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Gravita.onal	instability

Gaussian	primordial	fluctuaEons	

How	is	the	cosmic	web	woven?

	cosmic	web

expansion

de Lapparent+86
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Liouville	theorem:

Poisson	equa.on:

Before	shell-crossing,	moments>2	can	be	neglected	(velocity	dispersion,…)	and	we	get	
evoluEon	equaEons	for	the	cosmic	density	and	velocity	fields:	
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These	highly	non-linear	equaEons	can	be	solved	using	numerical	simulaEons	or	analyEcally	in	
some	specific	regimes.	Exact	soluEons	are	crucial	to	understand	the	details	of	structure	formaEon.	
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con.nuity	equa.on:

Euler	equa.on:

Vlasov-Poisson	equa.ons:	
dynamics	of	a	self-gravita.ng	collisionless	fluid
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Anisotropic	dynamics	within	the	cosmic	web:	
MaWer	escapes	from	voids	to	sheets,	filaments	
and	ends	up	in	nodes.	

	

 5DM	simulaEon	by	C.	Pichon
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From	Eulerian	to	Lagrangian	space

Eulerian	pt	of	view:		
‣ Fixes	the	frame	
‣ Fields	on	a	grid	
‣ δ,	u	
‣ «	volume-weighted	staEsEcs	»

Lagrangian	pt	of	view:		
‣ Follows	the	fluid	
‣ ParEcules	
‣ x=q+ψ	
‣ «	mass-weighted	staEsEcs	»			
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Balistic trajectories

Lagrangian	dynamics:	Zeldovich	pancakes

x = q + ⇣
final position

initial position

displacement

At	linear	order	in	the	displacement,	the	Vlasov	Poisson	system	reduces	to	

rq⇣̈ + 2Hrq⇣̇ =
3
2
⌦H

2rq⇣

Yakov Zeldovich

which	has	the	same	soluEon	as	the	linear	density	contrast	i.e	

⇣ZA = D+(t)⇣+(q)

⇢ZA(q, t) =
⇢̄���

Q3
i=1(1�D+(t)�i)

���

so	that	the	density	aber	a	Zeldovich	displacement	reads:	

Anisotropic	collapse	of	structures	and	formaEon	of	caus5cs!	
Walls	form	first	followed	by	filaments	and	nodes.	

eigenvalues of the deformation tensor:

 10
 10

« l'essence de la théorie des catastrophes c'est de ramener les discontinuités apparentes à la manifestation d'une évolution 
lente sous-jacente. Le problème est alors de déterminer cette évolution lente qui, elle, exige en général l'introduction de 
nouvelles dimensions, de nouveaux paramètres. » - René Thom (1991)

-

https://fr.wikipedia.org/wiki/Ren%C3%A9_Thom
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lente sous-jacente. Le problème est alors de déterminer cette évolution lente qui, elle, exige en général l'introduction de 
nouvelles dimensions, de nouveaux paramètres. » - René Thom (1991)

-

Hidding’13

https://fr.wikipedia.org/wiki/Ren%C3%A9_Thom


The	connected	cosmic	web

Dick Bond

Dmitri Pogosyan

Lev Kofman

Bond,	Kofman,	Pogosyan	1996:	first	understanding	of	the	origin	of	the	cosmic	web.	

The	seeds	of	walls,	filaments	and	nodes	lie	in	the	asymmetries	of	the	primordial	
Gaussian	random	field	then	amplified	by	gravitaEonal	instability.	

Rare	peaks	in	the	ICs	will	become	the	nodes	of	the	cosmic	web	i.e	rich	clusters.	
Their	iniEal	shear	will	set	the	preferred	direcEons	along	which	correlaEon	bridges	will	
connect	them	to	other	nodes.	

simulation mean field around 20 main peak patches

1σ contour

Lagrangian space

Importance	of	peak	&	constrained	random	field	theories	  11
 11
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The	skeleton	picture

 12
 12

Filaments are the field lines 
joining the maxima through saddle points.

peak

peakpeak

saddle

saddle
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voidvoid
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‣	 cosmic	 web	 extractors	 (water-shedding,	 discrete	
topology,	…)	

‣	 local	theory	allowing	for	theoreEcal	predicEons	for	
extrema	counts,	length	of	filaments,	surface	of	voids,	
curvature	…	which	are	very	compeEEve	cosmological	
probes!	

‣	 Cosmic	 connecEvity	 κ:	 typically,	 how	 many	
filaments	connect	to	a	node?	

BBKS, Pogosyan+09, Gay+12, …*

Sousbie+08, Sousbie+11, …*

* among many others!

SC+18
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Peak	theory

ApplicaEons	 to	 cosmology	 then	 follows	
with	Doroshkevich	 (1970),	 Bardeen-Bond-
Kaiser-Szalay	(1986)	and	many	others	…

(c) C. J. Horvath 

Schwartzman+12

1940’s:	 Kac-Rice	 first	 studied	 the	 peaks	 in	
1D	 signals,	 with	 important	 applicaEons	 in	
communicaEon	 theory	 and	 electronic	
signals	

1957:	 Longuet-Higgins	 extended	 this	
work	 to	 the	 2D	 case	 in	 the	 context	 of	
ocean	surface	waves	(width	and	shape	
of	 the	 crests,	 distance	 between	
troughs,	…)	
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Peak	theory

Let	us	consider	a		field					and	its	first							and	second								derivaEves.x xi xij
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P (x, xi, xij)

If	the	field	is	Gaussian	(large	scales/early	Emes),																																						follows	a	
normal	distribuEon	

Peak	theory:	Gaussian	predic.ons

Exp
⇣
�Xt·C�1·X

2

⌘

p
det(2⇡C)

X = (x, xi, xij)

=

where	the	covariance	matrix	C	of	the	field,	its	first	and	second	derivaEves	can	
easily	be	computed	from	the	power	spectrum.	
E.g	in	3D,	once	the	fields	are	rescaled	by	their	variance:

C=

x x1 x2 x3 x11 …

with	spectral	parameter

� =
�2
1

�0�2

=

⌦
rx2

↵
p
hx2i h�x2i
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If	the	field	is	Gaussian	(large	scales/early	Emes),	the	total	number	density	of	
criEcal	points	then	reads	

Peak	theory:	Gaussian	predic.ons

2D 3D
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If	the	field	is	Gaussian	(large	scales/early	Emes),	the	total	number	density	of	
criEcal	points	then	reads	

Peak	theory:	Gaussian	predic.ons

2D 3D

max
min

filamentswalls

And	as	a	funcEon	of	peak	height	(analyEcal	in	2D,	not	in	3D)	:	



Gram-Charlier	expansion	(analogous	to	a	Taylor	expansion	for	PDF):	
The	moment	expansion	of	the	general	PDF	P(x)	around	a	Gaussian	G(x)	is	an	Hermite	
expansion:

where	Hermite	polynomials	are	polynomials	of	order	n	in	x,	orthogonal	wrt	the	
Gaussian	kernel	G.

to all order in non gaussianityP (x) = G(x)

"
1 +

1X

n=3

1
n!

hxniGC Hn(x)

#

A	similar	expansion	holds	for																																	P (x, xi, xij)

see	also	Pogosyan+00,	Gay+11,	SC+13

Peak	theory:	Non-Gaussian	predic.ons
Gay+11
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and	allows	us	to	get	predicEons	for	number	density	of	peaks	to	all	order	in	non-
Gaussianity	once	rotaEonal	invariants	are	used	:

Gay+11
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Gay+11

Those	cumulants	can	be	predicted	from	PT	/ �



Gram-Charlier	expansion	(analogous	to	a	Taylor	expansion	for	PDF):	
The	moment	expansion	of	the	general	PDF	P(x)	around	a	Gaussian	G(x)	is	an	Hermite	
expansion:

where	Hermite	polynomials	are	polynomials	of	order	n	in	x,	orthogonal	wrt	the	
Gaussian	kernel	G.

to all order in non gaussianityP (x) = G(x)

"
1 +

1X

n=3

1
n!

hxniGC Hn(x)

#

A	similar	expansion	holds	for																																	P (x, xi, xij)

see	also	Pogosyan+00,	Gay+11,	SC+13

Peak	theory:	Non-Gaussian	predic.ons

and	allows	us	to	get	predicEons	for	number	density	of	peaks	to	all	order	in	non-
Gaussianity	once	rotaEonal	invariants	are	used	:

� = 0.1

-	-	-	-	Gaussian	
									First	NG	correc5on

Gay+11

Those	cumulants	can	be	predicted	from	PT	/ �
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Peak	theory:	clustering	(i.e	2pt	stat)

Same	ideas	can	be	used	to	also	predict	the	clustering	of	peaks	by	means	of	their	2	point	
correlaEon	funcEon	(higher	order	staEsEcs	are	also	possible	although	not	much	invesEgated	
so	far):

Bias expansion

Exclusion zone

Baldauf, SC+16
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• independent	from	bias	(M/L	raEo)	

• easier	to	measure	in	the	data	(less	sensiEve	to	masks,...),	more	robust

AlternaEve	to	the	usual	use	of	N-point	correlaEon	funcEons	/	poly-spectra,...	which	is	:

Because	topology	is	about	shapes,	connecEvity,	holes,...		and	is	invariant	under	con5nuous	
deformaEon	(stretching,	twisEng,	bending...).

Topological	es.mators
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III.	Comptages	de	galaxies

Topology	of	excursion	sets
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III.	Comptages	de	galaxies

Topology	of	excursion	sets



➢	Minkowski	func.onals	(topological	invariants):	

 22

g=0 g=1 g=2

d+1	MFs	in	d	dimensions.	
MathemaEcal	genus	in	2D	=	number	of	handles/holes	(max	number	
of	cutngs	along	closed	curves	without	disconnecEng	the	surface)

extrema 
counts

upcrossing 
minima=+1

upcrossing 
maxima=-1

Topological	es.mators
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g=0 g=1 g=2
This	is	a	topological	invariant:	two	surfaces	are	homeomorphic	if	
they	have	the	same	genus.

d+1	MFs	in	d	dimensions.	
MathemaEcal	genus	in	2D	=	number	of	handles/holes	(max	number	
of	cutngs	along	closed	curves	without	disconnecEng	the	surface)
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maxima=-1

Topological	es.mators



➢	Minkowski	func.onals	(topological	invariants):	

 22

g=0 g=1 g=2

In	ND,	we	define	the	Euler-Poincaré	characteris.c	(in	2D,	=2-2g)	as	
the	alternaEng	sum	of	Bet	numbers:

� =
X

i

(�1)ibi

where	bi	is	its	rank	of	the	i-th	homology	group	(b0=number	of	
connected	components,	b1=circular	holes,	b2=caviEes,…).	
Gauss-Bonnet	theorem:	χ	is	the	integral	of	the	Gaussian	curvature	
Morse	theory:	it	is	the	alternaEng	sum	of	extrema.	

The	Euler	characterisEc	obeys:	addi.vity,	mo.on	invariance	and	
condi.onal	con.nuity,	it	is	one	of	the	MF.	

This	is	a	topological	invariant:	two	surfaces	are	homeomorphic	if	
they	have	the	same	genus.

d+1	MFs	in	d	dimensions.	
MathemaEcal	genus	in	2D	=	number	of	handles/holes	(max	number	
of	cutngs	along	closed	curves	without	disconnecEng	the	surface)

extrema 
counts

upcrossing 
minima=+1

upcrossing 
maxima=-1

Topological	es.mators



Topological	es.mators
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d+1	MFs	in	d	dimensions:	Euler-Poincaré	characterisEc	and??	
in	2D:	length	of	isocontour	+	encompassed	volume	
in	3D:	surface	of	isocontour+encompassed	volume+integrated	mean	
curvature

➢	geometrical	es.mators	and	cri.cal	sets:	
peak/saddle/void	counts	
length	of	filaments	
surface	of	walls	
…	

➢	Minkowski	func.onals	(topological	invariants):	



Euler-Poincaré	characteris.c

 24

�3D(⌫) = �
Z

P (x, xi, xij)�D(xi) detxij⇥(x� �0⌫)

Using	a	Gram-Charlier	expansion	and	invariant	variables,	on	can	get	a	predicEon	to	all	
orders	in	non-Gaussianity



Euler-Poincaré	characteris.c

 24

�3D(⌫) = �
Z

P (x, xi, xij)�D(xi) detxij⇥(x� �0⌫)

Using	a	Gram-Charlier	expansion	and	invariant	variables,	on	can	get	a	predicEon	to	all	
orders	in	non-Gaussianity

� = 0.1

-	-	-	-	Gaussian	
									First	NG	correc5on
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	 ‣ Birth	and	growth	of	the	cosmic	web	
‣ Random	fields,	Peak	theory,	topology	
‣ Cosmic	connecEvity

A	10-year	long	work	with	Dmitri	Pogosyan	(UAlberta)	&	Christophe	Pichon	(IAP)	
Codis,	Pogosyan,	Pichon,	2018,	MNRAS,	479,	973

On	the	connec.vity	of	the	cosmic	web	
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6.	Résumé6.	Résumé

Global	connec.vity	for	GRF

How	many	filaments	connect	to	a	node?

Number	 of	 connected	 saddles	 are	 measured	
using	 the	 Disperse	 skeleton	 algorithm	
(Soubsie+11)	in	GRF	realisaEons.

Can	we	predict	the	mean	connecEvity?
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Because	each	filament	goes	through	one	and	only	one	saddle	pt,	on	average:	

           = 4                                                 in 2D GRF

          =                                                    in 3D GRF

6.	Résumé6.	Résumé

Global	connec.vity	for	GRF:	theory
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Because	each	filament	goes	through	one	and	only	one	saddle	pt,	on	average:	

           = 4                                                 in 2D GRF

          =                                                    in 3D GRF

6.	Résumé6.	Résumé

Global	connec.vity	for	GRF:	theory

Cubic 
Lattice

Defects? Asymptotic result?

In	d	dimensions,	we	relied	on	numerical	integraEons:	
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Full	distribuEon	of	connecEvity:

3D

n s=0

n s=-1

n s=-2

n s=-3

5 10 15 20
0 .00

0 .05

0 .10

0 .15

0 .20

connect ivity k

PHk
L

Dependence	with	peak	height:

3D

n s=0

n s=-1

n s=-2

n s=-3

-1 0 1 2 3 4
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16

peak he igh t n

Xk»
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6.	Résumé6.	Résumé

GRF	connec.vity:	dependence	with	peak	height

The	higher	the	peak,	the	more	connected
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6.	Résumé6.	Résumé

Global	connec.vity:	evolu.on	with	cosmic	.me

Filaments	merge	in	a	cosmology-dependent	way!

‣ Measurement	in	cosmological	simulaEons:
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6.	Résumé6.	Résumé

Global	connec.vity:	evolu.on	with	cosmic	.me

Filaments	merge	in	a	cosmology-dependent	way!

‣ Measurement	in	cosmological	simulaEons:

Using	a	Gram	Charlier	expansion,	one	can	get	
predicEon	at	arbitrary	order	in	NG

With

‣ PredicEons:



 30
 30

6.	Résumé6.	Résumé

Local	mul.plicity	and	bifurca.on	points

For	galaxy	formaEon,	what	maWers	most	is	how	many	filament	connect	locally	onto	a	galaxy.	
At	small	enough	scale,	a	peak	is	always	ellipsoidal	so	that	only	two	branches	of	filament	sEck	
out.	Then	those	branches	bifurcate.	Some	bifurcaEons	appear	so	close	to	the	peak	that	they	are	
physically	irrelevant.	Hence	we	will	define	the	mul.plicity	as	the	local	number	of	filaments.
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6.	Résumé6.	Résumé

Local	mul.plicity	and	bifurca.on	points
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bifurcations
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6.	Résumé6.	Résumé

Local	mul.plicity	and	bifurca.on	points

For	galaxy	formaEon,	what	maWers	most	is	how	many	filament	connect	locally	onto	a	galaxy.	
At	small	enough	scale,	a	peak	is	always	ellipsoidal	so	that	only	two	branches	of	filament	sEck	
out.	Then	those	branches	bifurcate.	Some	bifurcaEons	appear	so	close	to	the	peak	that	they	are	
physically	irrelevant.	Hence	we	will	define	the	mul.plicity	as	the	local	number	of	filaments.

µ = � nbifurcations

µ ⇡ 3

µ ⇡ 4

in	2D

in	3D
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6.	Résumé6.	Résumé

Local	mul.plicity

The	 denser	 the	 environment,	 the	 higher	 the	 mulEplicity	 therefore	 bringing	 less	 coherent	
angular	momentum	and	generaEng	more	ellipsoidal	galaxies?
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6.	Résumé6.	Résumé

Local	mul.plicity

The	 denser	 the	 environment,	 the	 higher	 the	 mulEplicity	 therefore	 bringing	 less	 coherent	
angular	momentum	and	generaEng	more	ellipsoidal	galaxies?

Work	in	progress…
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Peak
Filaments

Let	us	count	filament	crossings	at	a	sphere	of	radius	R	around	the	central	peak…



R
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Peak
Filaments

Let	us	count	filament	crossings	at	a	sphere	of	radius	R	around	the	central	peak…
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Peak

2D peaks on  
the sphere

Filaments

Let	us	count	filament	crossings	at	a	sphere	of	radius	R	around	the	central	peak…
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Size of peak patches  
depends on their height
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

But	how	dense	are	those	filaments?
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Typically,	 two	 to	 three	 dense	 filaments	 dominate	 and	 therefore	 define	 a	plane	of	 accre.on…	 in	
agreement	with	numerical	simulaEon	(Danovich+12)	and	observaEons	of	plane	of	satellites	around	
galaxies.
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‣ Peak and constrained random field theories are 
paramount to understand the birth and growth of the 
cosmic web 

‣ Many analytical results can be obtained in the weakly 
non-linear regime 

‣ The topology and geometry of the cosmic web carries 
important cosmological information and is key for 
galaxy evolution. 

‣ In particular, we now have a precise understanding of 
the connectivity of the cosmic web (the cosmic crystal) 

Conclusion	
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on


