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General comments

o Cosmological constant is negative (e.g., old minimal SUGRA) or
zero (e.g., new minimal SUGRA) in unbroken supergravity without
scalars.

@ Cosmological data: we live in an expanding universe with a small
but positive cosmological constant.

@ It is desirable to develop theoretical mechanisms to explain positive
cosmological constant.

@ It has recently been recognised that such a mechanism is provided
by spontaneously broken supergravity.

@ Actually the idea is not new: it goes back to 1977 work by Deser and
Zumino (on-shell SUGRA) and 1979 work by Lindstrom and Rocek

(off-shell SUGRA). However, at that time nobody was interested in
a positive cosmological constant. Everyone wanted it to vanish.



General comments

Recent interest in A/ = 1 off-shell supergravity coupled to Goldstino
superfields (2015-2018)
@ Goldstino superfields contain the Volkov-Akulov Goldstone fermion
(Goldstino) and, sometimes, also auxiliary field(s).

@ Coupling a Goldstino superfield to off-shell supergravity leads to
spontaneously broken local supersymmetry without bringing in new
degrees of freedom, except for making the gravitino massive.
super-Higgs effect D. Volkov & V. Soroka (1973)

S. Deser & B. Zumino (1977)

@ Absence of scalars is attractive for applications.

@ Positive contribution to the cosmological constant is generated.

Volkov-Akulov action for Goldstino:
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Nilpotent chiral Goldstino superfields



Goldstino superfields

@ The concept of a Goldstino superfield was introduced by lvanov and
Kapustnikov (1977) and independently by Rotek (1978).

@ Short nilpotent chiral Goldstino superfield was proposed in 1978 by
Rocek and independently by Ivanov & Kapustnikov.

@ Long nilpotent chiral Goldstino superfield was proposed in 1989
Casalbuoni, De Curtis, Dominici, Feruglio & Gatto (CDCDFG).
Infinite-curvature limit in supersymmetric nonlinear o-model.

@ Twenty years later, the long nilpotent chiral Goldstino superfield was
rediscovered by Komargodski & Seiberg (KS). Their work triggered
modern interest in spontaneously broken rigid and local
supersymmetry.

Goldstino superfield is identified with the anomaly multiplet X of the
FZ supercurrent,

D%Jps = D X

in the IR limit.



Nilpotent chiral Goldstino superfield

R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio & R. Gatto (1989)
B Z. Komargodski & N. Seiberg (2009)
X is chiral, D3 X = 0, and obeys the nilpotency constraint

D*XDo X

2— — —
X°=0 = X= D2X

In addition, D?X is required to be nowhere vanishing, D?>X +# 0.
Dynamics of this supermultiplet is described by action

Sy = / A*xd20d20 XX — {f / d*xd%0 X + c.c.}

CDCDFG-KS model
Component fields of X:

1 1
X|:¢:ﬁ¢2 ’ DaX|:\f2¢a, _ZD2X|:F

Goldstino 1, and complex auxiliary field F are independent fields.



Nilpotent chiral Goldstino superfield

Component action
) -
10071 = [ o) (52) -
+ FF—f(F+F)|
Elimination of the auxiliary fields
F=f+ ;_D— f (1 + —f420y? — —F 8y ¢2Dw2ﬂw2)>
Upon elimination of the auxiliaries, the action becomes
Sl = —/d4x {f2 F DD +] ,

up to quartic in the Goldstino terms.
At first sight, it appears that off-shell supersymmetry is gone upon
elimination of the auxiliary fields. Actually this is not the case.



Short nilpotent chiral Goldstino superfield

M. Rotek (1978) E. Ivanov & A. Kapustnikov (1978)
¢ is chiral, Ds¢ = 0, and obeys the constraints proposed by Rocek:

¢* =0,
1 - -
fo = 7¢D2¢ .
The auxiliary field F is now a descendant of the Goldstino
F=r(14£2(a) — F4(()(8) + 70°002) +75((u)(8) + ce)
+ %f*%(a)yﬂmﬁ + 2{u)?Oy? + ?0(y*()))
=38 ((u)*(8)" + ¢ FP0((u)’ — (u)(@) + (a)°)
1 - -

+ VPP Odoy )) :

Notation: (M) = tr(M) = M,?, with M = (M,")

u=(u?), u,® =i’ i=(d,%), @,°:=-i0.,00%).



Short nilpotent chiral Goldstino superfield

Goldstino action (off-shell supersymmetry)
/ d*xd?0429 & — {f / d*xd?0 ¢ + c.c.}
= — / d*xd?0d°0 ¢ = —f / d*xd?0 ¢

Relation to the CDCDFG-KS model:

SMK, I. McArthur & G. Tartaglino-Mazzucchelli (2017)
Nilpotency condition X2 = 0 is preserved if X is locally rescaled,

S

X = X, Dyr=0.

Requiring the action
Sx = / Cxd20020 XX — { f / a*xd?0 X + c.c. |
to be stationary under such re-scalings of X leads to the equation

1 .-
—ZXD2X:fX = X=9¢



Off-shell formulations for supergravity: a review



Weyl-invariant formulation for Einstein's gravity

Einstein-Hilbert action with a cosmological term

1
Sp = —/d“xeR—/\/d“xe
2K2

Weyl-invariant reformulation S. Deser (1970)
B. Zumino (1970)

71 4 a 1 2 4
5—2/dxe(V<pVa<p+6R<p )«p),

where ¢ is a nowhere vanishing conformal compensator.
Weyl transformations

oV,=0V,+ (V)M ,  Sp=o0p

Weyl invariance is part of the gauge freedom of conformal gravity.
In the case of Weyl-invariant formulation for Einstein's gravity, imposing
Weyl gauge ¢ = ? = const takes us back to the original action.



Off-shell formulations for supergravity: a review

@ Pure 4D N =1 supergravity can be realised as conformal
supergravity coupled to a compensating supermultiplet.
M. Kaku & P. Townsend (1978)
T. Kugo & S. Uehara (1983)

o Different off-shell formulations for supergravity correspond to
different compensators.
W. Siegel & J. Gates (1979)
S. Ferrara, L. Girardello, T. Kugo & A. Van Proeyen (1983)

@ The simplest way to describe A/ = 1 conformal supergravity in
superspace is to make use of the geometry proposed by
R. Grimm, J. Wess & B. Zumino (1978)
This superspace geometry was used in the very first published work
on the old minimal formulation for N" = 1 supergravity:
J. Wess and B. Zumino, Phys. Lett. B 74, 51 (1978)
Old minimal supergravity was independently developed by
K. Stelle & P. West, Phys. Lett. B 74, 330 (1978)
S. Ferrara & P. van Nieuwenhuizen, Phys. Lett. B 74, 333 (1978)



Grimm-Wess-Zumino superspace geometry

Superspace covariant derivatives Dy = (D,, Do, D%) have the form
M - A -
Da = EAVOm —|—QAﬁ’YMB,Y + QAﬁ'YMB;y .
Graded commutation relations

{D,,Ds} = —2iDys »
{Do,Ds} = —4RM,5 , {Ds, Dy} = 4RM,;

. [p— 6 -_— 6 -
(D, Dys] = ieas(RD; + G 5Dy — (DG )My + 2W, 1,5 )
+i(DgR)Mag -
Torsion superfields R, Gag = Gag and W, 3, obey the Bianchi identities:
DyR=0, DeWap, =0, DGy = Do R

R, Gaa and W, are supergravity analogues of the scalar curvature,
traceless Ricci tensor and self-dual Weyl tensor, respectively.



Super-Weyl transformations

P. Howe & R. Tucker (1978)
_ 1 8
0Dy = (7 — *O’)Da + (Do) Mg ,

86Ds = (00— *U)D —l—('Dﬁ MY R

06Dae = =(0 4+ 7)Dos + 2(D 7)Da + = (D 0)Dq

1
2
+(DP40)Map + (D5)M,

2
R

where o is an arbitrary covariantly chiral scalar superfield, Dyo = 0.
The torsion tensors transform as follows:

dsR = 20R + %(152 —4R)7 ,
1
00 Goa = §(U+5')Gad —‘riDad(O' —5’) s

3
50— WO(,B’Y = EJWO‘:B’Y .



Off-shell formulations for supergravity: a review

@ Old minimal supergravity
Its conformal compensator is a chiral scalar superfield Sy, Dy Sp = 0,
with the super-Weyl transformation

5050 = 0'50

Pure supergravity action
3 - =

SomsG = ——5 /d4xd29d29 E SoSo + {% /d4xd29553 + c.c.} ,
K K

where E~1 = Ber(Ea) and € is the chiral density.

@ New minimal supergravity
Its conformal compensator is a real linear superfield,
L —L = (D? - 4R)L = 0, with the super-Weyl transformation

d,L=(0c+37)L

Pure supergravity action (no cosmological terms is allowed)

3 4 ,12n12p L
SNMSG:E/d xd“6d eELlnw



de Sitter supergravity



de Sitter supergravity

Old minimal supergravity coupled to a nilpotent chiral scalar X,
DX =0, X?2=0

E. Bergshoeff, D. Freedman, R. Kallosh & A. Van Proeyen (2015)
F. Hasegawa & Y. Yamada (2015)
Complete locally supersymmetric action

s = / d*xd?0d% E (f%%so +XX)
R

+ {/d4xd295 (%53 — 158X + c.c.}

Sy chiral conformal compensator, DSy = 0.
The action is super-Weyl invariant.
Cosmological constant:

2
A= f2—3% .
R



Pure de Sitte‘lj supergravity

Eric A. Bu‘zshu(,ff " Daniel Z. l'ru,dmdn ¥ Renata Kallosh,”* and Antoine Van PmCyLn
"Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, Netherlands
SITP and Department of Physics, Stanford University, Stanford, California 94305, USA
3Center for Theoretical Physics and Department of Mathematics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
“KU Leuven, Instinute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven, Belgium
(Received 30 July 2015; published 27 October 2015)

Using superconformal methods we derive an explicit de Sitter supergravity action invariant under
spontaneously broken local " = 1 supersymmetry. The supergravity multiplet interacts with a nilpotent
Goldstino multiplet. We present a complete locally supersymmetric action including the graviton and the
fermionic fields, gravitino and Goldstino, no scalars. In the global Timit when the supergravity multiplet
decouples, our action reproduces the Volkov-Akulov theory. In the unitary gauge where the Goldstino
vanishes we recover pure supergravity with the positive cosmological constant. The classical equations
of motion, with all fermions vanishing, have a maximally symmetric solution: de Sitter space.

DOI: 10.1103/PhysRevD.92.085040

L INTRODUCTION

The cosmological constant is known to be negative or
zero in pure supergravity, if there are no scalar fields [1].
Pure supergravity with a positive cosmological constant
without scalars was not previously known. In this paper we
nt the locally A" =1 supersymmetric action and
transformation rules of such a theory. De Sitter space is
a homogencous solution of the bosonic equations of
motion. Supersymmetry is spontaneously broken, so there
is no conflict with no-go theorems that prohibit lincarly
realized supersymmetry 23!

The main motivation for this work is an increasing
amount of observational evidence for an accelerating
Universe where a positive cosmological constant is a good
fit to data. The next step toward a better understanding of
dark energy is not expected before the ESA space mission
Euclid launches in 2020. It is therefore desirable to find a
simple version of de Sitter supergravity as a natural source
for the positive cosmological constant.

PACS numbers: 04.65.+¢, 11.30.Pb, 95.36.+x

Volkov-Akulov (VA) Goldstino theory [6] coupled to a
supergravity background. The global supersymmetry is
realized nonlinearly. This recent development indicates that
a scalar independent de Sitter supergravity might exist.
Another indication of the existence of such a supergravity
was presented in [7], where the proposal to couple the VA
Goldstino theory [6] to supergravity was made. However, a
complete action and transformation rules that describe this
coupling have never been presented. The supersymmetric
coupling of the gravitino and Goldstino in D = 10 at the
quadratic level in fermions was studied in [8,9]. The curved
superspace formulation of the VA Goldstino theory was
studied soon after the discovery of this theory: see for
example a review paper [10] or an application of the
constrained superfield formalism in superspace in [I1].
The relation between the superspace approach and non-
linearly realized supersymmetries was investigated in [12].

All carlier theories were not yet developed to the level

f a ity action with
broken local sunersvmmetrv. eeneralizing the eloballv




de Sitter supergravity

Bergshoeff et al. cited two old papers, probably without noticing that the
same value for the cosmological constant was actually derived in these
papers.

@ On-shell supergravity
S. Deser and B. Zumino, Phys. Rev. Lett. 38, 1433 (1977)

o Off-shell supergravity
U. Lindstrom and M. Ro&ek, Phys. Rev. D 19, 2300 (1979)

At that time, nobody was interested in a positive cosmological constant.

All attempts were targeted at getting a vanishing cosmological constant.
S. W. Hawking, “The cosmological constant is probably zero,” Phys.
Lett. 134B, 403 (1984)

Significance of the 2015 work by Bergshoeff et al. is that it has renewed
interest in spontaneously broken supergravity.



de Sitter

supergravity

Broken Supersymmetry and Supergravity

S. Deser*
'y, Waltham,

Department of Physics, Brandeis 02154

and

B. Zumino
CERN, Geneva, Swilzerland
(Received 5 April 1977)

We consider the supersymmetric l-Iiggs effect, in which a spin-} Goldstone fermion is
d away by a f the ity fields and the spin-$ gauge field

acquires the degrees of freedom approprlate to finite mass, More generally we discuss
the consistency and physical applicability of supergravity theories with broken local su-

persymmetry.

Rigorous supersymmetry implies the existence
of supermultiplets made up of fermions and bo-
sons with equal masses. If supersymmetry is to
be relevant for the physical world, it must be
broken, either softly or spontaneously. Spontane-
ous breaking of global supersymmetry gives rise
to the appearance of one or more Goldstone fer-
mions.! When global supersymmetry is promoted
to a local invariance by coupling supersymmetric
matter to supergravity, the Goldstone fermion

rsasa of a ph
analogous to the Higgs effect of ordinary gauge
theories. In this Letter we describe this super-
symmetric Higgs effect,? and consider its possi-
ble application to the construction of realistic
models.® In particular, the supersymmetric
Higgs effect gives a possible solution to the prob-

ana spin-3 field A. Irrespective of the particu-
lar field theory in which it arises, it can be char-
acterized, following Volkov and Akulov,® by the
nonlinear realization of global supersymmetry

¢Y)

where @ is the infinitesimal supersymmetry pa-
rameter and a is a constant which measures the
strength of the spontaneous breaking of supersym-
metry. The nonlinear Lagrangian for A, invari-
ant (up to a divergence) under (1), is given by

o =a"la +iaay AB, A,

Ly == (2a%)* det(s,” + ia®Xy"3, 1)
== (203" = FikyBA +... .

@)

The analogy with nonlinear pion dynamics is ap-
parent. However, the chiral group SU(2)®SU(2)



de Sitter supergravity
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formation with parameter a(x) and to make (2) in-
variant under it by coupling A to the supergravity
fields ¢,° and ¥,. The complete Lagrangian will
be rather licated. A ing its

one can easily find the first terms in an expan-

The simplest and most natural is the correspond-
ing de Sitter space and one knows that the con-
cept of mass is rather delicate there.® We next
recall the recent observations'®™* that one can
add to the supergravity Lagrangian (5) the sum

sion in the coupling a and « (gr
al constant). The Lagrangian (e = dete,)
Ly =— (2077 'e=3ixyox = (/2a) Ay ¥ +...  (3)
changes by a divergence under
o =a ta(x) +...,
eyt =—ikay ™y, 4
Sy ==2 T+,

To (3) one must add the usual supergravity La-
grangian®’

Lyg== (26 %R = 5i*""*Pay D ¥, 5)
where
=iy, ©

and R is the contracted Riemann tensor. taken as

s @
D=0, - 0, 2%,

of a ical term and of a spin-z mass term
ce —5ime Ty v Ty d,. (7)
Local supersymmetry is valid provided that the
two parameters are related by
cKk?=3m?, (8)

Indeed, the sum of (5) and (7) is then invariant un-
der a modified supersymmetry transformation,
in which the usual transformation law for the

spin-3 field, 6y, == 2« 'D,a, is replaced by
oYy =—2¢"'Dy0, [©)]
where

DyEDy +3my, (10)
(there is a corresponding change in 6w, a,,)

The of this local suver vie




de Sitter supergravity
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(cf. Ref. 7). Clearly, there exists a gauge (U gauge) where y=0 =@=0 and F=1/a.
The action invariant under the transformation (5a) is found by applying the density formula?®:

1= @580 [500x) = VT8 ok + @, 8 + 304”1 A% M aa ¥ "42) + 0o}
(5b)

Te oa
= fd ‘x[ﬂsw‘/; (CADg X + XV Dyprx®) 2 ] )

where £; is the supergravity Lagrangian.®
In the U gauge the action (5b) reduces to

Iy:fd‘x(ssc—z—i;). (5¢)

The supergravity Lagrangian £ can be taken to include a separately invariant term,
L =me(S*+ 5N 1y + a4 v o) (54)

and necessarily contains the auxiliary spin-0 field in the combination —(e/3)8$8*; integrating out the aux-
iliary field § (still in the U gauge) leads to a cosmological term, e(3#" - 1/24%), which vanishes for m”
=1/64°, in agreement with Ref. 7, and leaves the spin-£ field with a mass m=1/aVg. In a general gauge,
the relevant terms quadratic or lower in y'are

1 .
§88* +m(8*+8) -3 —g(x‘ W aar XA 40 - 3+ sx’z)] .




Goldstino superfields

Is there anything unique in the nilpotent Goldstino superfield used by
Bergshoeff et al. 7 Conceptually, not much. However, one technical
aspect makes X very useful to deal with: X? = 0 is model independent.

Its defining constraints
DX =0, X?=0

are invariant under local rescalings X — e” X, D47 =0.
Requiring the complete action for supergravity coupled to X,

5= / d*xd?0d%0 E (—%5050 +XX)
K

1
+ {/d4xd205 (?53 - f5§X) + c.c.} ,

to be stationary under such re-scalings gives X = ¢, where ¢ is the
Goldstino superfield used by Lindstrom and Ro&ek,

Dip=0, #=0, o= 1o(D° 4R



Goldstino superfields

In the presence of matter, the nonlinear constraint obeyed by ¢ gets
deformed.
Example:

S = / d*xd?0d%0 E (7%5050 =T KOD) L XXT(0, q‘>))
+ { / d*xd20 & (53 W(P) — sgxg(cb)) + C.c.} ,

Requiring the complete action to be stationary under local re-scalings
X — e’ X, Dir=0

leads to deformed nonlinear constraint

F(®)S3X = %X(ﬁ ~4R)(XT(0,))



Two families of Goldstino superfields



Two families of Goldstino superfields

There are two general types of AV = 1 Goldstino superfields.
I. Bandos, M. Heller, SMK, L. Martucci & D. Sorokin (2016)

@ Irreducible Goldstino superfields
Every irreducible Goldstino superfield contains only one independent
component field — the Goldstino itself, while the other component
fields are composites constructed from the Goldstino.

@ Reducible Goldstino superfields
Every reducible Goldstino superfield contains at least two
independent fields, one of which is the Goldstino and the other fields
are auxiliary (the latter become descendants of the Goldstino on the
mass shell).

@ Every reducible Goldstino superfield can be represented as an
irreducible one plus a “matter” superfield, which contains all the
auxiliary component fields. (Example will be provided below.)



Irreducible Goldstino superfields

Scalar Goldstino superfields (all of them are nilpotent)

e Chiral superfield E. lvanov & A. Kapustnikov; M. Rotek (1978)
1 - -
Da¢p=0, ¢*=0, fp=-76D%
@ Improved complex linear superfield SMK & S. Tyler (2011)
152 2 lemo
—ZDT=f, =0, D,I=-;ID°D.F
o Complex linear superfield S. Tyler (2011)
_ 1 e
D*r =0, rz=o, fr:-ZrD2r

F. Farakos, O. Hulik, P. Koci & R. von Unge (2015)



Irreducible Goldstino superfields

Scalar Goldstino superfields (continued)

@ Real superfield

V2 =0, VDaDgV =0, VDaDgDcV =0

1 _
fv = —vD*D?D,,
% 16v y

[. Bandos, M. Heller, SMK, L. Martucci & D. Sorokin (2016)

Explicit realisation for V was given long ago:
fV = ¢¢

U. Lindstréom and M. Ro¢ek (1979)
Another realisation for V:

fVv=5%y

SMK & S. Tyler (2011)



Irreducible Goldstino superfields

Spinor Goldstino superfields
For every irreducible spinor Goldstino superfield, its spinor covariant
derivatives must be some functions of this superfield and its spacetime

derivatives.
@ Volkov-Akulov Goldstino E. Ivanov & A. Kapustnikov (1978)
Dol = —feas —if 'A*0ualg,  Dalg = —if NOpal\s .
@ Chiral realisation S. Samuel and J. Wess (1983)

DaZp = —feap, Ds=p = —2if 1=%00u=p -

In supergravity, the spinor Goldstino superfields are less convenient
to deal with than the scalar ones.



Irreducible Goldstino superfields

@ All irreducible Goldstino superfields are equivalent
Uniqueness of the Goldstino
D. Volkov & V. Akulov (1972)
E. Ivanov & A. Kapustnikov (1978)

@ All the irreducible Goldstino superfields can be realised as
descendants of (any) one of them.

Example:
1., c

fo = _ZD (xY),
fYv=53sxy,

I o
=% — —(DsX)D*%L |

4f( )

1 -
= = =D, X

2



Reducible Goldstino superfields

In addition to the nilpotent chiral scalar X discussed above,
there also exists a nilpotent real scalar V = V with the properties:

V2=0, VDsDgV =0, VDsDgDcV =0.

SMK, I. McArthur & G. Tartaglino-Mazzucchelli (2017)
These nilpotency constraints have to l_)e supplemented with
the requirement that D*W,, = D, W< #£ 0 , where

1 -
W, =—-=-D°D,V .
4

V has two independent component fields:
(i) Goldstino ox W, |g=0; and (ii) auxiliary D-field oc D*W,|g=o-
All other component fields of V' are composite ones, in particular
W2 w2
V=-it— W? = wew,,
(DaW,)3 "’

Dynamics is governed by the action

_c1 _
_ 412012 a2 _
5_/dxd 9d0{16VD D“D,V 2f\/}



Reducible Goldstino superfields

Nilpotency constraints
V2=0, VDsDgV =0, VDaDgDcV =0

are invariant under local re-scalings of V/,

V — e’V ,
where p is an arbitrary real scalar superfield. Requiring the action

_c1 _
S= /d4xd26d29 {R VD D?D,V — 2V}
to be stationary under such rescalings leads to the constraint
v = Lvpepop,v
16 “

which expresses the auxiliary field of V in terms of the Goldstino.
Reducible Goldstino superfield V' turns into V, which is irreducible.



Reducible & irreducible Goldstino superfields

@ Irreducible complex linear Goldstino superfield
1> 2 I =
_ZD Y =", ¥° =0, fDaZ:—ZZD D,¥

can be realised as a descendant of V

D?v
Y= —A4f———
D2p2v
@ Remarkable feature of this representation is that
¥ is invariant under local re-scalings of V/,

0p,V=pV = 6,X=0, p=p.

@ Since every irreducible Goldstino superfield is a descendant of ¥ and
¥, all irreducible Goldstino superfields, realised as descendants of V/,
are invariant under local re-scalings of V.

E. Buchbinder & SMK (2017)



Reducible & irreducible Goldstino superfields

@ Irreducible complex linear Goldstino superfield

1- 1_ -
—ZDzz:f, Y2 =0, fDaZ:—ZZDzDaZ

can be realised as a descendant of X

@ Remarkable feature of this representation is that ¥ is invariant under
local re-scalings of X,

X=X = 0,2=0, Dsym=0.

@ Since every irreducible Goldstino superfield is a descendant of ¥ and
Y, aII_irreducibIe Goldstino superfields, realised as descendants of X
and X, are invariant under local re-scalings of X.

E. Buchbinder & SMK (2017)



Reducible & irreducible Goldstino superfields

@ Every reducible Goldstino superfield can be represented as an
irreducible one plus a “matter” superfield, which contains all the
auxiliary component fields.

Reducible Goldstino superfield V' can be realised as

1 D%V
V= =-3¥ Y= —Af———
V+U, 1% 7 , 5202y

“Matter” superfield U obeys the generalised nilpotency condition

U>+2vU=0



Reducible Goldstino superfields: from X to V

Nilpotency constraints
V2=0, VDsDgV =0, VDsDgDcV =0
are identically satisfied if V' is given by
vV =XX, DyX=0, X?>=0,
compare with the irreducible case:
fv=oo.
V-action
S= /d4xd29d29‘ {%6 VD D?D,V — 2V}
turns into higher-derivative action

o1 . _
_ 412012 o YPB% _
S /d xd?6d 9{16f2D XDaXD; XD’ X 2XX} .



Unique features of nilpotent three-form multiplet



Three-form multiplet

Three-form multiplet as a variant scalar multiplet J. Gates (1981)
1, -
y = _ZD u 5 Z/{ = Z/l 5
where real prepotential U is unconstrained. Its specific feature is
D2y - DQJ_} = iaaduad ) Uns = [Dou Dd]u )

which means that the auxiliary F-field of ) is

1
_ZD2y|:F:H+iG7 G=29,C?
Gauge symmetry: U =1L, L=1L, D?L=0,
for any linear multiplet L. Reducible gauge theory

Quantisation of the three-form multiplet coupled to supergravity:
|. Buchbinder & SMK (1988)



Nilpotent three-form multiplet

Infrared limit of a nonlinear o-model E. Buchbinder & SMK (2017)
S— / dxd20d20 K (P, V) + { / d*xd20 W(Y) + c.c.}
leads to nilpotent three-form multiplet

1 - _
y:fZDZZ/l, U=u
=0

described by action

=l

= /d4xd29d29‘37y - {h/d4xd29y+ c.c.} . h=

The same Goldstino superfield was introduced by
F. Farakos, A. Kehagias, D. Racco & A. Riotto (2016)
as a variant formulation of the nilpotent chiral multiplet X.



Goldstino superfields and cosmological constant

@ All irreducible Goldstino superfields, as well as the reducible
Goldstino superfields X and V/, produce a universal positive
contribution, 2, to the cosmological constant,

A= >+ Aaas

where Apgs = —3";—; comes from a supersymmetric cosmological
term. The latter exists only for (i) old minimal supergravity (and its
variant versions); and (ii) n = —1 non-minimal supergravity.

o Nilpotent three-form multiplet ) is the only known Goldstino
superfield, which produces two separate positive contributions to the
cosmological constant coming from its auxiliary fields, F = H +iG,
of which H is a scalar and G is the field strength of a gauge
three-form.

@ While the contribution from H is uniquely determined by the
parameter h, the contribution from G is dynamical.
The latter may be used to cancel the contribution from Aags.



Gauge three-form and cosmological constant

@ Idea to use massless gauge three-forms to generate a cosmological
constant dynamically.
V. Ogievetsky & E. Sokatchev (1980)
M. Duff & P. van Nieuwenhuizen (1980)
A. Aurilia, H. Nicolai & P. Townsend (1980)

@ Further developments
S. Hawking
M. Duff
M. Duncan & L. Jensen
R. Bousso & J. Polchinski

1984)
1989)
1990)
2000)

.~~~ A~



Subtle feature of gauge three-form

M. Duff, “The cosmological constant is possibly zero, but the proof is
probably wrong,” Phys. Lett. B 226, 36 (1989)

1
S= P 2/d“xe:‘i’ /\/d4xe+/d4xe (V.C?)?
Equation of motion for the three-form
ViavV-C)=0 = V,C°=c=const
Equation of motion for the gravitational field

1 1
?(Rmn - EgmnR) + /\gmn =Tmn, Tmn= _gmn(v . C)2 = _C2gmn

Correct effective cosmological constant: A + c2.
However, plugging the solution for C? back in S would give

= 1 4 2/4
S—2H2/dxeR (AN=c%) [ d*xe



Nilpotent supergravity



Nilpotent supergravity

@ Various approaches to nilpotent supergravity:

|. Antoniadis, E. Dudas, S. Ferrara & A. Sagnotti [arXiv:1403.3269]

E. Dudas, S. Ferrara, A. Kehagias & A. Sagnotti [arXiv:1507.07842]

I. Antoniadis & C. Markou [arXiv:1508.06767]

N. Cribiori, G. Dall'Agata, F. Farakos & M. Porrati [arXiv:1611.01490]

@ My presentation follows the observations made in:
SMK [arXiv:1508.03190]
SMK, I. McArthur & G. Tartaglino-Mazzucchelli [arXiv:1702.02423].
SMK [arXiv:1801.02311]



Nilpotent supergravity |

Consider supergravity-matter system with action
S = Somsc + S[X, X]

The first term is the action for old minimal supergravity,
Somsc = —— /d4xd29d20 E 5050 + { /d4xd29550 tee
where Sy is the chiral compensator. S[X, X] is the Goldstino action
SIX, X] = /d4xd29d29'5>‘<x - {f/d4xd2eesgx+c.c.} :

where X is a nilpotent chiral scalar, D4 X = 0 and X2 = 0. Then

2 X

_ leom e
s R=—357(0" —4R)%

= R — ——ff
5505 0 = I K

This equation of motion implies nilpotency condition

(R—pu)?>=0



Nilpotent supergravity |

Making use of the equation of motion for Sp,

2 X
R—p=—-fr*=
H=73" g

supergravity-matter action S = Somsg + S[X, X] turns into
higher-derivative pure supergravity action

_ 3.)? 4,129 120 F 2 1#/ 4,12 3
s_(m) /dxd9d9E5050|R 4l {5? dxd9€50+c.c.}

where R is subject to the nilpotency condition

(R—p)?=0



Nilpotent supergravity |l

Consider supergravity-matter system with action S = Somsc + S[V].
The first term in S is the action for old minimal supergravity.
The second term in S is the Goldstino action given by

_ 1 _ -
S[V] = /d4xd20d20 E {T6 VDY (D? — 4RYD,V — 2f5050v} ,
where the real scalar V' obeys the nilpotency conditions
V2 =0, VDsDgV =0, VDsDgDcV =0

Varying S = Somsc + S[V] with respect to Sy gives

fr? 272 S

This equation of motion implies nilpotency condition

(R—pu)*=0



Nilpotent supergravity |l

Making use of the equation of motion for Sy,

fK/2 —2 /2 =

supergravity-matter action S = Somsg + S[V] turns into
higher-derivative pure supergravity action

_ 3 )2 4 02120 F & 2 1 412 3
s_(m) /dxd 020 E 505 [R — 4 —{Eﬁ/dxd 9550+c.c.}

where R is subject to the nilpotency condition
R—pu)*=0

The above higher-derivative action coincides with that we derived earlier
in the case of the nilpotent chiral Goldstino superfield X.



Nilpotent supergravity IlI

Consider supergravity-matter system with S = Symsc + S[V].
The first term is the new minimal supergravity action.

L - _
Snmse = /d4xd29d29EILln|5 g L-L= (D* —4R)L =0

in which L is the compensator, while the chiral scalar Sy is a purely
gauge degree of freedom. New minimal supergravity is known to allow no
supersymmetric cosmological term.

The Goldstino action is

_ 1 —
S[V] = /d4xd29d29 E {R VD(D? — 4RYD,V — szv} ,
where the real scalar V obeys the nilpotency conditions
V2 =0, VDasDgV =0, VDsDgDcV =0
We now vary S = Symsc + S[V] with respect to the compensator

L= Da’]?a + Z_)dﬁd 5 Z_)ﬁna =0



Nilpotent supergravity IlI

The resulting equation of motion is

3 1 - L
—W, =W, , W, = —=(D? — 4R)Dyln—-
2f K2 3 JPalnig
where W, := —1(D? — 4R)D, V. Then, supergravity-matter action

S = Snmsc + S[V] turns into higher-derivative pure supergravity action

3 \2
=(—> d*xd?0 £ WW,, .
s (4f/<:2> / xd0E
With no Goldstino being present, this is the action for R? supergravity
within the new minimal formulation.
S. Cecotti, S. Ferrara, M. Porrati & S. Sabharwal (1988)
The nilpotency conditions imposed on V imply



Nilpotent tensor multiplet

_ SMK [arXiv:1712.09258]
Real scalar superfield G = G subject to a deformed linear constraint

1 1-
—ZDzG:ﬁzconst — —ZDzG:u:const,

for some non-zero complex parameter .
G = o+ 0%y + 050 + 021 + 0% + 00°AH,
i e -1 .-
702 3 ag _ 7020 a ) — 70202D
+50°0,00°0 — S52600°0, — 367070

H? Hodge-dual of the field strength of a gauge two-form, d,H? = 0.
Dynamics is described by action

S = 7/d4xd20d29_ G’ = /d“x,c ,
2 1 a : a 7 1 a
L= =2|u| —58 P00 — o0, + EH H, .

Nilpotent tensor multiplet: G* = 0.
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