Binary neutron star formation and the origin of GW170817

Chris Belczynski¹ T.Bulik, A.Olejak, M.Chruslinska N.Singh, N.Pol, L.Zdunik

R.O'Shaughnessy, M.McLaughlin
D. Lorimer, J. Klencki, O. Korobkin
E.P.J. van den Heuvel, M.B. Davies, D.Holz

Copernicus Center (Warsaw), Polish Academy of Sciences

- Milky Way data: 18 NS-NS systems

– LIGO/Virgo data: 1 system (GW170817)

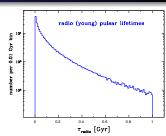
– evolutionary models: can we fit all the data?

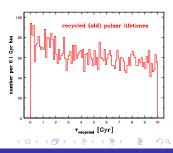
Galactic NS-NS: 18 known systems

	_	24 6		-				
Name	type	M_{psr}^{b}	$M_{\rm com}$	$P_{\rm orb}$	a	e	t _{mer} ^c	reference ^e
		$[M_{\odot}]$	[M _☉]	[day]	[R _☉]		[Gyr]	
field:								
1) J1946+2052	recycled	1.25	1.25	0.076	1.028	0.06	0.042	[1]
2) J1757-1854	recycled	1.34	1.39	0.183	1.897	0.6	0.079	[2]
3) J0737-3039	young	1.338	1.249	0.102	1.261	0.088	0.085	[3,4,5]
4) B1913+16	recycled	1.440	1.389	0.323	2.801	0.617	0.301	[6,7]
5) J1906+0746	young	1.291	1.322	0.166	1.750	0.085	0.308	[8,9]
6) J1913+1102	recycled	1.64	1.25	0.206	2.090	0.08	0.473	[10,11]
7) J1756-2251	recycled	1.341	1.230	0.320	2.696	0.181	1.660	[12,13]
8) B1534+12	recycled	1.333	1.346	0.421	3.282	0.274	2.736	[14]
	1							. ,
9) J1829+2456	recycled	1.295	1.295	1.176	6.436	0.139	55.36	[15]
10) J1411+2551	recycled	1.265	1.265	2.61	10.9	0.16	471.3	[16]
11) J0453+1559	recycled	1.559	1.174	4.072	15.0	0.113	1,452	[17]
12) J1811-1736	recycled	1.285	1.285	18.779	40.7	0.828	1,794	[18]
13) J1518+4904	recycled	1.359	1.359	8.634	24.7	0.249	8,853	[19]
14) J1755-2550	young	1.3	1.3	9.696	26.3	0.089	15,917	[20,21]
15) J1753-2240	recycled	1.3	1.3	13.638	33.0	0.304	28,646	[22]
16) J1930-1852	recycled	1.295	1.295	45.060	73.1	0.399	531,294	[23]
globular clusters:								
17) B2127+11C	recycled	1.358	1.354	0.335	2.830	0.681	0.217	[24,25]
	Ι.							
18) J1807-2500B ^d	recycled	1.366	1.206	9.957	26.7	0.747	1,044	[26]

current merger times: 50%–50% short vs long merger time systems (Belczynski, Bulik, Olejak et al. 12/2018: arXiv:1812.10065)

Galactic NS-NS: merger rate in MW


peak value: $\mathcal{R}_{\mathrm{MW}} \sim 40~\mathrm{Myr}^{-1}$


1st estimate: 28-72 Myr⁻¹

2nd estimate: 6.6–190 Myr⁻¹

merger rate estimates:

- adopt MW star formation model
- adopt radio and recycled pulsar lifetimes
- radio detctability model (beaming, luminosity)
- extrapolate from 8 close NS-NS MW systems

⁻ Pol, McLaughlin, Lorimer 11/2018, arXiv:1811.04086)

⁻ O'Shaughnessy 2019)

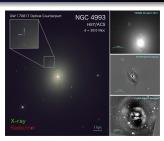
- observation of NS-NS merger
- host galaxy

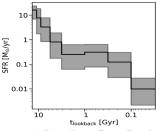
GW170817: first NS-NS merger in gravitational waves

- LIGO/Virgo inspiral detection of: 1.4 1.6 M_{\odot} and 1.2 1.4 M_{\odot} (NS-NS?)
- LIGO/Virgo merger rate: \sim 1,000 (110 3,840) $\rm Gpc^{-3}~yr^{-1}$ (1st surprise)
- EM: optical kilonova + off-axis short GRB
- Host galaxy: massive elliptical at 40 Mpc (2nd surprise)

- observation of NS-NS merger
- host galaxy

NGC 4993: GW170817 host galaxy star formation

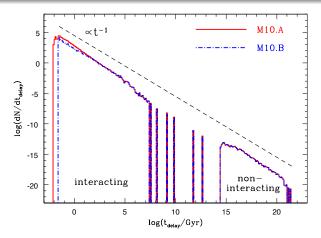

observations: photometry, spectra, images (radio, IR, optical, UV, X-rays, gamma-rays)


NGC 4993:

- medium elliptical galaxy: 40 Mpc away
- stars at near-solar metallicity: $Z \approx 0.02$
- \bullet total star forming mass: $7.9\times10^{10}~M_{\odot}$
- peak of star formation rate: 11 Gyr ago
- extra (?) episode of SFR: 0.5-1 Gyr ago (but only < 1% of total SFR)

almost no current/recent star formation...

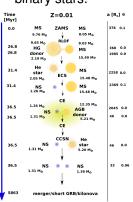
Blanchard, Berger et al. 2017, ApJ 848, L22 -> (see also Troja et al. 2017, Palmese et al. 2017)


- example of NS-NS formation
 - Milky Way vs LIGO/Virgo predictions
 Conclusions

NS-NS merger: stellar/binary evolution

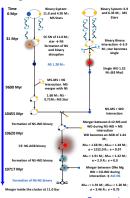
- example of NS-NS formation
 - Milky Way vs LIGO/Virgo predictions Conclusions

NS-NS mergers: delay time distribution



typically short delays: most mergers expected in star forming regions (this is a generic result and very hard to change...)

- example of NS-NS formation


NS-NS merger: in old host galaxies (NGC4993-like)

binary stars:



rate: $1 \times 10^{-2} \text{ vr}^{-1}$

globular clusters:

nuclear clusters:

rate: $1 \times 10^{-5} \text{ vr}^{-1}$

rate: $5 \times 10^{-5} \text{ vr}^{-1}$

LIGO rate: $\sim 1 \text{ yr}^{-1}$ – so how did GW170817 formed?

(Belczynski, Askar, Arca-Sedda, Chruslinska, Donnari, Giersz, Benacquista, Spurzem, Jin, Wiktorowicz, Belloni 2018, A&A, 615, 91)

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions– Conclusions

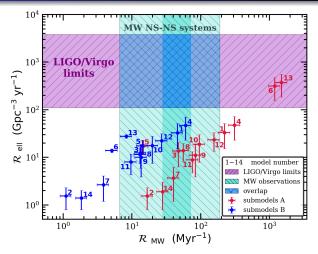
NS-NS models: merger rate predictions

Population synthesis calculations (the StarTrack code)

\sim 20 models:

- NS natal kicks (Hobbs, ECS, Bray&Eldridge)
- CE effciency (0.1–1.0-10)
- RLOF mass loss (50%–80%)

we calculate NS-NS merger rate:

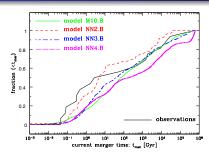

- in Milky Way
- in all local Elliptical galaxies

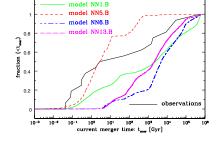
we compare both with observations...

Name	CC kick ^e	ECS kick ^b	ace	(acc/eje)gLor	R _{MW} [Myr ⁻¹]"	R _{ell} [Gpc ⁻³ yr [−]
observations					28-72 ^g	110-3840
					6.6-190 ^a	
NN2.A	Hobbs: 265 km s ⁻¹	OFF: -	1.0	0.2/0.8	13.5-20.0	0.8-2.3
NN2.B	Hobbs: 265 km s ⁻¹	OFF: -	1.0	0.2/0.8	0.9-1.3	0.8-2.3
NN14.A	HobbsFB: 265 km s ⁻¹ HobbsFB: 265 km s ⁻¹	OFF: -	1.0	0.2/0.8	22.6-33.4	0.8-3.0
NN14.B	HobbsFB: 265 km s ⁻¹	OFF: -	1.0	0.2/0.8	1.5-2.2	0.8-2.0
NN7.A	Hobbs: 133 km s ⁻¹	ON: 66 km s ⁻¹	1.0	0.2/0.8	32.4-48.0	1.2-6.2
NN7.B	Hobbs: 133 km s ⁻¹	ON: 66 km s ⁻¹	1.0	0.2/0.8	3.1-4.6	1.2-4.1
NN3.A	HobbsFB: 265 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	38.4-56.8	6.3-21.0
NN3.A NN3.B	HobbsFB: 265 km s ⁻¹	ON: 0 km s -1	1.0	0.2/0.8	38.4-36.8 10.8-16.0	5 9-18 9
NN3.B	HOUGSPB. 200 KIII'S	OIN. U KIII S	1.0	0.2/0.8	10.8-10.0	3.9=10.9
NN8.A	Hobbs: 133 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	45.0-66.6	8.3-19.6
NN8.B	Hobbs: 133 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	10.6-15.7	7.5-15.6
M10 A	HobbsFR: 265 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.5/0.5	53.6-79.3	11.4-51.4
M10.A M10.B	HobbsFB: 265 km s ⁻¹	ON: 0 km s -1	1.0	0.5/0.5	17.4-25.8	18.5-22.1
MIIO.D	11000M D. 200 Km s	OIT. U KIII 3	1.0	0.070.0	11.4-25.0	10221
NN11.A	Hobbs: 66 km s ⁻¹	OFF: -	1.0	0.2/0.8	61.1-90.4	4.7-13.1
NN11.B	Hobbs: 66 km s ⁻¹	OFF: -	1.0	0.2/0.8	7.8-11.5	4.3-11.8
NN9.A	Hobbs: 66 km s ⁻¹	ON: 33 km s ⁻¹	1.0	0.2/0.8	67.6-100	3.9-18.4
NN9.B	Hobbs: 66 km s ⁻¹	ON: 33 km s ⁻¹	1.0	0.2/0.8	11.0-16.3	3.9-16.3
NN10.A	Hobbs: 66 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	76.9-114	7.9-29.9
NN10.B	Hobbs: 66 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	16.0-23.7	7.5-27.7
NN12.A	Hobbs: 33 km s ⁻¹	OFF: -	1.0	0.2/0.8	126-186	13.4-33.1
NN12.B	Hobbs: 33 km s ⁻¹	OFF: -	1.0	0.2/0.8	21.8-32.3	13.4-31.5
					i	l
NN4.A	Hobbs: 0 km s ⁻¹ Hobbs: 0 km s ⁻¹	OFF: -	1.0	0.2/0.8	251-371	23.2-72.1
NN4.B	Hobbs: 0 km s ⁻¹	OFF: -	1.0	0.2/0.8	48.9-72.4	23.2-70.8
NN13.A	Hobbs: 0 km s ⁻¹	OFF: -	10	0.2/0.8	1208-1788	186-561
NN13.B	Hobbs: 0 km s ⁻¹	OFF: -	10	0.2/0.8	6.7-9.9	29.9-25.2
NN5.A	BE18: 100/ - 170 km s ⁻¹ BE18: 100/ - 170 km s ⁻¹	OFF: -	0.1	0.2/0.8	11.9-17.6	11.8-22.9
NN5.B	BE18: 100/ - 1/0 km s	OFF: -	0.1	0.2/0.8	11.5-17.0	11.8-22.9
NNLA	BE18: 100/ - 170 km s ⁻¹	OFF: -	1.0	0.2/0.8	179-265	15.3-51.2
NN1.B	BE18: 100/ - 170 km s ⁻¹	OFF: -	1.0	0.2/0.8	37.0-54.8	15.3-50.6
	l					
NN6.A NN6.B	BE18: 100/ - 170 km s ⁻¹ BE18: 100/ - 170 km s ⁻¹	OFF: -	10	0.2/0.8	961-1422	156-471
NNO.B	BE18: 100/ - 170 km s ⁻¹	OFF: -	10	0.2/0.8	4.1-6.1	12.6-15.1

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions– Conclusions

NS-NS models: Milky Way vs Elliptical galaxies




Milky Way vs LIGO/Virgo: no tested models overalp with both constraints...

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions– Conclusions

Predicted merger times for NS-NS in Milky Way

- models with Hobbs/ECS kicks
- with normal CE effciency
- reproduce Galactic merger rates
- are good match to merger times

they don't produce LIGO/Virgo rate

- models with Eldridge/zero kicks
- with high CE effciency
- don't reproduce Galactic rates
- no good match to merger times

but they produce LIGO/Virgo rate

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions
 Conclusions

Conclusions

- Milky Way: many evolutionary models...
 (agreement: rates, merger times)
- LIGO/Virgo: very few (unphysical?) models...
 (but these models in disagreement with Milky Way observations)

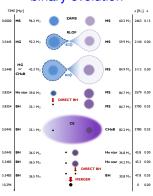
LIGO/Virgo NS-NS merger: formation mechanism unknown... unless:

- detection of NS-NS merger in elliptical was a statistical fluke
- if above not true: solution in untested part of parameter space
- if above not true: classical binary evolution model needs revision
- 4 if above not true: different model must be at work...

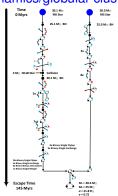
- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions

BH-BH formation: broad perspective

LIGO detections: outbreak of models

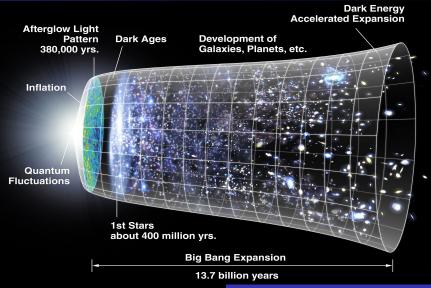

- PopII/I BH-BH: isolated binary evolution (90% stars in cosmos)
- PopII/I BH-BH: dynamics/globular clusters (0.1%) $X_{\rm BHBH} \approx 10^{-5} 10^{-7} \ {\rm M_{\odot}^{-1}}$ (binary) vs $X_{\rm BHBH} \approx 10^{-4}$ (dynamics) rate_binary / rate_dynamics $\approx 10 100$
- Primordial BH-BH: density fluctuations after Big Bang
- PopIII BH-BH: first massive stars (≤ 1%)
- PopII/I BH-BH: rapid rotation (homogeneous evol.) (10%)
- exotic BH-BH: e.g., nuclear star clusters: dynamics (?)
 e.g., massive star formation in AGN disk (?)
 e.g., single star core splitting (?)

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions
 Conclusions

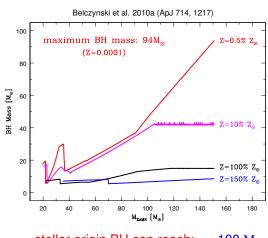

GW150914: $30 + 30 \text{ M}_{\odot}$ massive BH-BH merger

binary evolution

credit: W.Gladysz - StarTrack simulation


dynamics/globular clusters

credit: A.Askar - MOCCA simulation


- 1) binary evolution and dynamics: can produce massive BH-BH mergers
- 2) because of (1): the origin of BH-BH mergers unknown...

- example of NS-NS formation
 Milky Way vs LIGO/Virgo predictions
 Conclusions
- modeling: synthetic universe

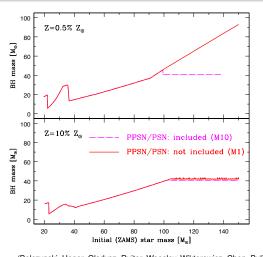
- example of NS-NS formation
- Milky Way vs LIGO/Virgo prediction
 Conclusions

BH mass spectrum: maximum BH mass

stellar origin BH can reach: $\sim 100~M_{\odot}$ (Zamperi & Roberts 2009; Mapelli et al. 2009)

- past updates:

stellar models: \sim 130 M_{\odot} (Spera et al. 2015)


IMF extension: $\sim 300 \text{ M}_{\odot}$ (Belczynski et al. 2014)

- present update (2016):

BH mass down: $\lesssim 50~{\rm M}_{\odot}$ (pair-instability pulsations)

- example of NS-NS formation
- Milky Way vs LIGO/Virgo prediction
 Conclusions

Maximum stellar-origin BH mass: $\sim 50 M_{\odot}$

PSN: Pair-instability SN $(M_{\rm He} \sim 65-130 {\rm M}_{\odot})$

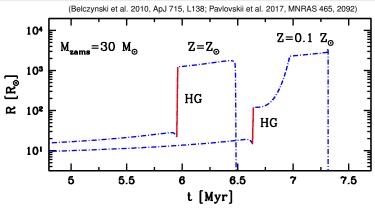
no remnant: entire star disruption

PPSN: Pair-instability Pulsation SN

 $(M_{\rm He} \sim 45\text{--}65 \mathrm{~M}_{\odot})$

black hole: and severe mass loss

NS/BH mass spectrum:

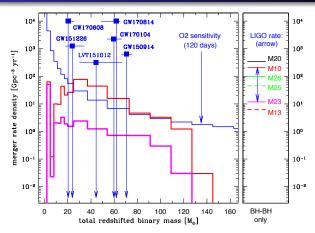

 $\begin{array}{ll} \text{neutron stars:} & 1-2~M_{\odot} \\ \text{first mass gap:} & 2-5~M_{\odot} \\ \text{black holes:} & 5-50~M_{\odot} \end{array}$

second mass gap: $50 - 130 M_{\odot}$ black holes: $130 - ??? M_{\odot}$

(Belczynski, Heger, Gladysz, Ruiter, Woosley, Wiktorowicz, Chen, Bulik, O'Shaughnessy, Holz, Fryer, Berti: A&A 2016)

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions

Common envelope: orbital decay at low Z


high-Z: RLOF at HG -> radiative envelope -> stable MT & no orbit decay low-Z: RLOF at CHeB -> convective envelope -> CE & orbit decay

BH-BH progenitors go through CE: at low Z rates up by 50 times (Z_{\odot} -> 0.1 Z_{\odot})

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions
 Conclusions

BH-BH mergers: LIGO 120 days of O2 (70 Mpc)

LIGO: GW170608: 12 + 7 M_{\odot} , GW151226: 14 + 8 M_{\odot} , LVT151012: 23 + 13 M_{\odot}

GW170104: 31 + 19 M_{\odot} , GW170814: 31 + 25 M_{\odot} , GW150914: 36 + 29 M_{\odot}

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions
 Conclusions

Predictions vs LIGO/Virgo effective spins

$$\chi_{\text{eff}} = (M_1 a_1 \cos \theta_1 + M_2 a_2 \cos \theta_2)/(M_1 + M_2)$$

$$\frac{10^4}{10^4} = \frac{(\text{M}_1 \text{M}_2 \text{M}_2 \cos \theta_2)}{(\text{M}_2 \text{M}_2 \text{M}_2 \text{M}_2 \cos \theta_2)}/(M_1 + M_2)$$

$$\frac{10^4}{10^4} = \frac{(\text{M}_2 \text{M}_2 \cos \theta_2)}{(\text{M}_2 \text{M}_2 \cos \theta_2)}/(M_1 + M_2)$$

$$\frac{10^4}{10^4} = \frac{(\text{M}_2 \text{M}_2 \cos \theta_2)}{(\text{M}_2 \text{M}_2 \cos \theta_2)}/(M_1 + M_2)$$

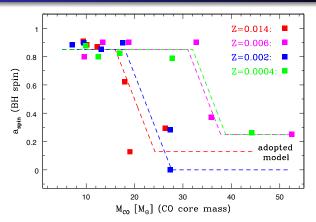
if LIGO/Virgo effective spins continue at low values:

-> efficient angular momentum transport in stellar interiors

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions

BH HMXBs with estimated BH spins

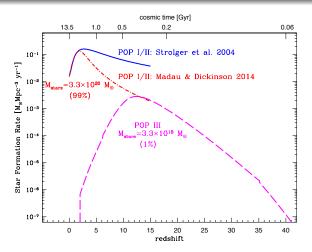
- Cyg X-1: 15 M_{\odot} BH + 19 M_{\odot} O star, $a_{\rm BH} > 0.98$ fate: RLOF -> SN lb/c -> NS formation: 70% disruption, 29% wide BH-NS, 1% merging BH-NS
- 2 LMC X-1: 11 M_{\odot} BH + 32 M_{\odot} O star, $a_{BH}=0.92$ fate: short orbital period; CE during MS -> CE merger
- 3 M33 X-7: 16 M $_{\odot}$ BH + 70 M $_{\odot}$ O star, $a_{BH} = 0.84$ fate: short orbital period; CE during MS -> CE merger


BH HMXBs with high spins: not likely progenitors of BH-BH mergers...

If LIGO/Virgo BH spins low: then LIGO/Virgo BHs are formed in different way than Galactic HMXB BHs...

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions

BH natal spin model: from the Geneva code



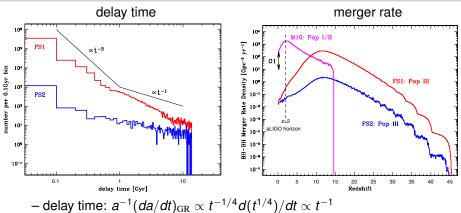
- low-mass BHs (\lesssim 15 M $_{\odot}$, weak winds): high natal spins ($a_{spin} \approx 0.9$)
- high-mass BHs (\gtrsim 30 ${\rm M}_{\odot}$, strong winds): low natal spins ($a_{\rm spin}\approx 0.1$)

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions

Star formation history: Pop I/II vs Pop III stars

Pop I/II: uncertain for z>2, Pop III: much smaller contribution

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions


Population III binary initial conditions:

Pop III: potentially very different initial conditions than for Popl/II...

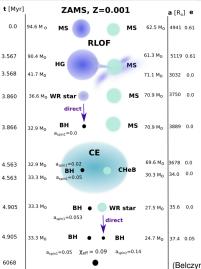
- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions

Pop III BH-BH merger rate history:

- delay time: $a^{-1}(da/dt)_{GR} \propto t^{-1/4}d(t^{1/4})/dt \propto t^{-1}$ (initial separation distr.: $\sim a^{-1}$, $t_{GR} \propto a^4$: Peters 1964)
- O1/O2 LIGO BH-BH merger rate: 12–213 ${\rm Gpc}^{-3}~{\rm yr}^{-1}$

Pop III BH-BH rates: 3 orders below LIGO, 4 orders below Pop I/II

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions
 Conclusions


Conclusions

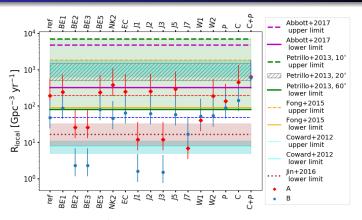
- LIGO/Virgo NS-NS merger: formation mechanism unknown...
- LIGO/Virgo BH-BH mergers: many formation channels...
 - binary channel: high rates, masses OK, spins not OK
 - dynamical channel: low rates, masses OK, spins?
- astro implications: doubly limited
 - implications: valid only within a given BH-BH origin model
 - within each model: multiple (untested) possibilities
- channel discrimination: may be very hard to do, but
 - BH spins: semi-aligned/random? (binary/dynamical)
 - BH mass: $M_{\rm BH} \approx 50 130~{
 m M}_{\odot}$ and $a_{\rm BH} \sim 0.6$? (dynamical)
 - BH-BH rate: $\gtrsim 100 \text{ Gpc}^{-3} \text{ yr}^{-1}$? (binary)
- Pop III BH-BH mergers: not likely as LIGO/Virgo sources

- Conclusions

GW170104: claimed to originate from dynamics, but...

LIGO:
$$-0.42 < \chi_{\text{eff}} < 0.09$$
 (90% credible) $\chi_{\text{eff}} = (M_1 a_1 \cos \theta_1 + M_2 a_2 \cos \theta_2)/(M_1 + M_2)$

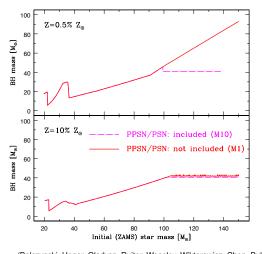
binary evolution can explain GW170104:


- low metallicity: Z < 10% Z
 </p>
- CE: during CHeB
- Iong delay: 5 Myr + 6 Gyr
- aligned BH spins: tilt = 0 deg?
- BH spin: $a_1 = 0.0 \rightarrow a_1 = 0.05$ $a_2 = 0.14 \rightarrow a_2 = 0.14$

 $\chi_{\rm eff max} = 0.09$ (OK with observations)

(Belczynski, Klencki, Meynet, Fryer, Brown, et al. 2018, submitted)

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions


NS-NS merger rates: observations vs predictions

- NS-NS upto 1000 Gpc⁻³ yr⁻¹: but over-production of BH-BH mergers...
- Diamonds/Circles: pop. synthesis models with different Common Envelope do BH-BH progenitors evolve through a different CE than NS-NS systems?

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions
 Conclusions

Pair instability: maximum BH mass $\sim 50 M_{\odot}$

PSN: Pair-instability SN $(M_{He} \sim 65-130 \text{ M}_{\odot})$

no remnant: entire star disruption

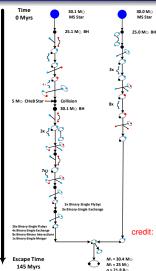
PPSN: Pair-instability Pulsation SN

 $(M_{\rm He} \sim 45\text{--}65 \mathrm{~M}_{\odot})$

black hole: and severe mass loss

NS/BH mass spectrum:

neutron stars: $1 - 2 M_{\odot}$ first mass gap: $2 - 5 M_{\odot}$

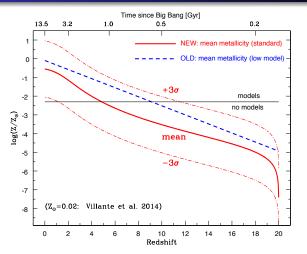

black holes: $2-5 \text{ M}_{\odot}$

second mass gap: $50 - 130 M_{\odot}$ black holes: $130 - ??? M_{\odot}$

(Belczynski, Heger, Gladysz, Ruiter, Woosley, Wiktorowicz, Chen, Bulik, O'Shaughnessy, Holz, Fryer, Berti: A&A 2016)

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions
 Conclusions

Formation of BH-BH merger: dynamics

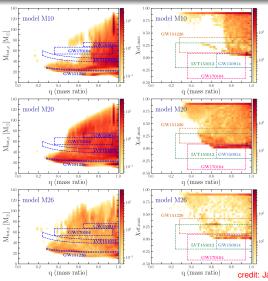


- globular cluster: 1.2 × 10⁶ stars
- Iow metallicity: Z < 10% Z_⊙
- dynamical interactions: 40!
- BH-BH system: kicked out of the cluster
- BH spin direction: isotropic distribution

credit: Abbas Askar (Warsaw): MOCCA simulation

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictionsConclusions

Metallicity evolution:



Metallicity model: Madau & Dickinson 2014 with SNe and GRB calibration

- example of NS-NS formation
- Milky Way vs LIGO/Virgo predictions
 Conclusions

BH-BH properties: classical isolated binary evolution

- M10: no BH kicks, 50% RLOF
- M20: no BH kicks, 20% RLOF, rotation: 1.2M_{CO}
- M26: M20 + 70 km/s BH kicks
- \bullet $q-M_{\text{tot,z}}$:
 - LIGO events within models
 - M20/26 better than M10
- $q-\chi_{\rm eff,max}$:
 - models found for LIGO events
- GW170104: matches found: doubly conservative