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limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' � 2
N
, r ' 12

N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.
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ABSTRACT

We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measure-
ments. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller
uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lens-
ing data determine the spectral index of scalar perturbations to be ns = 0.9649±0.0042 at 68 % CL. We find no evidence for a scale dependence of
ns, either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4 % at 95 %
CL by combining Planck with a compilation of BAO data. The Planck 95 % CL upper limit on the tensor-to-scalar ratio, r0.002 < 0.10, is further
tightened by combining with the BICEP2/Keck Array BK14 data to obtain r0.002 < 0.064. In the framework of standard single-field inflationary
models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential, V 00(�) < 0, are increasingly
favoured by the data; and (b) based on two di↵erent methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond
slow roll. Three di↵erent methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law
in the range of comoving scales 0.005 Mpc�1 . k . 0.2 Mpc�1. A complementary analysis also finds no evidence for theoretically motivated
parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further
strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the
adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic
contribution to the observed CMB temperature variance is constrained to 1.3 %, 1.7 %, and 1.7 % at 95 % CL for cold dark matter, neutrino density,
and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon
isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints
on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polariza-
tion data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard
single-field inflationary models, which will be further tested by future cosmological observations.
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limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' � 2
N
, r ' 12

N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.
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We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measure-
ments. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller
uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lens-
ing data determine the spectral index of scalar perturbations to be ns = 0.9649±0.0042 at 68 % CL. We find no evidence for a scale dependence of
ns, either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4 % at 95 %
CL by combining Planck with a compilation of BAO data. The Planck 95 % CL upper limit on the tensor-to-scalar ratio, r0.002 < 0.10, is further
tightened by combining with the BICEP2/Keck Array BK14 data to obtain r0.002 < 0.064. In the framework of standard single-field inflationary
models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential, V 00(�) < 0, are increasingly
favoured by the data; and (b) based on two di↵erent methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond
slow roll. Three di↵erent methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law
in the range of comoving scales 0.005 Mpc�1 . k . 0.2 Mpc�1. A complementary analysis also finds no evidence for theoretically motivated
parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further
strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the
adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic
contribution to the observed CMB temperature variance is constrained to 1.3 %, 1.7 %, and 1.7 % at 95 % CL for cold dark matter, neutrino density,
and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon
isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints
on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polariza-
tion data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard
single-field inflationary models, which will be further tested by future cosmological observations.
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3
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2
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�(�iµ)

�(1
2

� iµ)
. (6.21)

The result (6.20) agrees with equation (6.142) in [55], with the Legendre polynomial indicating

that we are exchanging a massive spin-2 particle.32

7 Comments on Phenomenology

Figure 10 shows the cross section for e+e� ! hadrons as a function of the center-of-mass energy.

The di↵erent resonance peaks, such as the famous Z resonance near 100 GeV, prove the existence

of new particles and determines their properties. For example, the position of a peak measures

the mass of the particle, while its height and width probe the lifetime of the particle and hence

its couplings to lighter degrees of freedom in the Standard Model. The angular dependence of

the decay products puts constraints on the spin of the intermediate particle. In this section,

we will discuss how similar spectroscopic information is encoded in the structure of inflationary

correlators. We will also present a new physically-motivated basis of shapes for inflationary

three-point functions with weakly broken conformal symmetry.

Figure 10: Plot of R ⌘ �(e+e� ! hadrons)/�(e+e� ! µ+µ�) as a function of the center-of-mass energy
(figure adapted from [108]).

7.1 Cosmological Collider Physics

The right panel in Figure 11 displays our solution for the exchange of a massive scalar particle,

F̂ (u, v), for fixed v = 0.5. We see that the signal in the collapsed limit, u ! 0, oscillates with

a frequency that is set by the mass of the exchange particle. Measuring these oscillations is

the analog of measuring the position of a resonance peak in collider physics. It would prove

32An extra factor of µ2+ 1
4
in (6.21) compared to (6.144) in [55] is due to the fact that we have used the solution

with a higher-derivative source term as the input function. Again, the di↵erence is given by a contact term, and

the extra prefactor can simply be absorbed in the coupling constant.
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Figure 11: Left panel: Shape of the Z resonance as measured by LEP. Right panel: Example of scalar
exchange, u�1F̂ (u, 0.5), for external particles with � = 2 and an internal particle with µ = 3. Note that
the four-point function has been rescaled by u�1 which visually enhances the e↵ect of the oscillations. In
practice, the particle production e↵ect will be harder to observe than the EFT contribution.

the existence of new particles and determine their masses. Going away from the squeezed limit,

the particular solution will start to dominate over the homogeneous solution. This provides a

smooth contribution to the four-point function, whose shape will also be determined by the mass

of the exchange particle. This is the analog of going o↵ resonance and measuring the shape of

the resonance peak in collider physics. Measuring both the oscillations and the smooth shape

provides an important consistency check for the signal.

In colliders, we begin with low-energy measurements where all interactions are pure contact

interactions. For example, at low energies the electroweak theory is approximated by the four-

point interaction of Fermi theory. In the latter case, the energy dependence of the interaction

hints at a violation of perturbative unitarity at a higher scale. This suggests the existence of

new particles (in the case of the electroweak theory, W bosons) to improve the UV behavior of

the e↵ective theory. Going to higher energies, colliders may start producing these particles as

resonances. Predicting the shape of the resonance is essential for extracting the detailed properties

of the new particles. It also provides the opportunity to identify additional new physics. For

example, any unexplained excess in the cross section may be due to additional particle exchanges.

In cosmology, we first expect to observe signals in the limit of relatively large momenta. This

is where the signals are strongest and the observations are most sensitive. Initially, we would see

the shape of a pure contact interaction. With increased sensitivity we may then be able to observe

a small deviation from the pure contact shape (see Fig. 12 in §7.2).33 Using the hypothesis of

the exchange of a single massive particle to fit the smooth part of the signal would then allow

33In practice, it will be hard to reliably extract the precise shape of the smooth part of the signal from large-scale

structure observations because late-time nonlinearities produce non-Gaussianities of a similar form. Although the

oscillatory part of the signal is smaller, it is more distinctive and cannot be mimicked by late-time e↵ects.
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Z
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1 +A2

2 + 2A1A2 cos[↵1 � ↵2]
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The intensity

The source
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Two sources in de Sitter space
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fixed by isometries of dS:
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folded

squeezed

Fig. 1.12. Bispectrum of the local ansatz. The signal is peaked for squeezed
triangles.

122]. This leads to signals that peak in equilateral triangle configura-
tions, i.e. k1 ⇠ k2 ⇠ k3. To characterize this type of non-Gaussianity,
we return to the Goldstone action. At cubic order and to lowest order
in derivatives, we get [51] (see Appendix B for the derivation)

S(3)
⇡ =

Z

d4x
p
�g

M2
plḢ

c2s
(1� c2s)

 

⇡̇(@i⇡)
2

a2
+

A

c2s
⇡̇3

!

. (1.71)

We have two cubic operators, ⇡̇(@i⇡)
2 and ⇡̇3, but only one new param-

eter, A. This is a consequence of the nonlinearly-realized time trans-
lation symmetry, which relates the amplitude of the operator ⇡̇(@i⇡)

2

to the sound speed. In DBI inflation (see §5.3) one has A = �1 [40],
while more generally naturalness arguments suggest A ⇠ O(1) [113].
Both ⇡̇(@i⇡)

2 and ⇡̇3 produce bispectra that are well approximated by
the equilateral template (1.67) (see fig. 1.13).

. Orthogonal non-Gaussianity.—The two equilateral bispectra are not
identical, so one can find a linear combination of the two operators
⇡̇(@i⇡)

2 and ⇡̇3 that is orthogonal in a well-defined sense [123] to the
shape (1.67), and also to the local shape (1.66). This is the orthog-
onal template (1.68) [113]. In terms of the parameters of the La-
grangian (1.71), the signal is mostly of the orthogonal shape — specif-

Cosmological collider 
          — probing new physics during inflation

Arkani-Hamed & Maldacena (2015)

Assassi, Baumann & Green (2012)

From Baumann & McAllister



������ ���
����

����

����

����

��-� ����� ����� ����� �
���

���

���

���

���

���

EFT

particle production

k
long

/k
short

The simplest non-Gaussian observable h⇣3i

size ⇒ particle couplings

oscillations ⇒ particle mass

angular dependence ⇒ particle spin



Standard Model signals (Higgs)



Cosmological collider 
          — probing signals of massive fields during inflation

Steps towards new discovery:

1. To work out the background signals during inflation. 

2. To figure out how new particles enter the bispectrum.
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Steps towards new discovery:

1. To work out the background signals during inflation. 

Cosmological collider 
          — probing new physics during inflation

M2
H ¼

ffiffiffiffiffi
6λ
π3

r
H2: ð6Þ

Another striking phenomenon in inflation is that the
gauge fields can also acquire nonzero mass even when
the Higgs VEV hHi remains zero. This is again due to the
infrared divergence of loop corrections. They can be
calculated either using the real time Schwinger-Keldysh
(SK) formalism with the dynamical renormalization group
resummation of infrared divergence [13], or Wick rotating
the spacetime to Euclidean de Sitter spacetime [7]. Both
methods yield the same results; i.e., the gluon and photon
still remain massless during inflation, while W=Z bosons
acquire nonzero mass,

M2
W ¼ 3g2H4

8π2M2
H
; M2

Z ¼ M2
W=cos

2θW; ð7Þ

where g is the weak gauge coupling and θW is the Weinberg
angle. On the other hand, the fermions always remain
massless during inflation so long as the Higgs VEV is zero.
It should be noted that the coupling constant g in Eq. (7)

also receives corrections from the operator− 1
4 fWðX;ϕÞW

2
μν

coming from Eq. (2), and the corrected g is related to its SM
value gSM via g2 ¼ g2SM=½1þ fWðX0;ϕ0Þ&. Similar correc-
tions apply to other SM couplings including the Weinberg
angle. Generally it makes the SM background rather arbi-
trary, but tractable cases do existwhen the background values
of various fα functions are small enough, and in such cases
one can make certain predictions to the SM spectrum.
With the SM spectrum in non-Higgs inflation clarified,

nowwe turn to typical Higgs inflation, where the Higgs field
itself is the inflaton and acquires a huge VEV. Specificially,
let us take the original Higgs inflation model as an example
[14]. There the Higgs inflaton ϕ≃ 5MPl at the beginning of
observable inflation. As a result, all charged fermions and
W=Z bosons acquire masses proportional to their Higgs
coupling and also to the Higgs VEV, but with v ¼ 246 GeV

replaced by the quantity ðMPl=
ffiffiffi
ξ

p
Þð1 − e−

ffiffiffiffiffiffi
2=3

p
ϕ=MPlÞ1=2∼

Oð0.01MPlÞ, where ξ can be as large as 104. On the other
hand, since the Higgs field itself is the inflaton, its mass
(effectively zero) does not belong to the isocurvaton
spectrum.
The main results of this section are summarized in Fig. 1,

where we plot the SM spectrum normalized by the Hubble
scale H. For illustration, the Hubble scale is fixed to
the value in the typical Higgs inflation model, H≃
2.0 × 1013 GeV. For non-Higgs inflation cases (left 3
columns), all fα functions are assumed to be negligibly
small. All SM couplings are extrapolated to the Hubble
scale by two-loop renormalization group running.
SM background in the squeezed limit.—Given the SM

spectrum during inflation, now we figure out the signals of
the SM fields in the inflaton bispectrum. All SM fields are

charged under the SM gauge group and thus are produced
in pairs. Therefore, they contribute to three-point inflaton
correlators starting from the one-loop level. An example of
this contribution is shown in Fig. 2. There is also a one-loop
diagram with three three-point vertices, but it is likely
subdominant due to a further suppression factor _ϕ2

0.
It is important to specify the SM-inflaton couplings (2) in

order to evaluate diagrams such as in Fig. 2. At the one-
loop level, the only relevant operators Oα are those
quadratic in the SM fields. SM couplings beyond quadratic
order, such as the Higgs self-coupling or gauge couplings,
contribute to the bispectrum at least through two loops, and
thus will be neglected. If we further restrict our attention to
scalar operators with dimension no greater than 4, then
there are only four terms,

L ⊃ −fHðXÞH†H − fDHðXÞjDμHj2

− fΨi
ðXÞΨ̄iDΨi −

1

4
fAa

ðXÞFaμνF
μν
a ; ð8Þ

where Ψi denotes all the charged fermions and D is the
corresponding covariant derivative, Faμν ¼ ∂μAaν − ∂νAaμ

is the quadratic part of gauge kinetic term, Aa’s represent

FIG. 1. The mass spectrum of the standard model during
inflation. The left three columns correspond to the non-Higgs
inflation with zero Higgs VEV, and Higgs masses are chosen to
be ð0.05; 0.5; 5ÞH, respectively. The rightmost column corre-
sponds to the original Higgs inflation model.

FIG. 2. The diagram contributing to the squeezed limit of the
bispectrum with the SM loop. The Φ field represents any of the
SM fields.
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the SM gauge fields, and we have made a further simplify-
ing assumption that various fα functions depend only on X
but not directly on ϕ; i.e., we are considering the leading
terms under the shift symmetry. After separating the
inflaton into background and fluctuation ϕ ¼ ϕ0 þ δϕ,
the operator Oα ⊃ fjHj2; jDμHj2; Ψ̄iDΨi; F2

μνg couples to
the inflaton fluctuation according to

L ⊃ fα0Oα þ 2f0α0 _ϕ0
_δϕOα

þ ½f0α0ð∂μδϕÞ2 þ 2f00α0 _ϕ
2
0
_δϕ2&Oα; ð9Þ

where f0α ¼ dfα=dX, and the subscript 0 indicates that the
background value has been taken. We can also drop the last
term proportional to _ϕ2

0, which is expected to be much
smaller than other terms.
Then we can apply the SK formalism to calculate the

three-point correlation of δϕ,

hδϕk1δϕk2δϕk3i
0

¼ 4f0α0
2 _ϕ0

Z
0

−∞

dτ0dτ00

ðH2τ0τ00Þ2
X

SK

hO2
αðk3; τ0; τ00Þi0

× ∂τ00Gk3ð0; τ
00Þ½∂τ0Gk1ð0; τ

0Þ∂τ0Gk2ð0; τ
0Þ

þ k1 · k2Gk1ð0; τ
0ÞGk2ð0; τ

0Þ&; ð10Þ

where the prime h' ' 'i0 indicates that the delta function of
momentum conservation has been amputated, Gkðτ; τ0Þ is
the SK propagator of the inflaton with momentum k from
conformal time τ to τ0, and the summation goes over all SK
contours.
It is in general quite difficult to carry out the integration

(10) in closed form. However, if we are only concerned
with the “nonlocal” behavior as a noninteger power of
k3=k1 in the squeezed limit k1;2 ≫ k3, it is possible to get
analytical expressions for Eq. (10), by expanding the
correlator hO2

αðk3; τ0; τ00Þi0 in the τ0, τ00 → 0 limit.
Remarkably, the result is free of UV divergence, and does
present the noninteger power of k3=k1. Here we present the
results in terms of curvature perturbation ζ, using the
relation ζ ¼ −Hδϕ= _ϕ0, and the standard parametrization

hζk1ζk2ζk3i
0 ≡ ð2πÞ4

ðk1k2k3Þ2
P2
ζSðk1; k2; k3Þ; ð11Þ

where Pζ ¼ H2=ð8π2M2
PlϵÞ is the scalar power spectrum.

Then, in the squeezed limit kS≡k1≃k2≫k3≡kL, the non-
local part of Eq. (10) with Oα⊃fjHj2;jDμHj2;Ψ̄iDΨi;F2

μνg
can be collectively written in terms of Sðk1; k2; k3Þ in
Eq. (11) as

Sα ¼

8
<

:

Aα

!
kL
kS

"
as−2μs þ ðμs → −μsÞ; μs real

2Re
h
Aα

!
kL
kS

"
as−2μs

i
; μs complex;

ð12Þ

where μs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s − ðMα=HÞ2

p
, and Mα is the mass of the

fields in Oα. The spin s-dependent parameter as ¼ ð2; 1; 2Þ
and bs ¼ ð32 ; 0;

1
2Þ, for s ¼ ð0; 12 ; 1Þ, respectively. The coef-

ficient Aα depends on the choice of Oα. For dim-2 operator
jHj2, this coefficient is given by AH ¼ f0H0

2 _ϕ2
0CHðμ0Þ=π4,

and CHðμ0Þ is a function of μ0 which is suppressed as
e−2πMα=H when Mα ≫ H but enhanced as ðMα=HÞ−4 when
Mα ≪ H. On the other hand, for dim-4 operators
Oα ⊃ fjDμHj2; Ψ̄iDΨi; F2

μνg, Aα ¼ f0α0
2H4 _ϕ2

0CαðμsÞ=π4,
and the coefficient CαðμsÞ depends on μs only, and is again
suppressed by e−2πMα=H when Mα ≫ H.
Some features of Eq. (12) are worth mentioning. First,

for a sufficiently light particle, i.e., m < bsH, the power μs
is real and positive. In this case, the squeezed limit of the
bispectrum shows characteristic power-law behavior with
(generally) noninteger exponent μs. On the other hand, for
heavy particles with mass m > bsH, μs is imaginary and
the corresponding bispectrum shows oscillatory behavior.
Both power-law and oscillatory behaviors are distinctive
signals of massive fields. Remarkably, massive fermions
always show oscillatory signals rather than power law.
Second, the Boltzmann suppression e−2πm=H appears in

all cases, which means that we should not hope to observe
particles with mass much larger than H.
Third, we comment on the observability of this SM

background. We have shown that the amplitudes of these
specific bispectra are fNL ∼ f0α0

2H4 _ϕ2
0CαðμsÞ for dim-4

operators and a similar expression for dim-2 operators.
Given current experimental constraints, these bispetra are
likely unobservable in CMB, but future experiments in
large scale structure surveys [16] and the 21 cm tomog-
raphy [17] are expected to significantly improve the
constraints on primordial non-Gaussianities. For the type
of signals we are interested in, it has been forecasted that
future 21 cm experiments can, in principle, be sensitive to
fNL ≳Oð0.01Þ [18]. Assuming Cα, CH ∼Oð1Þ, we see
that the SM background would be detectable if f0α0

2 ≳
ðH2 _ϕ0Þ−1 and f0H0 ≳ _ϕ−1

0 . This condition can be further
loosened for sufficiently light bosons (m < H=2), because
in this case the Cα factors for jHj2 and F2

μν operators are
greatly enhanced and can be much larger than Oð1Þ.
Finally, we note an interesting window of parameter

space where the SM background becomes both predictable
and observable. This corresponds to regions where fα0 are
sufficiently small but f0α0 are sufficiently large. In this case
the SM spectrum is not affected by the SM-inflaton
couplings, and we may even hope to calibrate the cosmo-
logical collider using this well-defined and distinct SM
signal. This parameter range is likely unnatural in effective
field theory, but it is interesting to investigate if this can be
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the SM gauge fields, and we have made a further simplify-
ing assumption that various fα functions depend only on X
but not directly on ϕ; i.e., we are considering the leading
terms under the shift symmetry. After separating the
inflaton into background and fluctuation ϕ ¼ ϕ0 þ δϕ,
the operator Oα ⊃ fjHj2; jDμHj2; Ψ̄iDΨi; F2

μνg couples to
the inflaton fluctuation according to

L ⊃ fα0Oα þ 2f0α0 _ϕ0
_δϕOα

þ ½f0α0ð∂μδϕÞ2 þ 2f00α0 _ϕ
2
0
_δϕ2&Oα; ð9Þ

where f0α ¼ dfα=dX, and the subscript 0 indicates that the
background value has been taken. We can also drop the last
term proportional to _ϕ2

0, which is expected to be much
smaller than other terms.
Then we can apply the SK formalism to calculate the

three-point correlation of δϕ,

hδϕk1δϕk2δϕk3i
0

¼ 4f0α0
2 _ϕ0

Z
0

−∞

dτ0dτ00

ðH2τ0τ00Þ2
X

SK

hO2
αðk3; τ0; τ00Þi0
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0Þ∂τ0Gk2ð0; τ
0Þ

þ k1 · k2Gk1ð0; τ
0ÞGk2ð0; τ
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where the prime h' ' 'i0 indicates that the delta function of
momentum conservation has been amputated, Gkðτ; τ0Þ is
the SK propagator of the inflaton with momentum k from
conformal time τ to τ0, and the summation goes over all SK
contours.
It is in general quite difficult to carry out the integration

(10) in closed form. However, if we are only concerned
with the “nonlocal” behavior as a noninteger power of
k3=k1 in the squeezed limit k1;2 ≫ k3, it is possible to get
analytical expressions for Eq. (10), by expanding the
correlator hO2

αðk3; τ0; τ00Þi0 in the τ0, τ00 → 0 limit.
Remarkably, the result is free of UV divergence, and does
present the noninteger power of k3=k1. Here we present the
results in terms of curvature perturbation ζ, using the
relation ζ ¼ −Hδϕ= _ϕ0, and the standard parametrization

hζk1ζk2ζk3i
0 ≡ ð2πÞ4

ðk1k2k3Þ2
P2
ζSðk1; k2; k3Þ; ð11Þ

where Pζ ¼ H2=ð8π2M2
PlϵÞ is the scalar power spectrum.

Then, in the squeezed limit kS≡k1≃k2≫k3≡kL, the non-
local part of Eq. (10) with Oα⊃fjHj2;jDμHj2;Ψ̄iDΨi;F2

μνg
can be collectively written in terms of Sðk1; k2; k3Þ in
Eq. (11) as

Sα ¼

8
<

:

Aα

!
kL
kS

"
as−2μs þ ðμs → −μsÞ; μs real

2Re
h
Aα

!
kL
kS

"
as−2μs

i
; μs complex;

ð12Þ

where μs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s − ðMα=HÞ2

p
, and Mα is the mass of the

fields in Oα. The spin s-dependent parameter as ¼ ð2; 1; 2Þ
and bs ¼ ð32 ; 0;

1
2Þ, for s ¼ ð0; 12 ; 1Þ, respectively. The coef-

ficient Aα depends on the choice of Oα. For dim-2 operator
jHj2, this coefficient is given by AH ¼ f0H0

2 _ϕ2
0CHðμ0Þ=π4,

and CHðμ0Þ is a function of μ0 which is suppressed as
e−2πMα=H when Mα ≫ H but enhanced as ðMα=HÞ−4 when
Mα ≪ H. On the other hand, for dim-4 operators
Oα ⊃ fjDμHj2; Ψ̄iDΨi; F2

μνg, Aα ¼ f0α0
2H4 _ϕ2

0CαðμsÞ=π4,
and the coefficient CαðμsÞ depends on μs only, and is again
suppressed by e−2πMα=H when Mα ≫ H.
Some features of Eq. (12) are worth mentioning. First,

for a sufficiently light particle, i.e., m < bsH, the power μs
is real and positive. In this case, the squeezed limit of the
bispectrum shows characteristic power-law behavior with
(generally) noninteger exponent μs. On the other hand, for
heavy particles with mass m > bsH, μs is imaginary and
the corresponding bispectrum shows oscillatory behavior.
Both power-law and oscillatory behaviors are distinctive
signals of massive fields. Remarkably, massive fermions
always show oscillatory signals rather than power law.
Second, the Boltzmann suppression e−2πm=H appears in

all cases, which means that we should not hope to observe
particles with mass much larger than H.
Third, we comment on the observability of this SM

background. We have shown that the amplitudes of these
specific bispectra are fNL ∼ f0α0

2H4 _ϕ2
0CαðμsÞ for dim-4

operators and a similar expression for dim-2 operators.
Given current experimental constraints, these bispetra are
likely unobservable in CMB, but future experiments in
large scale structure surveys [16] and the 21 cm tomog-
raphy [17] are expected to significantly improve the
constraints on primordial non-Gaussianities. For the type
of signals we are interested in, it has been forecasted that
future 21 cm experiments can, in principle, be sensitive to
fNL ≳Oð0.01Þ [18]. Assuming Cα, CH ∼Oð1Þ, we see
that the SM background would be detectable if f0α0

2 ≳
ðH2 _ϕ0Þ−1 and f0H0 ≳ _ϕ−1

0 . This condition can be further
loosened for sufficiently light bosons (m < H=2), because
in this case the Cα factors for jHj2 and F2

μν operators are
greatly enhanced and can be much larger than Oð1Þ.
Finally, we note an interesting window of parameter

space where the SM background becomes both predictable
and observable. This corresponds to regions where fα0 are
sufficiently small but f0α0 are sufficiently large. In this case
the SM spectrum is not affected by the SM-inflaton
couplings, and we may even hope to calibrate the cosmo-
logical collider using this well-defined and distinct SM
signal. This parameter range is likely unnatural in effective
field theory, but it is interesting to investigate if this can be
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Steps towards new discovery:

1. To work out the background signals during inflation. 

Cosmological collider 
          — probing new physics during inflation

The SM mass spectrum during inflation

SM corrections are usually negligible…

Chen, Wang & Xianyu JHEP04 (2017)

Chen, Wang & Xianyu PRL118 (2017)

M2
H ¼

ffiffiffiffiffi
6λ
π3

r
H2: ð6Þ

Another striking phenomenon in inflation is that the
gauge fields can also acquire nonzero mass even when
the Higgs VEV hHi remains zero. This is again due to the
infrared divergence of loop corrections. They can be
calculated either using the real time Schwinger-Keldysh
(SK) formalism with the dynamical renormalization group
resummation of infrared divergence [13], or Wick rotating
the spacetime to Euclidean de Sitter spacetime [7]. Both
methods yield the same results; i.e., the gluon and photon
still remain massless during inflation, while W=Z bosons
acquire nonzero mass,

M2
W ¼ 3g2H4

8π2M2
H
; M2

Z ¼ M2
W=cos

2θW; ð7Þ

where g is the weak gauge coupling and θW is the Weinberg
angle. On the other hand, the fermions always remain
massless during inflation so long as the Higgs VEV is zero.
It should be noted that the coupling constant g in Eq. (7)

also receives corrections from the operator− 1
4 fWðX;ϕÞW

2
μν

coming from Eq. (2), and the corrected g is related to its SM
value gSM via g2 ¼ g2SM=½1þ fWðX0;ϕ0Þ&. Similar correc-
tions apply to other SM couplings including the Weinberg
angle. Generally it makes the SM background rather arbi-
trary, but tractable cases do existwhen the background values
of various fα functions are small enough, and in such cases
one can make certain predictions to the SM spectrum.
With the SM spectrum in non-Higgs inflation clarified,

nowwe turn to typical Higgs inflation, where the Higgs field
itself is the inflaton and acquires a huge VEV. Specificially,
let us take the original Higgs inflation model as an example
[14]. There the Higgs inflaton ϕ≃ 5MPl at the beginning of
observable inflation. As a result, all charged fermions and
W=Z bosons acquire masses proportional to their Higgs
coupling and also to the Higgs VEV, but with v ¼ 246 GeV

replaced by the quantity ðMPl=
ffiffiffi
ξ

p
Þð1 − e−

ffiffiffiffiffiffi
2=3

p
ϕ=MPlÞ1=2∼

Oð0.01MPlÞ, where ξ can be as large as 104. On the other
hand, since the Higgs field itself is the inflaton, its mass
(effectively zero) does not belong to the isocurvaton
spectrum.
The main results of this section are summarized in Fig. 1,

where we plot the SM spectrum normalized by the Hubble
scale H. For illustration, the Hubble scale is fixed to
the value in the typical Higgs inflation model, H≃
2.0 × 1013 GeV. For non-Higgs inflation cases (left 3
columns), all fα functions are assumed to be negligibly
small. All SM couplings are extrapolated to the Hubble
scale by two-loop renormalization group running.
SM background in the squeezed limit.—Given the SM

spectrum during inflation, now we figure out the signals of
the SM fields in the inflaton bispectrum. All SM fields are

charged under the SM gauge group and thus are produced
in pairs. Therefore, they contribute to three-point inflaton
correlators starting from the one-loop level. An example of
this contribution is shown in Fig. 2. There is also a one-loop
diagram with three three-point vertices, but it is likely
subdominant due to a further suppression factor _ϕ2

0.
It is important to specify the SM-inflaton couplings (2) in

order to evaluate diagrams such as in Fig. 2. At the one-
loop level, the only relevant operators Oα are those
quadratic in the SM fields. SM couplings beyond quadratic
order, such as the Higgs self-coupling or gauge couplings,
contribute to the bispectrum at least through two loops, and
thus will be neglected. If we further restrict our attention to
scalar operators with dimension no greater than 4, then
there are only four terms,

L ⊃ −fHðXÞH†H − fDHðXÞjDμHj2

− fΨi
ðXÞΨ̄iDΨi −

1

4
fAa

ðXÞFaμνF
μν
a ; ð8Þ

where Ψi denotes all the charged fermions and D is the
corresponding covariant derivative, Faμν ¼ ∂μAaν − ∂νAaμ

is the quadratic part of gauge kinetic term, Aa’s represent

FIG. 1. The mass spectrum of the standard model during
inflation. The left three columns correspond to the non-Higgs
inflation with zero Higgs VEV, and Higgs masses are chosen to
be ð0.05; 0.5; 5ÞH, respectively. The rightmost column corre-
sponds to the original Higgs inflation model.

FIG. 2. The diagram contributing to the squeezed limit of the
bispectrum with the SM loop. The Φ field represents any of the
SM fields.
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Goldstone EFT Goldstone EFT Slow-roll Models
F with ⇤ ⇠ 5H with ⇤ ⇠ 10H with ⇤ ⇠ 60H

h 1� 10 0.1� 1 0.01� 0.1

Z 0.1� 1 0.01� 0.1 0.001� 0.01

The dimensionless bispectrum F (see (2.17),(2.18)) given above is the maximum value taken
in the squeezed regime. Based on the above table, several remarks are in order. While the
above choices for EFT cutoffs lead to an observable strength of NG, we cannot make the
cutoffs much bigger, since the NG falls rapidly as a function of squeezing and the observable
precision is limited by cosmic variance, �F ⇠ 10

�4 � 10

�3, (1.3). The scale of Higgsing, v,
is also relevant to our theoretical control. Higgsing obviously relaxes the tight constraints
of gauge invariance, allowing tree-level NG. But there are non-trivial constraints of the
gauge structure following from having to expand observables in powers of v/⇤. In the UV
limit v ⇠ ⇤, the constraints of gauge-invariance disappear altogether. To stay in theoretic
control, we have chosen v

⇤

. 1

3

in our studies.
We have used effective non-renormalizable vertices for this paper, but it is obviously of

great interest and importance to seek a more UV-complete level of theoretical description
to have greater confidence in the opportunity to detect gauge theory states in NG. We
see that the strength of NG is bigger when it is mediated by h’s compared to mediation
by Z’s. Furthermore, if cosmological collider physics turns out to be in a purely gauge-
theoretic domain, then we would not see any states with spin > 1, and their associated
angular dependences. Spin > 2 mediated NG would signal a breakdown of point-particle
field theories, perhaps signaling the onset of string theoretic structure. On the other hand,
observing spins 0, 1 only, with stronger spin-0 signals, would give strong evidence for the
structure studied above. While the (NM)SM gives only one h and one Z, extensions of it
(for example, even just some colored scalars) or whole new gauge sectors are capable of
giving multiple h/Z-type states to observe.

We have argued that a strong possibility for m
gauge�theory

⇠ H is that they arise
via a “heavy-lifting” mechanism from much lower-scale gauge theories in the current era.
If these gauge theories are already seen at lower-scale terrestrial experiments, then the
renormalization group allows us to predict expected mass ratios in NG. In principle, such
corroboration would provide spectacular evidence for the large range of validity of such
gauge theories, and the absence of intervening (coupled) states. However, we cannot hope
to get a very precise measurement of such mass ratios, given cosmic variance. But if we are
ever in the position to predict even a few such ratios, modestly precise measurements in
NG would still be compelling. Alternatively, of course, we may discover wholly unexpected
gauge-structure within the NG, at least dimly seen.

There are multiple future directions which remain to pursue. There is obviously the
need for an explicit calculation of the double-exchange diagram involving Z-type particles
which would provide a check for our estimates. Cosmological correlations derived from
inflationary expansion are famously nearly spatially scale-invariant. But in large regimes
of slow-roll inflation or in the Goldstone description, the correlators are actually nearly
spatially conformally invariant, that is they are close to the isometries of dS spacetime.
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✓
0
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Heavy-lifting from broken symmetry

III. ENERGY SCALES OF HEAVY-LIFTING

In this section we consider the class of heavy-lifting scenario induced by the �-h inter-

actions (12). We will use an example to demonstrate the spontaneous symmetry breaking,

without restricting the �-h interactions to be weakly coupled. We will identify a characteris-

tic energy scale µ below which the Higgs field h represents a heavy degree of freedom. In the

simplist case, µ = mh is characterized by its mass scale and a heavy degree of freedom means

that h exhibits a constant dispersion relation ! ⇡ mh for modes with physical wavenumbers

p = k/a(t) ⌧ mh. Thus if H � 102 GeV one would expect that the Higgs field is simply

a light degree of freedom during inflation since the SM value mh ⇡ 125 GeV and the Higgs

self-coupling � becomes small when running up to high energy scales [9–11].

For a strongly-coupled �-h system, we will examine the energy scale ⇤p at which the

perturbative expansion breaks down. In fact, we will show that in the strong-coupling limit

the cuto↵ scale ⇤p becomes independent of the scales ⇤i’s parametrized in (12) while the

perturbativity of the system is still well-defined. To simplify our discussion, we turn o↵ the

non-minimal coupling ⇠ and assume a positive � in the following computations.

A. The target field space of �-h system

We are interested in a system made by two fundamental scalars, which are the inflaton

� and the Higgs field h. To realize a spontaneous symmetry breaking during inflation, we

consider as an example the classical Lagrangian of the form

L = L
sr

(�)� �†
H�H

(@µ�)
2

⇤2

� |Dµ�H |2 � �(�†
H�H)

2, (17)

where it can be taken as a special case of the �-h theory (12) with ⇤
2

= ⇤, c
2

= 1 and

otherwise ci = 0. By taking the SM unitary gauge and omitting all SM gauge fields, the

kinetic terms of the �-h system read

L � �1

2

✓
1 +

h2

⇤2

◆
(@µ�)

2 � 1

2
(@µh)

2 , (18)

which represents a two-field limit of the multi-field inflation scenario based on the non-

linear sigma model [26, 27]. At a first glance, ⇤ looks like a cuto↵ scale to the non-canonical

kinetic interaction, if (17) were a kind of low-energy e↵ective Lagrangian as considered in

8

This work

 non-trivial field space

the Lagrangian L�h then introduces the ⇡-h interactions up to quadratic order as

L�h � � c
1

⇤
1

�̇
0

h
0

⇡̇�ḣ +
c
1

2⇤
1

�̇
0

h
0

@i⇡@i�h

a2

� 2
c
2

⇤2

2

�̇2

0

h
0

⇡̇�h. (14)

Replacing h by � we find from (6) that

�̇
3

� 2�
1

= �2
c
2

⇤2

2

�̇2

0

h
0

, 2�
2

� �
3

= � c
1

⇤
1

�̇
0

h
0

, and �
3

=
c
1

2⇤
1

�̇
0

h
0

. (15)

These results show how the c
1

and c
2

terms in the �-h theory can be cast into the ⇡-�

model. One can also check the above correspondence in the flat-slicing gauge, where the

gauge-invariant variable ⇣ = �H⇡ = �H��/�̇
0

implies ⇡ = ��/�̇
0

.

III. ENERGY SCALES OF HEAVY-LIFTING

In this section we consider the heavy-lifting scenario induced by �-h interactions (11).

We will use an example to demonstrate the spontaneous symmetry breaking of Higgs VEV,

and identify a characteristic energy scale µh below which the Higgs field h represents a heavy

degree of freedom. In the simplist case, µh = mh is characterized by its mass scale and a

heavy degree of freedom means that h exhibits a constant dispersion relation ! ⇡ mh for

modes with physical wavenumbers p = k/a(t) ⌧ mh. Thus if H � 102 GeV one would

expect that the Higgs field is simply a light degree of freedom during inflation since the SM

value mh ⇡ 125 GeV and the Higgs self-coupling � becomes small when running up to high

energy scales [24–26].

For a strongly-coupled �-h system, we will examine the energy scale ⇤p at which the

higher-order perturbation expansion breaks down. In fact, we will show that the cuto↵ scale

⇤p for the perturbative expansion does not rely on the ⇤i’s parametrized in (11). To simplify

our discussion, we turn o↵ the non-minimal coupling ⇠ and assume a positive � ⌧ 1.

A. The Higgs-inflaton system

We are interested in a system made by two fundamental scalars, which are the inflaton

� and the Higgs field h. To realize a spontaneous symmetry breaking during inflation, we

consider as an example the classical Lagrangian of the form

L = L
sr

(�) � �†
H�H

(@µ�)2

⇤2

� |Dµ�H |2 � �(�†
H�H)2, (16)

8

 quadratic mixing

�L2 = 2h0✓̇0�h�✓̇ = µ�h�✓̇c

B. Scales of heavy Higgs

The non-zero Higgs VEV h
0

is led by the slow-roll inflation dynamics �2M2

p Ḣ = R2

0

✓̇2

0

and 3H ✓̇
0

= �V✓/R
2

0

at the first-order of ✏. We can treat h
0

as a stable constant during the

slow-rolling of ✓ given that ḣ
0

is at least second-order in the slow-roll parameters. Performing

the scalar perturbations ✓(t,x) = ✓
0

(t) + �✓(t,x) and h(t,x) = h
0

(t) + �h(t,x) to (16), we

obtain the quadratic Lagrangian as

L
2

=
1

2


R2

0

�✓̇2 � R2

0

a2

(@i�✓)
2 + �ḣ2 � 1

a2

(@i�h)2 � m2

h�h
2 + 4h

0

✓̇
0

�h�✓̇

�
+ O(✏) · · · , (26)

where O(✏) means quadratic perturbations that are suppressed by the slow-roll parameters

(which includes the mass term of inflaton). The terms shown in (26) can also be derived

from the general perturbation theory, and one can check that metric perturbations only

contribute to O(✏).

To see the dynamics of the system, it is convenient to use the canonically normalized field

✓c = R
0

✓ with respect to the canonical commutation relation for canonical quantization. The

quadratic Lagrangian (26) is rewritten as

L
2

� 1

2


�✓̇2

c � 1

a2

(@i�✓c)
2 + �ḣ2 � 1

a2

(@i�h)2 � m2

h�h
2 + 2µ�h�✓̇c

�
, (27)

where the coupling

µ ⌘ 2h
0

✓̇c

R2

=
2✓̇2

0q
✓̇2

0

+ �⇤2

, (28)

plays a key role in the dynamics of our system. Note that once � and ⇤ are fixed, both µ

and m2

h are controlled by the same parameter ✓̇ so that they are not independent from each

other. This is a fundamental di↵erence from the constant-turn quasi-single-field inflation

[6, 7, 43] (or the strongly coupled ⇡-� model [33]).

We classify the �-h system with respect to the quadratic coupling µ as

• weak-coupling: µ/H < 1, and

• strong-coupling: µ/H > 1.

For H > µ, the interaction 2µ�h�✓̇c does not play an important role during inflation and

the system (27) simply describes two weakly interacted scalar fields. In this case we expect

11
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✓

R

±⇤2
t/(R0

p
�) is caused by the time-translation symmetry breaking and is invariant under a

constant shift of the inflaton value ✓0 ! ✓0 + c. Expanding the e↵ective potential

Ve↵ =
�

4
h4 � 1

2
✓̇20h

2, (11)

around h0 one finds the e↵ective mass m2
h = 2✓̇20. A stable h0 asked by the condition

m2
h & H2 is self-manifest if ✓̇20 & H2/2.

Note that the first slow-roll parameter is related to the non-zero Higgs VEV as

✏ = � Ḣ

H2
' R2

0✓̇
2

2M2
pH

2
=

�R2
0h

2
0

2M2
pH

2
. (12)

In the limit of the quasi-single-field inflation (h2
0 � ⇤2), the measured small but finite value

of ✏ ' �h4
0/(2M

2
pH

2) reveals the hierarchy of the Higgs vacuum energy and the background

energy density.

B. Scales of heavy Higgs

The non-zero Higgs VEV h0 is very stable during inflation, given that ḣ0 is at least

second-order in the slow-roll parameters. This is consistent with the single-field inflation

dynamics at the first-order of ✏ as �2M2
p Ḣ = R2

0✓̇
2
0 and 3H ✓̇0 = �V✓/R

2
0.

Performing the scalar perturbations ✓(t,x) = ✓0(t)+�✓(t,x) and h(t,x) = h0(t)+�h(t,x)

to (2), we obtain the quadratic Lagrangian as

L2 =
1

2


R2

0�✓̇
2 � R2

0

a2
(@i�✓)

2 + �ḣ2 � 1

a2
(@i�h)

2 �m2
h�h

2 + 4h0✓̇0�h�✓̇

�
+O(✏) · · · , (13)

where O(✏) means quadratic perturbations that are suppressed by the slow-roll parameters

(which includes the mass term of inflaton). The terms shown in (13) can also be derived

from the general perturbation theory.

To see the dynamics of the system, it is convenient to use the canonically normalized field

✓c = R0✓ with respect to the canonical commutation relation for canonical quantization [?

]. The quadratic Lagrangian (13) is rewritten as

L2 � 1

2


�✓̇2c �

1

a2
(@i�✓c)

2 + �ḣ2 � 1

a2
(@i�h)

2 �m2
h�h

2 + 2µ�h�✓̇c

�
, (14)

where the coupling

µ ⌘ 2h0✓̇c
R2

=
2✓̇20q

✓̇20 + �⇤2

, (15)

5

Equilibrium state: hhi = ±✓̇0/
p
�

[19]. However, in general the theory (17) does not necessarily arise from such an e↵ective

formulation, as we will show that the perturbative expansion of the system is well-defined

even in the limit of strong-coupling. A possible interpretation of the specific interaction in

(17) is to consider a composite field defined as �0
H ⌘ �He

i�/⇤. In this definition the inflaton

� looks like a “pion” of the linear sigma model if the Higgs field acquires a non-zero VEV,

namely hhi = h
0

6= 0. The non-canonical interaction therefore can be naturally introduced

by the kinetic term

|@µ�0
H |2 ! |@µ�H |2 +

�†
H�H

⇤2

(@�)2 + · · · , (19)

where ⇤ now behaves like a symmetry-breaking scale for the additional U(1) beyond the

SM. We want to emphasize that the model (17) is used as an simple example for making

Higgs heavy so that there is in fact no primary assumption for its origin.

The constraint on ⇤ to the system (17) is non-trivial since the target field space of �-h

can be curved. For convenience, we perform the reparametrization for both fields as

R = (⇤2 + h2)1/2, ✓ = �/⇤, (20)

so that the kinetic part of the system becomes

L � �1

2
R2 (@µ✓)

2 � 1

2

R2

R2 � ⇤2

(@µR)2 . (21)

In this representation, the classical value of R acts as the canonical radius for ✓, and the

rescaled inflaton ✓ behaves as the angular mode in the polar coordinate system. In general,

the target field space is not flat since the radial mode R is not canonically normalized. There

are two interesting limits of this system.

1. For h2 ⌧ ⇤2, the radial mode R ! ⇤ and the non-canonical �-h interaction is sup-

pressed by the factor h2/⇤2 ⌧ 1. In this limit the field space is nearly flat since it is

nothing but the conventional single-field inflation with Higgs as an additional degree

of freedom. We refer this regime as the decoupling limit of the �-h system (to be dis-

tinguished from the gravitational decoupling in the ⇡-� model). This is the parameter

space considered in [19].

2. For h2 � ⇤2, the radial mode R ! h coincide with the Higgs field. The field space

is flat as the factor R2/(R2 � ⇤2) ! 1 becomes canonically normalized in the polar

9

 non-trivial field space
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FIG. 3. Parameter space for the �-h system with � = 0.01. The green area is the flat-decoupling

limit with ✓̇/⇤ <
p

�. The meshed area is incompatible with the Naturalness condition ✓̇/⇤ < 1.

The blue (orange) area is the region satisfies the heavy Higgs condition ✓̇/H >
p
18 with a weak-

couling (strong-coupling) µ/H < 1 (µ/H > 1), respectively.

16⇡2 [33]. As a result, one can check that in order to realize µh > ⇤p, the cuto↵ scales ⇤p1

,

⇤p2

and ⇤p3

all ask � � 1. These results are inconsistent with the parameter space of our

consideration. In summary, for � ⌧ 1 the two fields in the system always become weakly

coupled before they reach the non-perturbative region.

One can impose the condition �̇/⇤2 < 1 to suppress the higher-order corrections from

(@µ�)n/⇤n to the system (16). In terms of ✓ = �/⇤, the Naturalness condition, namely

✓̇ < ⇤, includes all the flat-decoupling region ✓̇ <
p

�⇤ since the perturbativity asks � < 1.

As shown in Fig. 3, a heavy Higgs field can be realized in the curvelinear limit with respect

to the perturbativity and Naturalness in Region I with a weak quadratic coupling, or in

Region II with a strong quadratic coupling.

IV. OBSERVATIONAL IMPACT OF HEAVY HIGGS

A. power spectrum

Observational constraints. We study in this section the corrections to the power spec-

trum led by the Higgs-inflaton interactions at linear order. Given that the quadratic in-

teraction of the system (27) is a derivative coupling, these corrections are suppressed on

superhorizon scales so that they do not change the scale dependence of the power spectrum.

16

strong-mixing

weak-mixing

µ = H
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heavy Higgs
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non-perturbative

FIG. 2. Illustration of the energy scales with two kinds of hierarchy.

C. Perturbativity

We now check if the perturbative expansion is well-defined in the case with µh > H

where Higgs behaves as a non-relativistic field during inflation. If the condition ⇤p > µh

can be satisfied, the Higgs field recovers the usual dispersion relation ! = k as a relativistic

degree of freedom before the break down of the perturbative expansion of the theory. This

is illustrated by the left panel of Fig. 2.

Let us consider the cubic interactions introduced by the Higgs-inflaton coupling from (18)

L
3

� h
0

R2

0


�✓̇2c �

1

a2
(@i�✓c)

2

�
�h+

✓̇c
R2

0

�h2�✓̇c. (42)

With a linear dispersion relation ! = k, the temporal derivative and spatial derivative has

the same dimension so that we can easily identify ⇤p = R2

0

/h
0

from the first two cubic

interactions in (42). Therefore ⇤p > µh implies that

(✓̇2
0

+ �⇤2)2 > 2�✓̇4
0

/c2h. (43)

Since we are interested in the strong-coupling limit where ✓̇2
0

� �⇤2, this condition holds if

� < 1/6. The coe�cient of the third interaction in (42) is dimensionless so that perturba-

tivity simply requires ✓̇c/R2

0

< 1, which asks � < 1 in the strong-coupling limit.

Note that in the case with µh > ⇤p, the system may enter to the non-perturbative region

with a non-linear dispersion given by (38), as illustrated by the right panel of Fig. 2. In this

case the space and time coordinate can have di↵erent dimensions, making the discussion

14

Here the speed of sound c2s is simply defined in the limit of p ⌧ (m2

h + µ2)/µ such that the

low-energy frequency can be expanded as

!2

� ! c2hp
2 + µ4

c6h
m6

h

p4 = c2hp
2 + (1� c2h)

2

c2h
m2

h

p4, (38)

and thus it indicates

c2h =
m2

h

m2

h + µ2

=
✓̇2
0

+ �⇤2

3✓̇2
0

+ �⇤2

. (39)

The result (39) appears to be the same as using the e↵ective field approach for curved

field trajectory after neglecting the slow-roll parameter suppressed e↵ective mass [26, 27]

With the definition (38) the low-energy mode has a linear dispersion relation !� ⇡ chp for

p2 ⌧ m6

hµ
�4c�4

h and a nonlinear dispersion relation !� / p2 for p2 � m6

hµ
�4c�4

h .

The dispersion relation of the two frequency modes !± given by (36) is depicted in Fig.

1, yet keeping in mind that these solutions are only valid for subhorizon scales. The modes

!
(1)

± are in the case with µ < H and !
(2)

± are in the case with µ > H. For µ < H, !(1)

±

become almost degenerate at the Hubble scale during inflation (p ⇠ H) and they recover

the usual linear dispersion relation ! ⇡ p.

On the other hand, in the limit of p ⌧ (m2

h + µ2)/µ the high-energy mode

!
(2)

+

! mh/ch, (40)

describes a heavy degree of freedom during inflation as long as mh � chH. Thus, with a

coupling µ > H, the existence of Higgs as a heavy field during inflation does not necessarily

requires m2

h & H2. In fact, in the ⇡-� model one can make � a heavy mode merely due to

a strong-coupling µ with a mass m� ⌧ H < µ, provided that c2h ⌧ 1 [21, 37]. However,

in our scenario the two parameters µ and mh are not independent, and one can check that

c2h ! 1 in the decoupling limit of Higgs and inflaton where ✓̇2
0

⌧ �⇤2 and c2h ! 1/3 in the

strong-coupling limit where ✓̇2
0

� �⇤2. Based on these findings one can identify the energy

scale to have a heavy Higgs field during inflation as

µh ⌘ (m2

h + µ2)1/2 = mh/ch, (41)

where µh ! 0 as ✓̇
0

! 0. The heavy-Higgs condition µh > H, or namely m2

h > c2hH
2 �

H2/9 implies ✓̇
0

> H/
p
18. The corresponding values of the examples µ

(1)

h /H ⇡ 0.17 and

µ
(2)

h /H ⇡ 4.88 are given as the vertical lines in Fig. 1.

13

scale of heavy Higgs

➤ strong-mixing does not necessarily violate perturbativity.
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FIG. 1. The change of the dispersion relation with respect to the wavenumber k in the Hubble

unit. For !(1)

± the parameters ⇤ = 2H, � = 0.01 and ✓̇
0

= 0.1H are used, which gives µ(1) ' 0.04H.

For !(2)

± the parameters ⇤ = 2H, � = 0.01 and ✓̇
0

= 2H are used, which gives µ(2) ' 4H.

write down the equations of motion of the perturbations

�✓̈c + 3H�✓̇c +
k2

a2
�✓c = �µ

⇣
�ḣ+ 3H�h

⌘
, (32)

�ḧ+ 3H�ḣ+

✓
k2

a2
+m2

h

◆
�h = µ�✓̇c. (33)

In the long-wavelength regime with k/a ! 0, we expect the usual solution �✓c ! constant

and �h ! 0 of the single-field inflation. For p = k/a � H we are allowed to neglect the

cosmic expansion so that the equations of motion are reduced to

�✓̈c + p2�✓c = �µ�ḣ, (34)

�ḧ+
�
p2 +m2

h

�
�h = µ�✓̇c. (35)

The solutions in the subhorizon regime thus take the form of �✓c ⇠ �✓±e
i!±t and �h ⇠

�h±e
i!±t [26, 27], where the two frequencies are found as

!2

± = p2 +
m2

h + µ2

2
±

r
p2µ2 +

(m2

h + µ2)2

4
, (36)

= p2 +
m2

h

2c2h
±

s

p2µ2 +
m4

h

4c4h
. (37)

12

dispersion relations

(1) µh < H

(2) µh > H



Power spectrum

heavy Higgs

�P⇣ : Higgs contribution to power spectrum

two-field inflation quasi-single field inflation
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FIG. 3.

the power spectrum. The results from three kinds of approaches are summarized in Fig. 3.

�P⇣ = P⇣ � P ⇤
⇣ is the deviation of the power spectrum from the expectation value of the

standard single-field inflation P ⇤
⇣ = H4/(4⇡2⇤2✓̇2

0

). In summary, the Higgs corrections to the

power spectrum is negligible in the decoupling limit (h
0

⌧ ⇤) but is larger or comparable

to P ⇤
⇣ when h

0

& ⇤. Note that these corrections have no feature in the scale dependence

but only lead to a rescaling of the amplitude of the power spectrum.

We discuss the results from each approach as the follows.

Equation of Motion (EoM). The equation of motion (EoM) approach [33] solves quantum

field fluctuations from a complete set of initial states that satisfy the canonical commutation

relation. The Bunch-Davies vacuum states are special examples of these initial states and are

usually applied to define as the vacuum of “free fields” for the in-in formalism [30–32] in the

interaction picture. However, according to the first-principles of the in-in formalism, these

initial states in general need not to be fully decoupled from each other, and therefore the

EoM approach is also useful to deal with mixed initial states arised from a strongly-coupled

system. Initial mode functions for the ✓-h system (29) are found to be

�✓±k =
H

R
0

p
4k3

e�ik⌘(�k⌘)1±iµ/(2H), and �h±
k = ±i�✓±k , (47)

where the derivation is given in Appendix B.

For ✓̇
0

/H ⌧ 1 Higgs behaves as a light isocurvature mode with negligible corrections to

the power spectrum. For ✓̇
0

/H � 1 the EoM result agree with the prediction from the e↵ec-

tive field theory (EFT) method by integrating out the heavy Higgs field. In the intermediate

16

c2h ! 1 c2h ! 1/3



Bispectrum (equilateral limit)
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
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FIG. 7. The equilateral non-Gaussianity in the strong-coupling limit µ > H⇤ evaluated by the

H-rescaling scheme for all exchange diagrams.

where H̃I,3 collects all cubic interactions (A11) with �✓I and �hI resolved from the EoM

approach. We adopt the conventional definition for the bispectrum B✓ as

h�✓k1(t)�✓k2(t)�✓k3(t)i ⌘ (2⇡)3�3(k1 + k2 + k3)B✓(k1

, k
2

, k
3

), (61)

= (2⇡)7�3(k1 + k2 + k3)
P 2

✓

(k
1

k
2

k
3

)2

S✓(k1

, k
2

, k
3

), (62)

where S✓ is the dimensionless shape function and P✓ = P⇣ ⇥ (✓̇2

0

/H2).

A numerical estimation of the total non-Gaussianity in the equilateral limit (k
1

= k
2

= k
3

)

from all cubic interactions (A11) is given in Fig. 7 with � = 0.01 and ⇤ = 2. This result is

evaluated by the H-rescaling scheme with the definition of fNL based on [5] as

Beq
⇣ =

✓
H

R
0

✓̇
0

◆
3

Beq
✓ = �4

⇣ fNL
18

5
. (63)

Note that the parameter H in (63) is rescaled according to (47) since we evaluate P✓ and

B✓ ⌘ (H/H⇤)3B⇤
✓ from the mode functions (50) with a reference parameter H⇤. As a result,

the bispectrum amplitude is

fNL =
5

18
��4

⇣

✓
�2

⇣

P ⇤
✓

◆
3/2

f�3/2

✓
H⇤

H

◆
3

Beq
✓ ,

=
5

18
��1

⇣ f�3/2I(t), (64)

where f and I(t) = (2⇡)3B⇤
✓/H

3

⇤ are computed by the EoM approach. The result (64) is

23
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Bispectrum (from equilateral to squeezed) k1 = k2 = ck3

shapes beyond single-field inflation
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FIG. 9. The bispectrum B✓ due to Higgs-inflaton exchange processes of the intermediate-type

(left panel) and the equilateral-type with oscillatory signatures (right panel). Parameters � = 0.01

and ⇤ = 2 are used, and mh is in Hubble unit.

For c ⌧ 1, a typical equilateral bispectrum scales as S✓ ⇠ c and a typical local bispectrum

scales as S✓ ⇠ c�1 [39], where the former peaks at the equilateral limit c = 1 and the later

peaks at the squeezed limit c = 0. For a bispectrum scales as S✓ ⇠ c⌫ with �1 < ⌫ < 1 is

referred to the intermediate shapes [6, 7]. As an example, we plot in Fig. 9 the contribution

from the interaction

H̃I,3 = a3�h
0

�h3

I , (70)

with respect to di↵erent values of mh in Hubble unit and we have used the normalization

k/H = 1. We can estimate the scaling of the triple exchange bispectrum in the squeezed

limit by using the late-time expansion (69) as

B✓ ⇠ �h
0

H
c�3/2Im

⇥
c�iLhI� + ciLhI

+

⇤
, (71)

where

I± =

Z
d⌘

⌘4

AB⇤
⌥(�k⌘)3/2±iLh

⇥
G+

✓h(k⌘) + G�
✓h(k⌘)

⇤
2

. (72)

The left panel of Fig. 9 shows a case with µ2

h/H
2 < 9/4 so that Lh is imaginary and

that c2B✓ ⇠ S✓ ⇠ c⌫ with 0 < ⌫ < 1/2. The bispectrum in these cases peak in between the
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Non-analytic scaling

Lh !
r

µ2
h

H2
� 9

4
=

s
m2

h

H2c2h
� 9

4

the non-analytic scaling with strong-mixing:

See also An et. al [1706.09971]  
for three-point functions

◆ EoM
◆ IR expansion
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FIG. 8. The evolution of the component G+

✓h in the mixed two-point function (67) with respect

to z = k⌘ where the EoM approach is described in Appendix A and the IR expansion is described

in Appendix B.

independent of the choice of ✓̇⇤ or H⇤. 3 The asymptotic value fNL ⇠ O(10�2) in the limit

✓̇
0

/H � 1 is consistent with the estimation by integrating out the heavy Higgs field with an

e↵ective speed of sound [9].

Non-analytic scaling. Away from the equilateral limit we can test the momentum scaling

in bispectrum. In general, the particle exchange with a heavy field exhibits both local and

non-local processes. These processes result in the analytic and non-analytic momentum

scaling in bispectrum, respectively. The non-local process comes from components in the

heavy-field mode functions which are oscillating in the late-time limit. In other words,

non-analytic signals do not appear if we integrate out the heavy field through the EFT

approach from the beginning.4 For a weakly coupled system, the non-analytic components

in the correlation functions can be computed explicitly by the in-in formalism [15, 42]. In

the weak-coupling limit, the oscillatory feature in the bispectrum are generated by a heavy

field with a mass m/H > 3/2, and they have the generic suppression factor ⇠ e�⇡L (with a

canonical speed of sound c2

⇡ = 1), where the scaling factor L is given by (52).

To see the non-analytic e↵ect in the strongly coupled �-h system, it is convenient to

3 For the numerical estimation in Fig. 7, we have applied the Wick rotation technique [43, 44] to mode

functions to avoid the slow convergence in the UV limit.
4 However, the leading non-analytic contribution can be captured if heavy-field operators are only partially

integrated out [47].
24
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and outlook
REMARKS

• Signals of heavy particle production are encoded as non-analytic 
momentum scaling in primordial non-Gaussianities. 

• Heavy-lifting improves the observability of SM signals. 

• The observability of Higgs signatures is further enhanced by a 
strong-mixing. 

• Challenge for cosmological collider: SM signals or new physics?

Lh !
r

µ2
h

H2
� 9

4
=

s
m2

h

H2c2h
� 9
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