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General comments

Cosmological constant is negative (e.g., old minimal SUGRA) or
zero (e.g., new minimal SUGRA) in unbroken supergravity without
scalars.

Cosmological data: we live in an expanding universe with a small
but positive cosmological constant.

It is desirable to develop theoretical mechanisms to explain positive
cosmological constant.

It has recently been recognised that such a mechanism is provided
by spontaneously broken supergravity.

Actually the idea is not new: it goes back to 1977 work by Deser and
Zumino (on-shell SUGRA) and 1979 work by Lindström and Roček
(off-shell SUGRA). However, at that time nobody was interested in
a positive cosmological constant. Everyone wanted it to vanish.



General comments

Recent interest in N = 1 off-shell supergravity coupled to Goldstino
superfields (2015–2018)

Goldstino superfields contain the Volkov-Akulov Goldstone fermion
(Goldstino) and, sometimes, also auxiliary field(s).

Coupling a Goldstino superfield to off-shell supergravity leads to
spontaneously broken local supersymmetry without bringing in new
degrees of freedom, except for making the gravitino massive.
super-Higgs effect D. Volkov & V. Soroka (1973)

S. Deser & B. Zumino (1977)

Absence of scalars is attractive for applications.

Positive contribution to the cosmological constant is generated.

Volkov-Akulov action for Goldstino:

SVA = −f 2

∫
d4x det

(
δam +

i

2f 2
(χσa∂mχ̄− ∂mχσaχ̄

)
= −

∫
d4x
(
f 2 + iχσm∂mχ̄+ . . .

)



Nilpotent chiral Goldstino superfields



Goldstino superfields

The concept of a Goldstino superfield was introduced by Ivanov and
Kapustnikov (1977) and independently by Roček (1978).

Short nilpotent chiral Goldstino superfield was proposed in 1978 by
Roček and independently by Ivanov & Kapustnikov.

Long nilpotent chiral Goldstino superfield was proposed in 1989
Casalbuoni, De Curtis, Dominici, Feruglio & Gatto (CDCDFG).
Infinite-curvature limit in supersymmetric nonlinear σ-model.

Twenty years later, the long nilpotent chiral Goldstino superfield was
rediscovered by Komargodski & Seiberg (KS). Their work triggered
modern interest in spontaneously broken rigid and local
supersymmetry.
Goldstino superfield is identified with the anomaly multiplet X of the
FZ supercurrent,

D̄α̇Jαα̇ = DαX ,

in the IR limit.



Nilpotent chiral Goldstino superfield

R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio & R. Gatto (1989)
Z. Komargodski & N. Seiberg (2009)

X is chiral, D̄α̇X = 0, and obeys the nilpotency constraint

X 2 = 0 =⇒ X = −DαXDαX

D2X

In addition, D2X is required to be nowhere vanishing, D2X 6= 0.
Dynamics of this supermultiplet is described by action

SX =

∫
d4xd2θd2θ̄ X̄X −

{
f

∫
d4xd2θX + c.c.

}
CDCDFG–KS model

Component fields of X :

X | = ϕ =
1

2F
ψ2 , DαX | =

√
2ψα , −1

4
D2X | = F

Goldstino ψα and complex auxiliary field F are independent fields.



Nilpotent chiral Goldstino superfield

Component action

S [ψ,F ] =

∫
d4x

[
− ∂a

(ψ2

2F

)
∂a
( ψ̄2

2F̄

)
− iψα∂αα̇ψ̄

α̇

+ F F̄ − f (F + F̄ )
]

Elimination of the auxiliary fields

F = f +
ψ̄2

2F̄ 2
2
ψ2

2F
= f

(
1 +

1

4
f −4ψ̄22ψ2 − 1

16
f −8(ψ2ψ̄22ψ22ψ̄2)

)
Upon elimination of the auxiliaries, the action becomes

S [ψ] = −
∫

d4x
[
f 2 + iψα∂αα̇ψ̄

α̇ + . . .
]
,

up to quartic in the Goldstino terms.
At first sight, it appears that off-shell supersymmetry is gone upon
elimination of the auxiliary fields. Actually this is not the case.



Short nilpotent chiral Goldstino superfield

M. Roček (1978) E. Ivanov & A. Kapustnikov (1978)
φ is chiral, D̄α̇φ = 0, and obeys the constraints proposed by Roček:

φ2 = 0 ,

f φ = −1

4
φD̄2φ̄ .

The auxiliary field F is now a descendant of the Goldstino

F =f
(

1 + f −2
〈
ū
〉
− f −4

(〈
u
〉〈
ū
〉

+
1

4
ψ̄22ψ2

)
+ f −6(

〈
u
〉2〈

ū
〉

+ c.c.)

+
1

4
f −6
(〈
ū
〉
ψ22ψ̄2 + 2

〈
u
〉
ψ̄22ψ2 + ψ̄22(ψ2

〈
ū
〉
)
)

− 3f −8
(〈
u
〉2〈

ū
〉2

+
1

4
ψ2ψ̄22(

〈
u
〉2 −

〈
u
〉〈
ū
〉

+
〈
ū
〉2

)

+
1

16
ψ2ψ̄22ψ̄22ψ2

))
.

Notation:
〈
M
〉

= tr(M) = Ma
a, with M = (Ma

b)

u = (ua
b) , ua

b := iψσb∂aψ̄ , ū = (ūa
b) , ūa

b := −i∂aψσbψ̄ .



Short nilpotent chiral Goldstino superfield

Goldstino action (off-shell supersymmetry)

Sφ =

∫
d4xd2θd2θ̄ φ̄φ−

{
f

∫
d4xd2θ φ + c.c.

}
= −

∫
d4xd2θd2θ̄ φ̄φ = −f

∫
d4xd2θ φ

Relation to the CDCDFG–KS model:
SMK, I. McArthur & G. Tartaglino-Mazzucchelli (2017)

Nilpotency condition X 2 = 0 is preserved if X is locally rescaled,

X → eτX , D̄α̇τ = 0 .

Requiring the action

SX =

∫
d4xd2θd2θ̄ X̄X −

{
f

∫
d4xd2θX + c.c.

}
to be stationary under such re-scalings of X leads to the equation

−1

4
XD̄2X̄ = fX =⇒ X = φ



Off-shell formulations for supergravity: a review



Weyl-invariant formulation for Einstein’s gravity

Einstein-Hilbert action with a cosmological term

SEH =
1

2κ2

∫
d4x e R − Λ

∫
d4x e

Weyl-invariant reformulation S. Deser (1970)
B. Zumino (1970)

S =
1

2

∫
d4x e

(
∇aϕ∇aϕ+

1

6
Rϕ2 − λϕ4

)
,

where ϕ is a nowhere vanishing conformal compensator.
Weyl transformations

δ∇a = σ∇a + (∇bσ)Mba , δϕ = σϕ

Weyl invariance is part of the gauge freedom of conformal gravity.
In the case of Weyl-invariant formulation for Einstein’s gravity, imposing

Weyl gauge ϕ =
√

6
κ = const takes us back to the original action.



Off-shell formulations for supergravity: a review

Pure 4D N = 1 supergravity can be realised as conformal
supergravity coupled to a compensating supermultiplet.

M. Kaku & P. Townsend (1978)
T. Kugo & S. Uehara (1983)

Different off-shell formulations for supergravity correspond to
different compensators.

W. Siegel & J. Gates (1979)
S. Ferrara, L. Girardello, T. Kugo & A. Van Proeyen (1983)

The simplest way to describe N = 1 conformal supergravity in
superspace is to make use of the geometry proposed by

R. Grimm, J. Wess & B. Zumino (1978)
This superspace geometry was used in the very first published work
on the old minimal formulation for N = 1 supergravity:

J. Wess and B. Zumino, Phys. Lett. B 74, 51 (1978)
Old minimal supergravity was independently developed by

K. Stelle & P. West, Phys. Lett. B 74, 330 (1978)
S. Ferrara & P. van Nieuwenhuizen, Phys. Lett. B 74, 333 (1978)



Grimm-Wess-Zumino superspace geometry

Superspace covariant derivatives DA = (Da,Dα, D̄α̇) have the form

DA = EA
M∂M + ΩA

βγMβγ + Ω̄A
β̇γ̇M̄β̇γ̇ .

Graded commutation relations

{Dα, D̄α̇} = −2iDαα̇ ,
{Dα,Dβ} = −4R̄Mαβ , {D̄α̇, D̄β̇} = 4RM̄α̇β̇ ,[
Dα,Dββ̇

]
= iεαβ

(
R̄ D̄β̇ + Gγ

β̇Dγ − (DγG δ
β̇)Mγδ + 2W̄β̇

γ̇δ̇M̄γ̇δ̇

)
+i(D̄β̇R̄)Mαβ .

Torsion superfields R, Gαα̇ = Ḡαα̇ and Wαβγ obey the Bianchi identities:

D̄α̇R = 0 , D̄α̇Wαβγ = 0 , D̄α̇Gαα̇ = DαR

R, Gαα̇ and Wαβγ are supergravity analogues of the scalar curvature,
traceless Ricci tensor and self-dual Weyl tensor, respectively.



Super-Weyl transformations

P. Howe & R. Tucker (1978)

δσDα = (σ̄ − 1

2
σ)Dα + (Dβσ)Mαβ ,

δσD̄α̇ = (σ − 1

2
σ̄)D̄α̇ + (D̄β̇ σ̄)M̄α̇β̇ ,

δσDαα̇ =
1

2
(σ + σ̄)Dαα̇ +

i

2
(D̄α̇σ̄)Dα +

i

2
(Dασ)D̄α̇

+(Dβα̇σ)Mαβ + (Dαβ̇ σ̄)M̄α̇β̇ ,

where σ is an arbitrary covariantly chiral scalar superfield, D̄α̇σ = 0.
The torsion tensors transform as follows:

δσR = 2σR +
1

4
(D̄2 − 4R)σ̄ ,

δσGαα̇ =
1

2
(σ + σ̄)Gαα̇ + iDαα̇(σ − σ̄) ,

δσWαβγ =
3

2
σWαβγ .



Off-shell formulations for supergravity: a review

Old minimal supergravity
Its conformal compensator is a chiral scalar superfield S0, D̄α̇S0 = 0,
with the super-Weyl transformation

δσS0 = σS0

Pure supergravity action

SOMSG = − 3

κ2

∫
d4xd2θd2θ̄ E S̄0S0 +

{ µ
κ2

∫
d4xd2θ E S3

0 + c.c.
}
,

where E−1 = Ber(EA
M) and E is the chiral density.

New minimal supergravity
Its conformal compensator is a real linear superfield,
L̄− L = (D̄2 − 4R)L = 0, with the super-Weyl transformation

δσL = (σ + σ̄)L

Pure supergravity action (no cosmological terms is allowed)

SNMSG =
3

κ2

∫
d4xd2θd2θ̄ E L ln

L
|S0|2



de Sitter supergravity



de Sitter supergravity

Old minimal supergravity coupled to a nilpotent chiral scalar X ,

D̄α̇X = 0 , X 2 = 0

E. Bergshoeff, D. Freedman, R. Kallosh & A. Van Proeyen (2015)
F. Hasegawa & Y. Yamada (2015)

Complete locally supersymmetric action

S =

∫
d4xd2θd2θ̄ E

(
− 3

κ2
S̄0S0 + X̄X

)
+

{∫
d4xd2θ E

( µ
κ2

S3
0 − fS2

0X
)

+ c.c.

}
S0 chiral conformal compensator, D̄α̇S0 = 0.
The action is super-Weyl invariant.
Cosmological constant:

Λ = f 2−3
|µ|2

κ2
.





de Sitter supergravity

Bergshoeff et al. cited two old papers, probably without noticing that the
same value for the cosmological constant was actually derived in these
papers.

On-shell supergravity
S. Deser and B. Zumino, Phys. Rev. Lett. 38, 1433 (1977)

Off-shell supergravity
U. Lindström and M. Roček, Phys. Rev. D 19, 2300 (1979)

At that time, nobody was interested in a positive cosmological constant.

All attempts were targeted at getting a vanishing cosmological constant.
S. W. Hawking, “The cosmological constant is probably zero,” Phys.
Lett. 134B, 403 (1984)

Significance of the 2015 work by Bergshoeff et al. is that it has renewed
interest in spontaneously broken supergravity.



de Sitter supergravity



de Sitter supergravity



de Sitter supergravity



Goldstino superfields

Is there anything unique in the nilpotent Goldstino superfield used by
Bergshoeff et al. ? Conceptually, not much. However, one technical
aspect makes X very useful to deal with: X 2 = 0 is model independent.

Its defining constraints

D̄α̇X = 0 , X 2 = 0

are invariant under local rescalings X → eτX , D̄α̇τ = 0.
Requiring the complete action for supergravity coupled to X ,

S =

∫
d4xd2θd2θ̄ E

(
− 3

κ2
S̄0S0 + X̄X

)
+

{∫
d4xd2θ E

( µ
κ2

S3
0 − fS2

0X
)

+ c.c.

}
,

to be stationary under such re-scalings gives X = φ, where φ is the
Goldstino superfield used by Lindström and Roček,

D̄α̇φ = 0 , φ2 = 0 , fS2
0φ = −1

4
φ(D̄2 − 4R)φ̄



Goldstino superfields

In the presence of matter, the nonlinear constraint obeyed by φ gets
deformed.
Example:

S =

∫
d4xd2θd2θ̄ E

(
− 3

κ2
S̄0S0 e

−κ2

3 K(Φ,Φ̄) + X̄XΥ(Φ, Φ̄)
)

+

{∫
d4xd2θ E

(
S3

0W (Φ)− S2
0XF(Φ)

)
+ c.c.

}
,

Requiring the complete action to be stationary under local re-scalings

X → eτX , D̄α̇τ = 0

leads to deformed nonlinear constraint

F(Φ)S2
0X = −1

4
X (D̄2 − 4R)

(
X̄Υ(Φ, Φ̄)

)



Two families of Goldstino superfields



Two families of Goldstino superfields

There are two general types of N = 1 Goldstino superfields.
I. Bandos, M. Heller, SMK, L. Martucci & D. Sorokin (2016)

Irreducible Goldstino superfields
Every irreducible Goldstino superfield contains only one independent
component field – the Goldstino itself, while the other component
fields are composites constructed from the Goldstino.

Reducible Goldstino superfields
Every reducible Goldstino superfield contains at least two
independent fields, one of which is the Goldstino and the other fields
are auxiliary (the latter become descendants of the Goldstino on the
mass shell).

Every reducible Goldstino superfield can be represented as an
irreducible one plus a “matter” superfield, which contains all the
auxiliary component fields. (Example will be provided below.)



Irreducible Goldstino superfields

Scalar Goldstino superfields (all of them are nilpotent)

Chiral superfield E. Ivanov & A. Kapustnikov; M. Roček (1978)

D̄α̇φ = 0 , φ2 = 0 , f φ = −1

4
φD̄2φ̄

Improved complex linear superfield SMK & S. Tyler (2011)

−1

4
D̄2Σ = f , Σ2 = 0 , fDαΣ = −1

4
ΣD̄2DαΣ

Complex linear superfield S. Tyler (2011)

D̄2Γ = 0 , Γ2 = 0 , f Γ = −1

4
ΓD̄2Γ̄

F. Farakos, O. Hulik, P. Koci & R. von Unge (2015)



Irreducible Goldstino superfields

Scalar Goldstino superfields (continued)

Real superfield

V2 = 0 , VDADBV = 0 , VDADBDCV = 0

f V =
1

16
VDαD̄2DαV

I. Bandos, M. Heller, SMK, L. Martucci & D. Sorokin (2016)

Explicit realisation for V was given long ago:

f V = φ̄φ

U. Lindström and M. Roček (1979)
Another realisation for V:

f V = Σ̄Σ

SMK & S. Tyler (2011)



Irreducible Goldstino superfields

Spinor Goldstino superfields
For every irreducible spinor Goldstino superfield, its spinor covariant
derivatives must be some functions of this superfield and its spacetime
derivatives.

Volkov-Akulov Goldstino E. Ivanov & A. Kapustnikov (1978)

DαΛβ = −f εαβ − if −1Λ̄α̇∂αα̇Λβ , D̄α̇Λβ = −if −1Λα∂αα̇Λβ .

Chiral realisation S. Samuel and J. Wess (1983)

DαΞβ = −f εαβ , D̄α̇Ξβ = −2if −1Ξα∂αα̇Ξβ .

In supergravity, the spinor Goldstino superfields are less convenient
to deal with than the scalar ones.



Irreducible Goldstino superfields

All irreducible Goldstino superfields are equivalent
Uniqueness of the Goldstino

D. Volkov & V. Akulov (1972)
E. Ivanov & A. Kapustnikov (1978)

All the irreducible Goldstino superfields can be realised as
descendants of (any) one of them.
Example:

f φ = −1

4
D̄2(Σ̄Σ) ,

f V = Σ̄Σ ,

Γ = Σ̄− 1

4f
(D̄α̇Σ)D̄α̇Σ̄ ,

Ξα =
1

2
DαΣ̄



Reducible Goldstino superfields

In addition to the nilpotent chiral scalar X discussed above,
there also exists a nilpotent real scalar V = V̄ with the properties:

V 2 = 0 , VDADBV = 0 , VDADBDCV = 0 .

SMK, I. McArthur & G. Tartaglino-Mazzucchelli (2017)
These nilpotency constraints have to be supplemented with
the requirement that DαWα ≡ D̄α̇W̄

α̇ 6= 0 , where

Wα = −1

4
D̄2DαV .

V has two independent component fields:
(i) Goldstino ∝Wα|θ=0; and (ii) auxiliary D-field ∝ DαWα|θ=0.
All other component fields of V are composite ones, in particular

V = −4
W 2W̄ 2

(DαWα)3
, W 2 = W αWα

Dynamics is governed by the action

S =

∫
d4xd2θd2θ̄

{ 1

16
VDαD̄2DαV − 2fV

}



Reducible Goldstino superfields

Nilpotency constraints

V 2 = 0 , VDADBV = 0 , VDADBDCV = 0

are invariant under local re-scalings of V ,

V → eρV ,

where ρ is an arbitrary real scalar superfield. Requiring the action

S =

∫
d4xd2θd2θ̄

{ 1

16
VDαD̄2DαV − 2fV

}
to be stationary under such rescalings leads to the constraint

fV =
1

16
VDαD̄2DαV ,

which expresses the auxiliary field of V in terms of the Goldstino.
Reducible Goldstino superfield V turns into V, which is irreducible.



Reducible & irreducible Goldstino superfields

Irreducible complex linear Goldstino superfield

−1

4
D̄2Σ = f , Σ2 = 0 , fDαΣ = −1

4
ΣD̄2DαΣ

can be realised as a descendant of V

Σ = −4f
D2V

D̄2D2V

Remarkable feature of this representation is that
Σ is invariant under local re-scalings of V ,

δρV = ρV =⇒ δρΣ = 0 , ρ̄ = ρ .

Since every irreducible Goldstino superfield is a descendant of Σ and
Σ̄, all irreducible Goldstino superfields, realised as descendants of V ,
are invariant under local re-scalings of V .

E. Buchbinder & SMK (2017)



Reducible & irreducible Goldstino superfields

Irreducible complex linear Goldstino superfield

−1

4
D̄2Σ = f , Σ2 = 0 , fDαΣ = −1

4
ΣD̄2DαΣ

can be realised as a descendant of X̄

Σ = −4f
X̄

D̄2X̄
,

Remarkable feature of this representation is that Σ is invariant under
local re-scalings of X ,

δτX = τX =⇒ δτΣ = 0 , D̄α̇τ = 0 .

Since every irreducible Goldstino superfield is a descendant of Σ and
Σ̄, all irreducible Goldstino superfields, realised as descendants of X
and X̄ , are invariant under local re-scalings of X .

E. Buchbinder & SMK (2017)



Reducible & irreducible Goldstino superfields

Every reducible Goldstino superfield can be represented as an
irreducible one plus a “matter” superfield, which contains all the
auxiliary component fields.

Reducible Goldstino superfield V can be realised as

V = V + U , V =
1

f
Σ̄Σ , Σ = −4f

D2V

D̄2D2V

“Matter” superfield U obeys the generalised nilpotency condition

U2 + 2VU = 0



Reducible Goldstino superfields: from X to V

Nilpotency constraints

V 2 = 0 , VDADBV = 0 , VDADBDCV = 0

are identically satisfied if V is given by

fV = X̄X , D̄α̇X = 0 , X 2 = 0 ,

compare with the irreducible case:

f V = φ̄φ .

V -action

S =

∫
d4xd2θd2θ̄

{ 1

16
VDαD̄2DαV − 2fV

}
turns into higher-derivative action

S =

∫
d4xd2θd2θ̄

{ 1

16f 2
DαXDαXD̄β̇X̄ D̄ β̇X̄ − 2X̄X

}
.



Unique features of nilpotent three-form multiplet



Three-form multiplet

Three-form multiplet as a variant scalar multiplet J. Gates (1981)

Y = −1

4
D̄2U , Ū = U ,

where real prepotential U is unconstrained. Its specific feature is

D2Y − D̄2Ȳ = i∂αα̇uαα̇ , uαα̇ = [Dα, D̄α̇]U ,

which means that the auxiliary F -field of Y is

−1

4
D2Y| = F = H + iG , G = ∂aC

a

Gauge symmetry: δU = L , L̄ = L , D̄2L = 0 ,
for any linear multiplet L. Reducible gauge theory
Quantisation of the three-form multiplet coupled to supergravity:

I. Buchbinder & SMK (1988)



Nilpotent three-form multiplet

Infrared limit of a nonlinear σ-model E. Buchbinder & SMK (2017)

S =

∫
d4xd2θd2θ̄K (Ȳ,Y) +

{∫
d4xd2θW (Y) + c.c.

}
leads to nilpotent three-form multiplet

Y = −1

4
D̄2U , Ū = U

Y2 = 0

described by action

S =

∫
d4xd2θd2θ̄ ȲY −

{
h

∫
d4xd2θY + c.c.

}
, h = h̄

The same Goldstino superfield was introduced by
F. Farakos, A. Kehagias, D. Racco & A. Riotto (2016)

as a variant formulation of the nilpotent chiral multiplet X .



Goldstino superfields and cosmological constant

All irreducible Goldstino superfields, as well as the reducible
Goldstino superfields X and V , produce a universal positive
contribution, f 2, to the cosmological constant,

Λ = f 2 + ΛAdS ,

where ΛAdS = −3 |µ|
2

κ2 comes from a supersymmetric cosmological
term. The latter exists only for (i) old minimal supergravity (and its
variant versions); and (ii) n = −1 non-minimal supergravity.

Nilpotent three-form multiplet Y is the only known Goldstino
superfield, which produces two separate positive contributions to the
cosmological constant coming from its auxiliary fields, F = H + iG ,
of which H is a scalar and G is the field strength of a gauge
three-form.

While the contribution from H is uniquely determined by the
parameter h, the contribution from G is dynamical.
The latter may be used to cancel the contribution from ΛAdS.



Gauge three-form and cosmological constant

Idea to use massless gauge three-forms to generate a cosmological
constant dynamically.

V. Ogievetsky & E. Sokatchev (1980)
M. Duff & P. van Nieuwenhuizen (1980)

A. Aurilia, H. Nicolai & P. Townsend (1980)

Further developments
S. Hawking (1984)

M. Duff (1989)
M. Duncan & L. Jensen (1990)

R. Bousso & J. Polchinski (2000)



Subtle feature of gauge three-form

M. Duff, “The cosmological constant is possibly zero, but the proof is
probably wrong,” Phys. Lett. B 226, 36 (1989)

S =
1

2κ2

∫
d4x e R − Λ

∫
d4x e +

∫
d4x e (∇aC

a)2

Equation of motion for the three-form

∇a(∇ · C ) = 0 =⇒ ∇aC
a = c = const

Equation of motion for the gravitational field

1

κ2
(Rmn −

1

2
gmnR) + Λgmn = Tmn , Tmn = −gmn(∇ · C )2 = −c2gmn

Correct effective cosmological constant: Λ + c2.
However, plugging the solution for C a back in S would give

S̃ =
1

2κ2

∫
d4x e R − (Λ− c2)

∫
d4x e



Nilpotent supergravity



Nilpotent supergravity

Various approaches to nilpotent supergravity:

I. Antoniadis, E. Dudas, S. Ferrara & A. Sagnotti [arXiv:1403.3269]
E. Dudas, S. Ferrara, A. Kehagias & A. Sagnotti [arXiv:1507.07842]

I. Antoniadis & C. Markou [arXiv:1508.06767]
N. Cribiori, G. Dall’Agata, F. Farakos & M. Porrati [arXiv:1611.01490]

My presentation follows the observations made in:
SMK [arXiv:1508.03190]

SMK, I. McArthur & G. Tartaglino-Mazzucchelli [arXiv:1702.02423].
SMK [arXiv:1801.02311]



Nilpotent supergravity I

Consider supergravity-matter system with action

S = SOMSG + S [X , X̄ ]

The first term is the action for old minimal supergravity,

SOMSG = − 3

κ2

∫
d4xd2θd2θ̄ E S̄0S0 +

{ µ
κ2

∫
d4xd2θ E S3

0 + c.c.
}
,

where S0 is the chiral compensator. S [X , X̄ ] is the Goldstino action

S [X , X̄ ] =

∫
d4xd2θd2θ̄ E X̄X −

{
f

∫
d4xd2θ E S2

0X + c.c.
}
,

where X is a nilpotent chiral scalar, D̄α̇X = 0 and X 2 = 0. Then

δ

δS0
S = 0 =⇒ R− µ = −2

3
f κ2 X

S0
, R := −1

4
S−2

0 (D̄2 − 4R)S̄0

This equation of motion implies nilpotency condition

(R− µ)2 = 0



Nilpotent supergravity I

Making use of the equation of motion for S0,

R− µ = −2

3
f κ2 X

S0
,

supergravity-matter action S = SOMSG + S [X , X̄ ] turns into
higher-derivative pure supergravity action

S =
( 3

2f κ2

)2
∫

d4xd2θd2θ̄ E S̄0S0 |R− µ|2 −
{1

2

µ

κ2

∫
d4xd2θ E S3

0 + c.c.
}

where R is subject to the nilpotency condition

(R− µ)2 = 0



Nilpotent supergravity II

Consider supergravity-matter system with action S = SOMSG + S [V ].
The first term in S is the action for old minimal supergravity.
The second term in S is the Goldstino action given by

S [V ] =

∫
d4xd2θd2θ̄ E

{ 1

16
VDα(D̄2 − 4R)DαV − 2f S̄0S0V

}
,

where the real scalar V obeys the nilpotency conditions

V 2 = 0 , VDADBV = 0 , VDADBDCV = 0

Varying S = SOMSG + S [V ] with respect to S0 gives

R− µ =
f κ2

6
S−2

0

(
D̄2 − 4R

)
(S̄0V )

This equation of motion implies nilpotency condition

(R− µ)2 = 0



Nilpotent supergravity II

Making use of the equation of motion for S0,

R− µ =
f κ2

6
S−2

0

(
D̄2 − 4R

)
(S̄0V )

supergravity-matter action S = SOMSG + S [V ] turns into
higher-derivative pure supergravity action

S =
( 3

2f κ2

)2
∫

d4xd2θd2θ̄ E S̄0S0 |R− µ|2 −
{1

2

µ

κ2

∫
d4xd2θ E S3

0 + c.c.
}

where R is subject to the nilpotency condition

(R− µ)2 = 0

The above higher-derivative action coincides with that we derived earlier
in the case of the nilpotent chiral Goldstino superfield X .



Nilpotent supergravity III

Consider supergravity-matter system with S = SNMSG + S [V ].
The first term is the new minimal supergravity action.

SNMSG =
3

κ2

∫
d4xd2θd2θ̄ E L ln

L
|S0|2

, L̄− L = (D̄2 − 4R)L = 0

in which L is the compensator, while the chiral scalar S0 is a purely
gauge degree of freedom. New minimal supergravity is known to allow no
supersymmetric cosmological term.
The Goldstino action is

S [V ] =

∫
d4xd2θd2θ̄ E

{ 1

16
VDα(D̄2 − 4R)DαV − 2f LV

}
,

where the real scalar V obeys the nilpotency conditions

V 2 = 0 , VDADBV = 0 , VDADBDCV = 0

We now vary S = SNMSG + S [V ] with respect to the compensator

L = Dαηα + D̄α̇η̄α̇ , D̄β̇ηα = 0



Nilpotent supergravity III

The resulting equation of motion is

3

2f κ2
Wα = Wα , Wα := −1

4
(D̄2 − 4R)Dαln

L
|Φ|2

,

where Wα := − 1
4 (D̄2 − 4R)DαV . Then, supergravity-matter action

S = SNMSG + S [V ] turns into higher-derivative pure supergravity action

S =
( 3

4f κ2

)2
∫

d4xd2θ EWαWα .

With no Goldstino being present, this is the action for R2 supergravity
within the new minimal formulation.

S. Cecotti, S. Ferrara, M. Porrati & S. Sabharwal (1988)
The nilpotency conditions imposed on V imply

Wα = (D̄2 − 4R)Dα
W2W̄2

(DW)3
.



Nilpotent tensor multiplet

SMK [arXiv:1712.09258]
Real scalar superfield G = Ḡ subject to a deformed linear constraint

−1

4
D2G = µ̄ = const ⇐⇒ −1

4
D̄2G = µ = const ,

for some non-zero complex parameter µ.

G = ϕ+ θαψα + θ̄α̇ψ̄
α̇ + θ2µ̄+ θ̄2µ+ θσaθ̄Ha

+
i

2
θ2∂aψσ

aθ̄ − i

2
θ̄2θσa∂aψ̄ −

1

4
θ2θ̄22ϕ ,

Ha Hodge-dual of the field strength of a gauge two-form, ∂aH
a = 0.

Dynamics is described by action

S = −
∫

d4xd2θd2θ̄G 2 =

∫
d4x L ,

L = −2|µ|2−1

2
∂aϕ∂aϕ− iψσa∂aψ̄ +

1

2
HaHa .

Nilpotent tensor multiplet: G 3 = 0.
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