeld action corresponds to (g coupling constant)

g2

1+1A 4+ /1+A+1B2

A:gz(w—i—@), B:g2(w—@)

Aspi(w, @) =



U(1) duality invariant models and Fl-type terms

In the flat-space limit, the fermionic sector of
1 1 - _
S[V] = > / d*xd?0 W? + 7 / d*xd?0d%0 W2 W2 N(w, @)

proves to coincide, modulo a nonlinear field redefinition, with the
Volkov-Akulov action, under the mild restriction

Awi(0,0) = 3A%(0,0)

Explanation of such ubiquitous appearance of the Volkov-Akulov action:
SMK (2010)
If the FI term is added to the action,

S[V] — %/d4xd29 W2 + /d4xd20d2§{%W2 W2 Nw,@) - 2f V}

then auxiliary D-field develops a non-vanishing expectation value, in
general.



U(1) duality invariant models and Fl-type terms

@ Supersymmetric Born-Infeld action
1 1 _ -
Ssmi[V] =5 / d*xd?0 W2 + 7 / d*xd?0d?0 W? W2 Agp; (w, @)

describes partial N' =2 — N =1 SUSY breaking.
J. Bagger & A. Galperin (1997)
o Standard FI term is invariant under the second nonlinearly realised
supersymmetry of the rigid supersymmetric Born-Infeld action.
I. Antoniadis, J. Derendinger & T. Maillard (2009)
o Deformed supersymmetric Bl action, Sspi[V] — 2ffd4xd29d2§ v,
also describes partial ' =2 — N =1 SUSY breaking, as well as

possesses U(1) duality invariance.
SMK (2010)

@ Last two properties are not preserved by alternative Fl terms.



Recent developments

@ |. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops
[arXiv:1803.03817].

@ |. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops
[arXiv:1805.00852).

e F. Farakos, A. Kehagias and A. Riotto [arXiv:1805.01877].
e Y. Aldabergenov, S. V. Ketov and R. Knoops [arXiv:1806.04290].

@ H. Abe, Y. Aldabergenov, S. Aoki and S. V. Ketov
[arXiv:1808.00669].

@ N. Cribiori, F. Farakos and M. Tournoy [arXiv:1811.08424].

@ H. Abe, Y. Aldabergenov, S. Aoki and S. V. Ketov
[arXiv:1812.01297].
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