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1 Introduction

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data
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Neural Network

 Warren McCulloch and Walter Pitts (1943) created the first neural network

based on mathematics and algorithms called threshold logic.

 The perceptron algorithm was invented in 1957 at the Cornell Aeronautical

Laboratory by Frank Rosenblatt.

* For multilayer perceptron (feed-forward neural network), where at least one
hidden layer exists, more sophisticated algorithms such as backpropagation

(Rumelhart, Hinton and Williams, 1986) must be used.
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Neural Network
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Difficult to interpret
(crucial for physics but not for industry)




Machine Learning in HEP

GOAL

» “Solve” HEP problems using DATA

EXAMPLE

» Physics model selection

Scan (e.g. 1011.4306, 1106.4613, 1703.01309, 1708.06615)

e Collider

Parton distribution function (e.g. 1605.04345)

Object reconstruction (e.g. NIPS-DLPS)

Pileup mitigation (e.g. 1512.04672, 1707.08600)

Jet tagging (e.g. 1407.5675, 1501.05968, 1612.01551, 1702.00748)
Event selection (e.g. 1402.4735, 1708.07034, 1807.09088)
Decayed object reconstruction

Anomaly event detection (e.g. 1807.10261)
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1.2 Brief Overview of Machine Learning Algorithms in HEP

This section provides a brief introduction to the most important machine learning algorithms in HEP, intro-
ducing key vocabulary (in italic).

Machine learning methods are designed to exploit large datasets in order to reduce complexity and find new
features in data. The current most frequently used machine learning algorithms in HEP are Boosted Decision
Trees (BDTs) and Neural Networks (NN).

Typically, variables relevant to the physics problem are selected and a machine learning model is trained for
classification or regression using signal and background events (or instances). Training the model is the most
human- and CPU-time consuming step, while the application, the so called inference stage, is relatively inex-
pensive. BDTs and NNs are typically used to classify particles and events. They are also used for regression,
where a continuous function is learned, for example to obtain the best estimate of a particle’s energy based on
the measurements from multiple detectors.

Neural Networks have been used in HEP for some time; however, improvements in training algorithms and com-
puting power have in the last decade led to the so-called Deep Learning revolution, which has had a significant
impact on HEP. Deep Learning is particularly promising when there is a large amount of data and features, as
well as symmetries and complex non-linear dependencies between inputs and outputs.

There are different types of deep neural networks used in HEP: fully-connected (FCN), convolutional (CNN)
and recurrent (RNN). Additionally, neural networks are used in the context of Generative Models, when a
Neural Network is trained to mimic multidimensional distributions to generate any number of new instances.
Variational AutoEncoders (VAE) and more recent Generative Adversarial Networks (GAN) are two examples
of such generative models used in HEP.



Our Work

« Machine learning in SUSY parameter space exploration

e Graph neural network for stops at LHC

e Graph neural network for Htt search at LHC



2 Graph Neural Network for stops at LHC

An event is a signal or background ?

Event

Extract -
Features Slgnal
. Ehotons Features Classifier # or
eptons
. Background

« Jets (Tags)

* Missing ET

HIGH-LEVEL FEATURES

= Number of jets

- pr of the leading lepton
- A¢p between the leading jet and missing ET

- Reconstructed top mass

LOW-LEVEL FEATURES

- four—-momenta of reconstructed objects



Methods for Event Selection

B
o Cut-flow
S
Control Signal Region
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Methods for Event Selection

o Cut-flow

« Machine Learning

o~ » «
* Boosted Decision Tree (BDT) / N / . + \
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Methods for Event Selection

Cut-flow

Machine Learning
» Boosted Decision Tree (BDT)
* Neural Networks

» Shallow Neural Network (NN)




Methods for Event Selection

o Cut-flow

« Machine Learning

» Boosted Decision Tree (BDT)

 Neural Networks

» Shallow Neural Network (NN)

» Deep Learning

« Deep Neural Network (DNN)

1410.3469, 1402.4735, 1803.01550
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Methods for Event Selection

e Cut-flow

« Machine Learning
 Boosted Decision Tree (BDT)
* Neural Networks
» Shallow Neural Network (NN)
» Deep Learning
» Deep Neural Network (DNN) 1410.3469, 1402.4735, 1803.01550

» Convolutional Neural Network (CNN) 1708.07034
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Pros and Cons

Cut-flow is simple but coarse, hurts signal events.

BDT can be viewed as an optimized version of cut-flow.

BDT is explainable, while NNs are hard to explain.

NNs are more powerful than BDT for non-linear mapping.

Most machine learning methods use fixed-length of inputs.



Message Passing Graph Neural Network

The Graph Neural Network: History
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[9] Allamanis et al. 2018




Message Passing Graph Neural Network




Message Passing Graph Neural Network




Event as Graph

Our ldea

* Represent an event as a graph ¢ = (V, E)

E: d; = \/AyngrA@gj

Encode each vertex into a state vector V: (0,0,1,0,m,E, Pr)

Message passing between vertices

Each vertex votes the signal/background

Average the votes as the final result

encode @/;e

—
()
A\ -

v

vote 9/ average
* / (s ) signal or
e\\e background




Graph Classification as Event Selection

The output value is called Score, which
can be understood as the likeliness of
the event being a signal.

Apply a cut on the score:
« Ify = 0, keep the event.

number of
events

 If y < 8,, drop the event.

score

As a result, most signal events and
some background events are selected.

filtered out selected

0



Performance Index

Expected discovery significance is

S UsLESQ ES

= . =
\/E JUBLEg \/ B

S, B: the number of selected signal and background events
e 0. Cross section
e L: integrated luminosity

€Y, e: efficiencies of preselection cuts and classifier

We define the expected relative discovery significance as es/+/€g



Detailed operation (1)

Embedding Message Passing State update Message Message Vote
Passing & Passing &
State update  State update

A 4
fo .
(" ma




Detailed operation (2)

: : . : hot(id
Use one-hot-like encoding for object identity. e £(id, E, py) = relu (VVe one pOT (id) n be>
30-dim feature vectors E
Distance measure using AR = \/An? + A¢?2
Pair distances are expanded in a Gaussian e £9(s,d) = relu (W,,(f) [expafld(d)] + bﬁ,’?)
basis (linearly distributed in [0, 5]) as vectors
of length 21.

: (®) — @[S ()
Use separate message and update functions fu~(s,m) =relu (Wu [m] + by, )

for each iteration.

fv(s) = O-(VVUS + bs)

relu:
Binary Cross-Entropy (BCE) as loss function. expand:
Calculate gradients using error back-propagation.
Optimize network parameters using Adam algorithm. b., by, by, by :
Training with mini-batch of examples. W, W Wy, W, t

Adopt early stopping to prevent overfitting.



Search for stop-pair signal

The diagonal region of phase space (m;, = myo + m;) IS hard to hunt

« The momentum transfer from £, to %7 is small.

* The stop signal is kinematically very similar to tt process.




Search for stop-pair signal

Generate events with ATLAS detector

 MadGraph5 + Pythia8 + Delphes3
+ CheckMate2

» Signal events
« pp- bl
» Background events

e pp o tt

Object reconstruction
» Electron and muon
e pr>10GeV,|n| < 2.5

e Jet
» Anti-kt clustering (R = 0.4)
e pr>25GeV,|n| <25

* B-tagging
» 80% efficiency

Preselection criteria

« N()=1
e N(j) =>4
e N(b) =2

e MET > 150 GeV



Search for stop-pair signal
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X

lepton  b-jet or Prr E m
Photon charge lightjet MET  (TeV) (TeV) (TeV)
xx=( 0 -1 0 0  0.0229 0.0289 0.0000 )
X, = 0 0 -1 0 0.2637 0.3304 0.0373 )
x3=( 0 0 -1 0 0.1003 0.1888 0.0091 )
xg=( 0 0 1 0 0.0980 0.1146 0.0133 )
Xz = 0 0 1 0 0.0689 0.0773 0.0062 )
xg=( O 0 0 1 02107 02107 0.0000 )
d 1 2 3 4 5 6
1 0 1.3971 2.5649 1.2801 3.2752 3.0312
21 1.3971 0 1.9019 1.6688 3.0871 3.1717
3| 2.5649 1.9019 0 3.4440 1.5805 1.7831
41 1.2801 1.6688 3.4440 0 2.2175 2.1387
5| 3.2752 3.0871 1.5805 2.2175 0 0.4912
61 3.0312 3.1717 1.7831 2.1387 0.4912 0

An event graph with detailed node features and distance
built from a Monte Carlo simulated event

matrix,




Search for stop-pair signal

Training set

» 300,000 signal events and 300,000 background events
Validation set

« 100,000 signal events and 100,000 background events
Tools

« BDT: scikit-learn

 NN/DNN/MPNN: pytorch
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The first two principle components of node state vectors S?
of signal (red) and background (blue) events.



Benchmark A B

m;, (GeV) 525 900
o (GeV) 352 330
Pre-selection yield 380.5 44.9
ATLAS significance 2.0 2.0
MPNN significance 3.3 3.7
Improvement 65% 85%

TABLE I. The comparison of MPNN with the available AT-
LAS results [37] for two benchmark points at 13 TeV LHC
with the luminosity of £ = 36.1 fb™!.

systematical uncertainty of backgrounds: 10%
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3 Graph neural network for Htt at LHC
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HIGGS BUUPLING
T0 TOP QUARKS




b-jet




pp — tt bb (background)



X
1 | 0(-1] 00| 00160 | 0.0679 | -0.0001
2 0| 0] 1|0 03265 | 06360 | 0.0587
3 |0 0] 1|0 0195 | 03934 | 0.0187
4 |0 0]-1]0]01703 | 03179 | 00215
5|0 0]-1|0] 01520 | 0.1605 | 0.0113
b | 0| 0]-1]0| 01442 | 01491 | 0.0174
T 10 0]-1|0] 00827 | 03333 | 0.0110
8 |0 0] 1]0| 0045 | 0.0709 | 0.0068
9|00 10| 00373 | 00519 | 0.0059
100 0|10 00282 | 0.0552 | 0.0043
11 |0 0| 0102154 ( 0.2154 | 0.0000

1 2 3 | 4 5 6 | 7 8 9 | 10 1
0.0000 | 28578 | 15566 | 3.1012 | 256385 | 23965 | 4.2086 | 14305 | 3.0275 | 4.4020 | 2.4582
2.8578 | 0.0000 | 22198 | 05844 | 23785 | 27535 | 45119 | 18490 | 0.4306 | 2.5726 | 26467
15566 | 22198 | 0.0000 | 16393 | 2.8377 | 23509 | 3.5506 | 22553 | 22532 | 3.3885 | 13257
3.1012 | 05844 | 16393 | 0.0000 | 2.8085 | 3.2339 | 4.2561 | 24220 | 06836 | 2.5808 | 21275
26385 | 23785 | 28377 | 28085 | 0.0000 | 05545 | 2.1564 | 13419 | 21250 | 2.0419 | 2.2379
2.3965 | 27535 | 2.3509 | 3.2339 | 05545 | 0.0000 | 19747 [ 13322 | 25568 | 25738 | 16836
42066 | 45119 | 35506 | 42561 | 21564 | 15747 | 0.0000 | 33068 | 4.2135 | 3.1631 | 2.2780
14305 | 18490 | 22553 | 24220 | 13419 | 13322 | 3.3068 | 0.0000 | 18527 | 29715 | 23683
3.0275 | 04306 | 22532 | 06836 | 21250 | 25569 | 4.2135 | 18527 | 00000 | 21421 | 24522
4.4020 | 25726 | 3.3985 | 25808 | 20419 | 25738 | 3.0631 | 29715 | 21421 | 0.0000 | 2.6109
24592 | 26467 | 13257 | 21275 [ 22379 | 16836 | 22780 | 23663 | 24522 | 256109 | 0.0000
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FIG. 1. Event graph with detailed node features and edge
weights for a specific simulated tth event.



Node Message Passing & Message Passing &

Embedding Node Update Node Update Output
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FIG. 2. The architecture of MPNN designed for classify tth,
ttA and ttbb events. It has one node embedding layer, two
message passing and node update layers and one output layer.
The small circles denote vector concatenation. The arrows
denote applving non-linear functions. The summation and
average run over all nodes.



For each event:

« each node i gives 3 probabilities (p;) for tth, ttA and tthb

e average over all the nodes as the final output

~ p(hle)
1
N Z(Pi)k —  p(4le)
-~ p(ble)
For each event sample D:
Ly(D) = [ p(hle
Ly(D)

La(D) = ] p(4le)



Probability density

Probability density

Probability density

47 — tibb

34 —-——- tth
........ ttA

2 -

l -

O ] T T T T

0.0 0.2 0.4 0.6 0.8 1.0

p(ble)

4

3 -
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1 -

0 -

+ each node i gives 3 probabilities (p;) for tth, ttA and tthh

* average over all the nodes as the final output

p(hle)

1
7.0 PR
p(ble)

The MPNN has indeed learned some
discriminative features for different
processes:

The background ttbb events tend to have
higher p(b|e);

The tth events tend to have higher p(h|e);
The ttA events tend to have higher p(A|e)



Probability density
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For each event:

+ each node i gives 3 probabilities (p;), for tth, ttA and tthb

* average over all the nodes as the final output

p(hle)
1
F @0~ el
L
- p(ble)
For each event sample D:
L,(D) = [ ‘p(hle) |
eeD Q(D}:LA{D)
! . LF:{D]
La(D) =[] p(Ale)

eeD

The overlap between the two distributions
reduces with increasing luminosity.

When the luminosity is 300 fb~1, the two
distributions have nearly no overlap, which
means that the CP nature of top-Higgs
coupling can be determined.



Conclusion

We apply graph neural network to

e stop pair production at LHC

to dig out stops from background
 Htt production at LHC

to distinguish CP-even h from CP-odd A

Thanks for your attention !
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