Axion Limit from the Cooling Neutron Star in Cassiopeia A

Jiaming Zheng
University of Tokyo, Hongo

Base on
K. Hamaguchi, N. Nagata, K. Yanagi, J. Zheng, 1806.07151

Seminar at IPMU
Feb 6, 2019
Axion

- Axion is the pseudo-Goldstone boson of PQ symmetry
- Solves strong CP problem

Astrophysical constraints:

What about neutron star

PDG 2018
Summary

The rapid cooling of CAS A NS was observed

- The cooling can be explained in the standard cooling model
- Axion enhances the cooling and get constrained
Outline

- Neutron star cooling, theory
- CAS A NS cooling, obs. vs theory
- Axion emission from CAS A NS, constraint
- Summary
Neutron Star Cooling, theory

Neutron star interior is almost isothermal after relaxation time scale $\sim 100 \text{ yr}$

$$C \frac{dT}{dt} = -L_\nu - L_\gamma$$

Photon is emitted only from the surface:

$$L_\gamma = 4\pi R^2 \sigma_{SB} T_e^4$$

$L_\gamma \ll L_\nu$ for $t \lesssim 10^6 \text{ yr}$

$t \approx 300 \text{ yr}$ for CAS A

Internal T is determined from T_e by envelope model

For a review, c.f. 1302.6626
Envelope model

\[L_\gamma = 4\pi R^2 \sigma_{SB} T_e^4 \]

- \(T_e \) Effective temperature
- \(T_b \) Internal temperature below the envelope
- \(\eta \sim \Delta M/M_{NS} \)
- \(\Delta M \) Mass of light element (H/He/C) in the envelope
- \(\eta \rightarrow 0: \) Fe envelope

\[T_e \approx T_b^\alpha \quad \alpha \sim 0.5 \]

Major uncertainty:

The composition of envelope, and thus \(\eta \) is unknown ..
Neutrino emission

\[\frac{dT}{dt} = -L_\nu \]

- Direct URCA process (fast)

\[n \rightarrow p + e^- + \bar{\nu} \]

\[p + e^- \rightarrow n + \nu \]

Highly suppressed for \(M \lesssim 2M_\odot \)

Emission take place near Fermi surfaces:

\[p^{p,n,e}_F \approx p^{p,n,e}_F \]

Charge neutrality:

\[E_F^p = E_F^e \]

Chemical equilibrium:

\[E_F^n = E_F^p + E_F^e \]

Contradicts energy–momentum conservation

\(M \gtrsim 2M_\odot \): muon is produced in higher density medium
Neutrino emission

• Modified URCA process (slow)

\[N + n \rightarrow N' + p + e^- + \bar{\nu} \]
\[N + p + e^- \rightarrow N' + n + \nu \]

\[C \frac{dT}{dt} = -L_\nu \]

\[N \ n \ N' \ p \ e \ \nu \ \delta \ E \]
\[T \ T \ T \ T \ T \ T^3 \ T^{-1} \ T \]
\[L \sim T^8 \]

Power law cooling:

\[L_\nu = hT^\alpha, \ C = cT \]
\[\frac{1}{T^{\alpha-2}} = \frac{1}{T_i^{\alpha-2}} + \frac{(\alpha - 2)h\Delta t}{c} \]

• Larger \(\alpha \): slower cooling
• For \(T << T_i \), \(T_i \) doesn’t matter
• \(T \sim \Delta t^{-\frac{1}{\alpha-2}}, \ T_e \sim \Delta t^{-\frac{1}{2\alpha-4}} \)
Neutrino emission

- Nucleon form cooper-pairs at low T

$$T_c \sim \Delta(T = 0) \sim \mathcal{O}(1 \text{ MeV})$$

- Suppress emission from nucleon $\sim \exp(-N\Delta/T)$
- Reduces specific heat for $T < T_c$
Neutron 1S_0

Proton 1S_0

1S_0 is repulsive at high density:
- Neutron 1S_0 in crust
- Proton 1S_0 in core

HUGE theoretical uncertainty
Neutrino emission

- The pair-breaking-formation process (PBF)

\[N + N' \rightarrow [NN'] + \nu + \bar{\nu} \]

equivalently,

\[\tilde{N} + \tilde{N}' \rightarrow \nu + \bar{\nu} \]

\[L \sim T^7 R \sim T^7 \exp(-2E/T) \]

\[\tilde{E}_p = \sqrt{\epsilon_p^2 + \Delta_p^2} \]

\[\epsilon_p = v_F (p - p_F) \]

This causes a momentary rapid cooling
relaxation

phase transition

photon cooling

neutrino cooling

\[T_{\text{max}}^{10^9\text{K}} = 1.6 \ 0.4 \ 0.2 \ 0 \]

Age [yrs]

\[T_\infty \ \text{[10^6K]} \]
The CAS A NS (OBS)

- John Flamsteed: 3 CAS? (1680)

- Remnant expansion: SN exploded in 1681 ± 19
- NS x-ray found by Chandra in 1999
The Cooling of CAS A NS (OBS)

Heinke & Ho, *Nature* 2010:

Cooling by $2 \sim 4\% / 10$ yrs

$M = 1.4 \pm 0.3 \ M_\odot$

Can we explain it with standard cooling?
The Cooling of CAS A NS (TH)

\[C \frac{dT}{dt} = -L_\nu \]

D. URCA is irrelevant:

\[M = 1.4 \pm 0.3 \, M_\odot < 2M_\odot \]

Even if it is, \(T \) would be too low

M. URCA is too slow:

\[L \sim T^8, \quad C \sim T \]

\[T_e \sim T^{\frac{1}{2}} \]

\[\left(\frac{\Delta T_e}{T_e} \right)_{10 \text{ yrs}} \sim -\frac{1}{12} \frac{\Delta t}{t} \sim 0.3\% \]

\[\ll (2 \sim 4)\% \]

A rapid process is needed to explain the fast cooling of the CAS A NS
The Cooling of CAS A NS (TH)

Page, Prakash, Lattimer, Steiner, PRL 2011
Shternin, Yakovlev, Heinke, Ho, Patnaude, 2012 MNRAS:

CAS A NS rapid cooling can be explained by PBF pairing model tuned to fit the data (Tc in particular)

● Large model uncertainty in triplet pairing

Envelope with a thin light element layer:

\[\eta = 5 \times 10^{-13} \]

Otherwise, T is too low to fit the slope.

Viewed as direct evidence of phase transition in NS
Axion emission in NS

Axion emitted mainly by nucleon

Axion–nucleon coupling:

\[\mathcal{L}_{\text{int}} = \sum_{N=p,n} \frac{C_N}{2f_a} \bar{N} \gamma^\mu \gamma_5 N \partial_\mu a \]

- **KSVZ**: \(C_p = -0.47(3), \ C_n = -0.02(3) \)
 (This talk)

- **DFSZ**: \(C_p = -0.182(25) - 0.435 \sin^2 \beta, \)
 \(C_n = -0.160(25) + 0.414 \sin^2 \beta \)
Axion emission in NS

\[C \frac{dT}{dt} = -L_\nu - L_\alpha \]

Dominant processes

PBF

\[L \sim T^5 \]

\[L \sim T^7 \]

Bremsstrahlung

\[L \sim T^6 \]

\[L \sim T^8 \]
Axion emission in CAS A NS

Some technical detail:

We used the public code NSCool for simulation and added extra cooling by axion emission. PBF

Bremsstrahlung

To be conservative on axion limit:

Proton 1S_0: CCDK (Highest T_c)

- Suppress axion emission
- Prevent over cooling by MURCA

Neutron 3P_2: Gaussian with free parameter

Choice of convenience:(doesn’t matter)

- APR EOS
 - Neutron 1S_0: SFB (only relevant to relaxation)
 - $M = 1.4 \pm M_\odot$
Axion emission in CAS A NS

Axion luminosity in KSVZ:

Proton PBF emission dominates L_a

Phase transition

$L_p^S \propto v_F$

$v_F \sim 0.2$

in the neutron star core

This process is ignored in earlier work of CAS A NS axion cooling.
Axion emission in CAS A NS

Cooling with axion vs data

KSVZ, $\eta = 5 \times 10^{-13}$

T_8^8 [K]

2×10^6

10^6

320 340

Time [year]

4×10^8 GeV

6×10^8 GeV

1×10^9 GeV

$\eta = f_a \times 10^8$ GeV

$f_a \gtrsim 5 \times 10^8$ GeV

KSVZ, assume thin carbon layer

SN1987A limit: $f_a \gtrsim 4 \times 10^8$ GeV

evelope with thin light element layer
Axion emission in CAS A NS

\(T_{\text{core}} \) from cooling model at \(t_{\text{obs}} = 2001 \) vs \(f_a \)

\(n^3 P_2 \) pairing turned off

\[O(1) \times 10^8 \text{GeV} \text{ uncertainty} \]
More on envelope uncertainty

We can do better for KSVZ! \(C_n \sim 0 \), \(n^3 P_2 \) PBF emits \(\nu \) not \(a \)

\[
T_c = 2.2 \times 10^8 K, \quad \eta = 10^{-8}, \quad T_0 = 1681
\]

\[
\eta = 10^{-10}
\]

Large \(\eta \) \[\Rightarrow\] low \(T_b \) \[\Rightarrow\] low \(L_\nu \) \[\Rightarrow\] Cannot fit the slope by neutrino alone

Neutron PBF

KSVZ: Neutrino only \[\Rightarrow\] Low \(\eta \) \[\Rightarrow\] \(f_a \gtrsim 5 \times 10^8 \) GeV

DFSZ: Neutrino + axion \[\Rightarrow\] Any \(\eta \) \[\Rightarrow\] \(f_a \gtrsim 1 \times 10^8 \) GeV
The axion mean free path

Determined by the inverse proton PBF:

$$a \rightarrow \bar{p} + \bar{p}$$

$$\Gamma_{a\rightarrow\bar{p}\bar{p}} \sim \frac{m_p^* p_F v_F^2 T}{3\pi f_a^2} \left(\frac{C_p}{2}\right)^2$$

For simplicity, take $$l_a = 1/\Gamma_{a\rightarrow\bar{p}+\bar{p}} \gtrsim 10\text{km}$$

For $$p_F \sim 100\text{ MeV}, m_p^* \sim 1\text{ GeV}, T \sim \Delta_p \sim 1\text{ MeV},$$

$$f_a \gtrsim \left(\frac{C_p}{2}\right) \times 10^6\text{ GeV}$$

otherwise, the axion is reabsorbed back to the NS
Summary

- The rapid cooling of CAS A NS is observed and explained by the standard model;
- Axion emission enhances the cooling and get constrained
- We obtained a tight bound for KSVZ, \(f_a \gtrsim 5 \times 10^8 \text{ GeV} \)
 For DFSZ the bound is weakened, \(f_a \gtrsim 1 \times 10^8 \text{ GeV} \), due to the uncertainty of the NS envelope.
- For comparison, these are comparable to the SN1987A bound: \(f_a \gtrsim 4 \times 10^8 \text{ GeV} \)
- Mean free path of the axion requires \(f_a \gtrsim \left(\frac{C_p}{2}\right) \times 10^6 \text{ GeV} \)
 for the bound to be valid.
Uncertainty?

- Envelope: Major uncertainty. We estimated it.

- Data: Mostly on the cooling part by contamination of camera. We only rely on this for KSVZ. The average temperature give us a weaker bound. Future experiment?

- Relaxation time scale: The relaxation is already simulated by NSCOOL. There were proposals of longer relaxation after the discovery of the rapid cooling of CAS A NS. Need better understanding or analyze an older neutron star.
Thank You !
BACKUP SLIDES
Neutron 3P–F_2 gap: "a2" ($T_c^{\text{max}} = 5.5 \times 10^8 \text{K}$)