classification of topological insulators and superconductors

Shinsei Ryu Univ. of California, Berkeley

in collaboration with:

Akira Furusaki (RIKEN) Mikito Koshino (Titech) Andreas Ludwig (Santa Barbara) Christopher Mudry (PSI)

Ken Nomura (Tohoku)

Hideaki Obuse (Chicago)

Andreas Schnyder (Stuttgart)

Tadashi Takayanagi (IPMU)

- what is a topological insulator/topological superconductor ?

- what is an insulator ?
- what is a topological insulator ?
- examples of topological insulators

quantum Hall effec (QHE), quantum spin Hall effect (QSHE), 3-dimensional Z2 topological insulator

- classification of topological insulators/superconductors
- boundary-to-bulk approach
 - non-linear sigma model (NLsM) approach to disordered systems
- topological superconductor
- summary

what is an insulator ?

single particle energy spectrum of an electron in solids

CeRhIn5

PRB (2003)

integer quantum Hall effect (IQHE)

in d=2 spatial dimensions, with strong T breaking by B

$$\sigma_{xy} = \frac{e^2}{h} \times (\text{integer})$$

IQHE as a topological insulator

in d=2 spatial dimensions, with strong T breaking by B

IQHE as a topological insulator

in d=2 spatial dimensions, with strong T breaking by B

- "bulk" point of view

Bloch wavefunction $\psi(\boldsymbol{r}) = e^{i \boldsymbol{k} \cdot \boldsymbol{r}} u_{\boldsymbol{k}}(\boldsymbol{r})$

$$Q^2 = 1, \quad Q^{\dagger} = Q, \quad \operatorname{tr} Q = m - n$$

quantum ground state = map from Bz onto Grassmannian

$$Q(k) : BZ \longrightarrow U(m+n)/U(m) \times U(n)$$

$$\left(\pi_2\left[U(m+n)/U(m)\times U(n)\right] = \mathbb{Z}\right)$$

IQHE as a topological insulator

Thouless-Kohmoto-Nightingale-den Nijs (1982)

$$\sigma_{xy} = \frac{e^2}{h} \sum_{bands} \frac{i}{2\pi} \int d^2k \left(\left\langle \frac{\partial u(k)}{\partial k_x} \middle| \frac{\partial u(k)}{\partial k_y} \right\rangle - \left\langle \frac{\partial u(k)}{\partial k_y} \middle| \frac{\partial u(k)}{\partial k_x} \right\rangle \right)$$

topological invariant ! "Chern number"

quantum spin Hall effect (QSHE)

in d=2 spatial dimensions, with good T

bulk states

 $k_{\rm edge}$

 $\sigma_{xy,\uparrow} - \sigma_{xy,\downarrow}$ is quantized

quantum spin Hall effect (QSHE)

- odd number of Kramers pairs at edge --> stable even number of Kramers pairs at edge --> unstable

quantum spin Hall effect (QSHE)

with TRS and without Sz conservation \rightarrow binary classification \mathbb{Z}_2

Z2 topological insulator in d=3 spatial dimensions

Fu-Kane-Mele, Moore-Balents, Roy (06)

d=3 dimensions

ARPES experiments on Z2 topological insulators

Y. Xia et al. Nature Phys. (2009)

- IQHE GaAs
- QSHE HgTe
- 3D Z2 topological insulator BiTe, BiSe, BiSb
- chiral p-wave SC (topological superconductor) SrRuO nu=5/2 FQHE
- more topological insulators/superconductors ?

topological:

- support stable gapless modes at boundaries, possibly in the presence of general discrete symmetries
- states with and without boundary modes are not adiabatically connected
- may be characterized by a bulk topological invariant of some sort

c.f. topological phase, topological field theory

How many different topoloigcal insulators and superconductors are there in nature ?

- what is a topological insulator/topological superconductor ?

- what is an insulator ?
- what is a topological insulator ?
- examples of topological insulators

quantum Hall effec (QHE), quantum spin Hall effect (QSHE), 3-dimensional Z2 topological insulator

- classification of topological insulators/superconductors
- boundary-to-bulk approach
 - non-linear sigma model (NLsM) approach to disordered systems
- topological superconductor
- summary

Discrete symmetries

two types of anti-unitary symmetries

Time-Reversal Symmetry (TRS)TRS =0no TRS
$$T\mathcal{H}^*T^{-1} = \mathcal{H}$$
TRS =1TRS with $T^T = +T$ Particle-Hole Symmetry (PHS) $C\mathcal{H}^TC^{-1} = -\mathcal{H}$ PHS =0no PHS $C\mathcal{H}^TC^{-1} = -\mathcal{H}$ PHS =0no PHS $C\mathcal{H}^SC^{-1} = -\mathcal{H}$ PHS =1PHS with $C^T = +C$

integer chin particle

PHS + TRS = chiral symmetry

$$\begin{array}{c} T\mathcal{H}^*T^{-1} = \mathcal{H} \\ C\mathcal{H}^*C^{-1} = -\mathcal{H} \end{array} \right\} \longrightarrow \quad TC\mathcal{H}(TC)^{-1} = -\mathcal{H}$$

	sym. class	TRS	\mathbf{PHS}	SLS	description
	А	0	0	0	unitary
Wigner-Dyson	AI	+1	0	0	orthogonal
	AII	-1	0	0	symplectic (spin-orbit
	AIII	0	0	1	chiral unitary
chiral	BDI	+1	+1	1	chiral orthogonal
	CII	-1	-1	1	chiral symplectic
	D	0	+1	0	singlet/triplet SC
BdG	C	0	-1	0	singlet SC
	DIII	-1	+1	1	singlet/triplet SC with T
	CI	+1	-1	1	singlet SC with TRS

- Wigner-Dyson (1951 -1963) : "three-fold way"

- Verbaarschot (1992 -1993)

- Altland-Zirnbauer (1997) : "ten-fold way"

complex nuclei

chiral phase transition in QCD

mesoscopic SC systems

claim: this is the exhaustive classification of discrete symmetries

AZ d	0	1	2	3	4	5	6	7	8	9
A	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
AI	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	• • •
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	• • •
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	
AII	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	• • •
CII	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
С	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	• • •
CI	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	

SR, Schnyder, Furusaki, Ludwig (for d=1,2,3, 2008)

Kitaev (all d and periodicity, 2009) "periodic table of topological insulators" Alexei Kitaev's talk in Focus Week (Thu) Qi, Hughes, Zhang (cases with one discrete symmetry, 2008)

Shoucheng Zhang's talk in Focus Week (Wed)

SR, Takayanagi (D-brane construction, 2010)

Tadashi Takayanagi's talk in Focus Week (Fri)

symmetry classes of quadratic fermionic Hamiltonians (Altland-Zirnbauer)

- ℤ integer classification
- \mathbb{Z}_2 Z2 classification
- 0 no top. ins./SC

some outcomes of classification:

- 3He B is newly identified as a topological SC (superfluid) in d=3.
- topological singlet SC in d=3 is predicted.

- what is a topological insulator/topological superconductor ?

- what is an insulator ?
- what is a topological insulator ?
- examples of topological insulators

quantum Hall effec (QHE), quantum spin Hall effect (QSHE), 3-dimensional Z2 topological insulator

- classification of topological insulators/superconductors
- boundary-to-bulk approach
 - non-linear sigma model (NLsM) approach to disordered systems
- topological superconductor
- summary

underlying strategies for classification

- discover a topological invariant

- bulk-boundary correspondence

Anderson delocalization non-linear sigma model on G/H + (discrete) topological term

Anderson delocalization non-linear sigma model on G/H + (discrete) topological term

non-conducting

conducting

Anderson localization with time-reversal symmetry

effective field theory for Anderson localization

	AF quantum spin chain	symplectic Anderson localization
Nambu-Goldstone bosons	magnons	"Diffuson" and "Cooperons"
order parameter	Neel vector $oldsymbol{n} \in \mathbb{R}^3, oldsymbol{n} \cdot oldsymbol{n} = 1$	matrix field Q
ordered phase	AF magnet	metal
disordered phase	para magnet	insulator
topological term	half-odd integer spin integer spin	odd number of Dirac cones even number of Dirac cones (~ non relativistic)

Z2 topological term in symplectic symmetry class

Z2 topological term in symplectic symmetry class

Witten's su(2) global anomaly

field theory : non-linear sigma model with Z2 topological term

Ken Nomura's talk in Focus week (Wed)

AZ	bosonic replica	fermionic replica	supergroup
class	$NL\sigma M$ target space	$NL\sigma M$ target space	$NL\sigma M$ target space
А	$\mathrm{U}(N,N)/\mathrm{U}(N) \times \mathrm{U}(N)$	$\mathrm{U}(2N)/\mathrm{U}(N) \times \mathrm{U}(N)$	$\operatorname{GL}(2N 2N)/\operatorname{GL}(N N) \times \operatorname{GL}(N N)$
AI	$O(N, N)/O(N) \times O(N)$	$\operatorname{Sp}(2N)/\operatorname{Sp}(N) \times \operatorname{Sp}(N)$	$Osp(2N 2N)/Osp(N N) \times Osp(N N)$
AII	$\operatorname{Sp}(N,N)/\operatorname{Sp}(N) \times \operatorname{Sp}(N)$	$O(2N)/O(N) \times O(N)$	$Osp(2N 2N)/Osp(N N) \times Osp(N N)$
AIII	$\operatorname{Gl}(N,\mathbb{C})/\operatorname{U}(N)$	$\mathrm{U}(N) \times \mathrm{U}(N)/\mathrm{U}(N)$	$\operatorname{Gl}(N N)$
BDI	$\operatorname{Gl}(N,\mathbb{R})/\operatorname{O}(N)$	U(2N)/Sp(N)	Gl(2N 2N)/Osp(2N 2N)
CII	$\mathrm{U}^*(2N)/\mathrm{Sp}(N)$	U(N)/O(N)	$\operatorname{Gl}(2N 2N)/\operatorname{Osp}(2N 2N)$
D	$\operatorname{Sp}(N,\mathbb{R})/\operatorname{U}(N)$	O(2N)/U(N)	Osp(2N 2N)/Gl(N N)
\mathbf{C}	$\mathrm{SO}^*(2N)/\mathrm{U}(N)$	$\operatorname{Sp}(N)/\operatorname{U}(N)$	Osp(2N 2N)/Gl(N N)
DIII	$\operatorname{Sp}(N, \mathbb{C})/\operatorname{Sp}(N)$	$O(N) \times O(N) / O(N)$	Osp(2N 2N)
CI	$SO(N, \mathbb{C})/SO(N)$	$\operatorname{Sp}(N) \times \operatorname{Sp}(N) / \operatorname{Sp}(N)$	Osp(2N 2N)

discrete symmetries --> NLsM target space = G/H bosonic replica NLsM has a non-compact target space fermionic replica NLsM has a compact target space for the full treatment Andreson localization, we have both (SUSY)

NLsM topological terms

complex case:

Pron our					
	$G/H \setminus d$	d = 0	d = 1	d = 2	d = 3
А	$U(N+M)/U(N) \times U(M)$	\mathbb{Z}	0	\mathbb{Z}	0
AIII	$\mathrm{U}(N)$	0	\mathbb{Z}	0	\mathbb{Z}

real case:

	$G/H \setminus d$	d = 0	d = 1	d = 2	d=3
AI	$\operatorname{Sp}(N+M)/\operatorname{Sp}(N) \times \operatorname{Sp}(M)$	\mathbb{Z}	0	0	0
BDI	U(2N)/Sp(N)	0	\mathbb{Z}	0	0
D	O(2N)/U(N)	\mathbb{Z}_2	0	\mathbb{Z}	0
DIII	O(N)	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}
All	$O(N + M)/O(N) \times O(M)$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0
CII	U(N)/O(N)	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2
C	Sp(N)/U(N)	0	0	\mathbb{Z}	\mathbb{Z}_2
CI	$\operatorname{Sp}(N)$	0	0	0	\mathbb{Z}

compact NLsM target space = G/H

- Z2 = existence of Z2 topological term in d dimensions
- Z = existence of WZW term in (d-1) dimensions

from boundary to bulk

complex case:

AZ	G/H	$\bar{d} = 0$	$\bar{d} = 1$	$\bar{d} = 2$	$\bar{d} = 3$	$\bar{d} = 4$	$\bar{d} = 5$	$\bar{d} = 6$	$\bar{d} = 7$
А	$\mathrm{U}(N{+}M)/\mathrm{U}(N){\times}\mathrm{U}(M)$	\mathbb{Z}	→ 0	- Z	$\rightarrow 0$	\mathbb{Z}	→ 0	$-\mathbb{Z}$	0
AIII	$\mathrm{U}(N)$	→ 0	$-\mathbb{Z}$	→ 0	$-\mathbb{Z}$	→ 0	- Z	→ 0	$-\mathbb{Z}$

real case:

AZ	G/H	$\bar{d} = 0$	$\bar{d} = 1$	$\bar{d}=2$	$\bar{d} = 3$	$\bar{d} = 4$	$\bar{d} = 5$	$\bar{d} = 6$	$\bar{d} = 7$
AI	$\operatorname{Sp}(N+M)/\operatorname{Sp}(N)\times\operatorname{Sp}(M)$	\mathbb{Z}	0	0	→ 0	$-\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2	0
BDI	U(2N)/Sp(2N)	→ 0	$-\mathbb{Z}$	0	0	→ 0	$-\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2
D	O(2N)/U(N)	\mathbb{Z}_2	→ 0	$-\mathbb{Z}$	0	0	→ 0	$-\mathbb{Z}$	\mathbb{Z}_2
DIII	O(N)	\mathbb{Z}_2	\mathbb{Z}_2	→ 0	$-\mathbb{Z}$	0	0	→ 0	$-\mathbb{Z}$
AII	$O(N+M)/O(N) \times O(M)$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	→ 0	$-\mathbb{Z}$	0	0	0
CII	U(N)/O(N)	→ 0	$-\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2	→ 0	$-\mathbb{Z}$	0	0
С	Sp(2N)/U(N)	0	→ 0	$-\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2	→ 0	$-\mathbb{Z}$	0
\mathbf{CI}	Sp(2N)	0	0	$\rightarrow 0$	$-\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2	$\rightarrow 0$	$-\mathbb{Z}$

independent checks: for d=1 and d=2 Anderson localization, many exact results are avaiable.

- Bernard-Le Clair: 13-fold symmetry classification of 2d Dirac fermions
- AIII, CI, DIII; exact results
- "abnormal terms" in NLsM

WZW type
$$Z = \int \mathcal{D}[g] e^{2\pi i \nu \Gamma_{WZW}} e^{-S[g]}$$
 $\Gamma_{WZW} = \frac{1}{24\pi^2} \int_{\mathcal{M}^3} \operatorname{tr} \left[(g^{-1} dg)^3 \right]$
Z2 type $Z = \int \mathcal{D}[Q] (-1)^{N[Q]} e^{-S[Q]}$ SR, Mudry, Obuse Furusaki (07)

- what is a topological insulator/topological superconductor ?

- what is an insulator ?
- what is a topological insulator ?
- examples of topological insulators

quantum Hall effec (QHE), quantum spin Hall effect (QSHE), 3-dimensional Z2 topological insulator

- classification of topological insulators/superconductors
- boundary-to-bulk approach
 - non-linear sigma model (NLsM) approach to disordered systems
- topological superconductor
- summary

topological SC = BdG quasi-particles are topologically non-trivial

$$\begin{split} H &= \frac{1}{2} \int \Psi^{\dagger} \begin{pmatrix} \xi & \Delta \\ -\Delta^* & -\xi^T \end{pmatrix} \Psi \\ \Psi^{\dagger} &= \begin{pmatrix} \psi^{\dagger}, & \psi \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} \psi^{\dagger}_{\uparrow}, & \psi^{\dagger}_{\downarrow}, & \psi_{\uparrow}, & \psi_{\downarrow} \end{pmatrix} \quad \text{etc.} \end{split}$$

px + i py SC order parameter:

$$\xi(k) = rac{k^2}{2m} - \mu \quad \Delta(k) = |\Delta| \left(k_x + ik_y
ight)$$
 Read-Green (2000)

 $\begin{array}{c|c} \text{strong pairing (BEC)} & \text{weak pairing (BCS)} \\ \hline & & & & & \\ \hline & & & & \\ \Psi(\{\boldsymbol{r}_i\}) \sim \text{short ranged} & & \Psi(\{\boldsymbol{r}_i\}) \sim \operatorname{Pf}\left(\frac{1}{z_i - z_j}\right) \end{array}$

Many-body GS wavefunction

chiral p-wave SC in d=2 - a topological SC

with inclusion of the dynamics of Cooper pair: non-trivial ground state degeneracy topologically protected q-bit non-Abelian statistics of vortices vortex supports an isolated Majorana mode

v = 5/2 FQHE Moore-Read state

$$H = \frac{1}{2} \int d^3 r \Psi^{\dagger} \mathcal{H} \Psi \quad \mathcal{H} = \begin{pmatrix} \xi & \Delta \\ \Delta^{\dagger} & -\xi \end{pmatrix} \qquad \begin{array}{c} k_z \\ \downarrow \\ k_z \\ \downarrow \\ k_x \end{array}$$

 $\begin{array}{c|cccc} \text{strong pairing} & \text{weak pairing} & \mu \\ \hline \nu = 0 & 0 & \nu = 1 \\ & & & & \\ & & & &$

$$\Psi(\{\boldsymbol{r}_i\}, \{\sigma_i\}) \sim \Pr\left(\frac{\left[(\boldsymbol{r}_i - \boldsymbol{r}_j) \cdot i\boldsymbol{\sigma}\sigma_y\right]_{\sigma_i\sigma_j}}{|\boldsymbol{r}_i - \boldsymbol{r}_i|^3}\right)$$

topological insulators and superconductors: expanding the quantum Hall paradigm to much wider context

higher-dimensions, symmetry protected topological states

complete classification of topological phases in free fermion systems in all dimensions and symmetry classes

some predictions:

- surface of 3d Z2 topological insulator: perfect metal
- 3He B is identified as a topological SC:

stable gapless Majorana surface mode

- there are topological singlet SC with good T and in d=3 spatial dimensions

	D(-1)	D0	D1	D2	D3	D4	D5	$\mathbf{D6}$	$\mathbf{D7}$	D8	D9
type IIB	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
O9 ⁻ (type I)	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
O9+	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}

TABLE II: D_p -brane charges from K-theory, classified by $K(\mathbb{S}^{9-p})$, $KO(\mathbb{S}^{9-p})$ and $KSp(\mathbb{S}^{9-p})$ [11]. A \mathbb{Z}_2 charged D_p -brane with p even or p odd represents a non-BPS D_p -brane or a bound state of a D_p and an anti- D_p brane, respectively [12].

Tadashi Takayanagi's talk in Focus week (Fri)

collaborators

- many-body topological insulator: SR, PRB (2009)
- 3D topological singlet SC: Schnyder, SR, Ludwig, PRL (2009)
- topological insulators and duality: Hosur, SR, Vishwanath, PRB (2009)
- topological insulators and D-branes: SR, Takayanagi, arxiv (2010)