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The Post-Naturalness Era?

© What stabilizes the Higgs ~ A&
mass (hierarchy problem)? "¢

- No new physics at LHC
- No WIMPs detected

WIMP-nucleon O [cm?]
-

@ What explains the vacuum energy
(cosmological constant problem)?

- Constraints on deviations from
GR are increasingly tight




Frampton (1976); Sher (1989); Degrassi et al. (2012); Buttazzo et al.
(2013); Bednyakov et al. (2015); Andreassen, Frost and Schwartz (2017)

Higgs metastability

@ A disturbing consequence of a "grand desert” above the weak
scale is the metastability of our vacuum |

@ Higgs discovery with my >~ 125 GeV fixes all SM parameters, and
allows computation of quantum effective potential

Higgs
i 3 tandard Model
potential . Metastability Standard Mode
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Andreassen, Frost and Schwartz (2017)



Higgs metastability as near criticality

, Nucleation prob. within
Higgs . ;
potential v observable universe:

/"—:-:::: ~~~~~ ’
PN Percolation transition:
. Guth & Weinberg (1983)
Higgs field \‘ o Lo

T -

Estimated lifetime of
—202 years

Andreassen et al. (2017)
our vacuum:

Reassuringly long, but hinges on delicate numerical cancellation:

4 9
L4 8 17
a eXp( SIA(M*M) 4

@ This delicate numerical conspiracy cannot be an accident

@ Difficult to conjure up an anthropic explanation

Why is our universe so precariously close to instability?



Other fine-tunings can be understood as problems of criticality.

@ Weak hierarchy: 2 2 %
o P04 M5 < mf < Mg
Giudice & Rattazzi (2006)

m; ~ M3, m; ~ (
=07 (h) = 246 GeV

* In SM, electroweak still broken at QCD scale by Higgs coupling to quark condensate.

@ Cosmological constant:

A ()

ATl
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Landscape approach

@ Physical parameters vary across a
vast landscape of metastable vacua

@ Observed values are
environmentally defermined

Usual strategy: ® Focus on late-time, stationary/equilibrium
distribution

Garriga & Vilenkin (1998)

o Frac’rl}?n of comoving volume occupied §
| by 7" vacuum |

@ Hope: among all hospitable vacua, our
vacuum is typical/generic



Challenges with the usual approach

@ Many long-lived vacua

— exponentially long relaxation time
— frustration, aging dynamics
(glassy system)

Relatedly, finding vacua within
hospitable range of A\ is NP-hard  Denef & Douglas (2007)

® Bubbles of all types are

: Long-standi
generafed OO -many times as t — 00 ong-standing problem

Predictions depend on Linde & Mezhlumian (1993)

= hoi £ 4 abl Garcia-Bellido, Linde & Linde (1994)
CRocesGl LIe N Garriga & Vilenkin (1998)
Predictions also depend on Garriga et al. (2006)

= P Vanchurin & Vilenkin (2006)

comoving vs physical volume Bousso (2006)

Bousso, Freivogel & Yang (2009)...



Instead of focusing on equilibrium distributions, in this falk
we will study the approach to equilibrium

Denef, Douglas, Greene & Zukowski (2018):

Suppose that the multiverse has existed for a time much shorter
than the exponentially-long mixing time (¢ < relax ).

Instead of asking:

What hospitable vacua occur most frequently

according to late-time equilibrium distribution?

..the question becomes:



With Onkar Parrikar, fo appear

This suggests a natural selection mechanism,
which selects vacua at criticality.

Non-equilibrium phase
transitions in landscape
dynamics

Near-criticality of
our universe




Consider a finite region of the landscape containing [NV > 1 vacua.

(Assume all dS vacua, and treat as closed system)

® = hospitable @ — inhospitable

f(t) __ fraction of comoving volume |
7} BT ~

. -th
occupied by i "M vacuum

Y

Volume is conserved: Z Lt =1
il

Satisfies linear master equation for
Markov process: i f |




Landscape dynamics as random walk




In the vastness of the landscape, imagine many replicas of the fiducial region,
each with slight differences in transition rates, network topology etc.

Ty t
Lgeneric ™~ € b0 imal 1Y "

Textbook example of natural selection:

- Ensemble = gene pool; Each region = set of alleles

- "Genetic” make-up is heritable (cosmological expansion)

- Hospitable alleles compete for a finite resource (comoving volume) .

Target alleles (i.e., hospitable vacua) best adapted to (i.e., easily accessed by)
their environment (i.e., other vacua in the region) get naturally selected.



Naturally-selected hospitable vacua, far from being typical/mediocre,
are exceptional and fine-tuned, much like complex organisms in the
natural world are fine-tuned.

But they are fine-tuned for a purpose:

Hospitable vacua residing in optimal regions are exponentially
more efficient at being accessed early on

In Nature, striking relation between complexity and crificality.

Z AN
< >
N\ /

Importantly, optimality criteria (and phenomenological
predictions) will be time-reparametrization invariant and
independent of comoving vs physical volume.



Transition rates on the landscape

o
® Coleman-De Luccia: ®
®
. . 4 i ounce |\ .

adjacency maftrix: » S (M S Sb )z‘j Lee & Weinberg (1987)

weights: ITAY de Sitter entropy
(Low-energy vacua
exponentially weighted)

lapse function: | de e /\Gdt

proper' time global‘ time

(In this talk, remain agnostic about choice of global time)

~§p Random walk on weighted, undirected network  Zhang et al. (2013)

d ‘ :
Detailed balance: Lee & Weinberg (1987)




(Regional) equilibrium distribution

=5 My,
j

Master equation:

Transn‘uon mafrlx

Perron-Frobenius theorem: Mij has one vanishing eigenvalue
AL =)
All others are strictly negative:

@ A5 > .. >

Zero-mode sets the stationary/equilibrium distribution:

Garriga & Vilenkin (1998)

M

- Depends only on the weights

- Low-energy vacua exponentially favored
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How quickly is equilibrium reached?

A popular measure of search efficiency is the

mean first-passage time: T ( B
<t : > — Avg time for walker starting
1—¥/ = from node i to reach node / ) @

Global mean first-passage time (Kemeny's constant):

Famously, independent
of starting node!

Non-zero eigenvalues

#of Mij

Must diagonalize large /N X /N matrix — a daunting numerical task!



“Downwar‘d” appr‘ox'n Schwartz-Perlov & Vilenkin (2006); Olum & Schwartz-Perlov (2007)

“upward” fransitions

Recall detailed balance: i .
§ exponentially suppressed

In downward approx’n, neglect upward transitions to leading order.

By labeling vacua by increasing poft., Vi< Vo <...< VN, transition matrix
becomes upper-triangular:

Total rate out
# of each vacuum: K, = g Ko

r

(k1 = O in the approx’n)




Global mean first-passage time

(diffusion in disordered media)

Typical regions include vacua whose only allowed transitions
are upward jumps

——>  Exponentially long {MFPT

2
2
e IMFPT ™~ e hiin o eN

Denef & Douglas (2007)



Global mean ﬁrs’r-passage time

(diffusion in disordered media)

Native state

= tmrpr ~ N7

(NP-hardness is ‘worst-case’. Special cases can be polynomial.)



QUiCk I"eCClp ® — hospitable

Landscape dynamics: random walk on weighted,
undirected network e

Ensemble:

@ Statistically identical equilibrium distribution: fzpo e Z W
gr )

@ But vastly different A;;, hence different “mixing fimes”:

Typical, glassy region: Golden, funnel-like region:
N
IMFPT ™~ € tvepT ~ N7
e 4 topology

4 fastest rates

@ — inhospitable




So far treated each region ® ®

as closed system. »
In reality, each is an
open system. 1 .
"
¢ 's
° e
®
3 °
®

Once random walker lands in a golden region, how can we
minimize the probability of escape?

In principle requires modeling environment...

Instead study a proxy requirement that depends solely on the intrinsic
dynamics of the region:

Demand that walks be recurrent in the N — o0 limit.
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Recurrence: @ Random walker will eventually return to starting node

(Equivalently, random walker will eventually visit every node.)

Transience: @ Random walker may never return to starting node

Polyas theorem

Simple random walks on R? are recurrent for d < 2,
and transient for d > 2 .

100

80

60

40

20

100

20
40
60
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"A drunk man will find his way home, but a

drunk bird may get lost forever.”

- Shizuo Kakutani, UCLA Colloquium



Recurrent/Transient Random Walks on Networks

probablll’ry density that walker, who started at

First-passage probability: Fl;(t) = node 1, visits node k for the 1st time at time ¢

(No’re: MFPT is first moment, (t; sx) = / dttFat) )
0

In particular,  Fj;(t) = first-return probability density

Escape probability: Probability that walker never returns to starting node

lim S77) =0 < Recurrence
e 0.
lim S;;(7) = finite * == Transience
o

Importantly, recurrence/transience criterion is time-reparam. invariant



el BCE=—> Recurrence }

Escape probability:

T; < o0 <> Transience }

® Walks are always recurrent for finite [V

@ Non-trivial case: [N — o0 (First send N — 00, then t — 00.)

Averaged over all nodes, neatly expressed as spectral sum:

tMFPT |
Hm N d.lscre’re

® Remarkably, simply related to global MFPT

@ Recognized as dimensionless mean residency time.

@ In downward approx’n, Ay ™~ —Ky, reduces to

Manifestly time-reparam. invariant



2 competing requirements

e Ny JSvn SR Sy S N/ vt~ S i S S N ) N =S P  N EE

@ Search efficiency &= —> minimal {MFPT

k

IMEPT

| @ Sweeping exploration ~<——>  recurrence:

s o ang PR S P PR T SIS 2 GO T g & Lo o — i ET A S Row 8 Lo poana

Optimal regions reach a compromise by having the shortest MFPT
compatible with recurrence.

Optimality select regions at critical boundary between recurrence
and transience.




Different notions of criticality

@ Equilibrium phase transitions

(T — T¢)

- \ 3gY 5
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Bak, Tang & Wiesenfeld (1987)



@ "Edge of chaos” dynamical phase transition: critical boundary
between stable and unstable dynamics

A=10.25
Cellular automata:

4

TS APTeTT A'"\"&""ﬁ

P IS

Wolfram (1984);
Langton (1990);
Crutchfield et al. (1993)

>
:
g
H
3
3
§
S
3
3
:
§
;

In cellular automata, associated with
optimal information processing

@ information storage/transfer

@ dynamic response

@ universal computation




Dynamical criticality via natural selection

- Poised at dynamical crificality: compromise between robustness

and adaptability




: by ; 1
Dynamical criticality Recurrence: (7) >~ lim <’{. At> —ace

N — o0

® Use proper time, KAt =k, AT

@ In the continuum limit,

" § P(V) = probability distribution

_. average proper
k(V) =
f ~ fransition rate

Identical to dynamical phase transition from normal to anomalous

diffusion in disordered media






@ Metastability of our vacuum

The critical decay rate implies an optimal lifetime
for our vacuum of

—~
>
Q
O
~
wni
(Vs
O
S
Q.
O
-+—

: +409
SM estimate: 7 = 1(0°%0-202 years

Agrees to within 2 20
Prediction for top: mfgmle ~ 174.5 GeV

@ Why no low-scale SUSY?

Suppose all SUSY partners have
mass at Msysy .

Higgs mass my, in GeV

High-scale SUSY favored by
optimal search strategy

Meta-stability Stz e, [Hleelel

Absolute stability

100 150

50Higgs mass (GeV)

10 10" 10" 10%°

Supersymmetry breaking scale in GeV

Giudice & Strumia (2011)



® Right-handed neutrinos Non-perubative

Sufficiently massive RH neutrinos
make EW vacuum less stable

Can bring SM lifetime closer to
optimality with

>
3]
O
=
=
72]
[75]
<
=
~
o]
[}
=]
=
<
=
Jd,
=
en
-
a2

Meta—stable

1012 |
0.06 008 0.1 02 03 04 0506 08 1

| My ~ 1013 — 101 GeV|

& A . o

Neutrino mass in eV

Elias-Miro et al. (2011)

@ Strong CP and QCD axion

QCD axion makes EW vacuum more stable

Meanwhile,




® Cosmological constant (NOT time-reparam invariant)
2

Local equilibrium distribution: . ~ €
Exponentially favors vacuum with smallest potential energy Vi -

With N vacua, this is statistically

Can explain observed C.C. if our
region contains IN = 10+%°

Note: Could make same argument in the “global” approach to the landscape
e.g. Linde & Vanchurin (2010)

——> favors smallest potential energy anywhere on the landscape

—— But expect such vacuum to be nearly supersymmetric,

with tiny m3/o and Vi, ~ m§/2 /

Instead our
mechanism predicfts:

"Given the value of the CC, why is
the SUSY breaking scale so large?”

Banks (2001)
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Tunneling into AdS vacua

dS — AdS transition rate can be
reliably calculated Coleman & De Luccia

Within a Hubble time, AdS region starts to collapse

Big Crunch singularity?

AdS vacua are terminal renoniBolince .
— PR { contraction =~ expansion \
Death? i do e dS fransifion

); Nomura (2011)
Garriga & Vilenkin (2012,2013)

qurigaf Schwartz-Perloy, Vilenkin & Piao (2004,2009
Winitzki (2005)



AdS — dS

dd = Add

Because of high (Planckian?) energy reached at the bounce,

@ AdS — dS is nearly instantaneous
® can transition (classically) to far away, high-energy vacua

——> AdS vacua are short-lived mediators






Random walks with Levy flights o Y

Local/Brownian moves Non-local/Levy moves |

Similar to Googles PageRank matrix

o = 0&>

Brin & Page (1998)



Final thoughts

Most fine-tuning problems are problems of crificality

Generic? @ Naturalness: small parameters profec’re;di by ‘.s'ymme’rries

® Landscape (standard approach): principle of mediocrity

Natural selection: outcomes are fine-tuned
and nearly critical

Search optimization on the landscape:

powerful natural selection mechanism v :
 Evolutionary

biology
Optimal region: nearly critical vacua
—> @ Higgs metastability

——> @ Absence of low-scale SUSY



Tantalizing questions:

@ Enhanced computational capabilities?

Criticality in cellular automata, random boolean
networks and neural networks is associated with
optimal information processing

Non-equilibrium
critical landscape
dynamics

Optimal information ?
processing o

An Echo State
Network

Output

. Fixed weight
Reservoir o

Trained weight

Fixed Weight (optional)

Trained weight (optional)

-0.5 0.0
Lyapunov exponent




Tantalizing questions:

@ Why (no more than) 3 dim’'ns?

Native

Search optimality might favor landscape regions with 1

low effective moduli-space dimensionality, particularly
near the lowest-energy vacuum.

@ The early universe

Slow-roll inflation also a problem of near-criticality

SO(4,1) — ISO(3)

More tfantalizingly: New ways of realizing inflation?

Optimal regions are open systems ——

Collapsed

structures




scale-invariant inflationary avalanches?







@ The early universe

Scale invariant primordial spectrum suggests
near-criticality in the early universe

Plk) oo kP .,

The mechanism traditionally invoked (i.e. slow-roll inflation) relies
on approximate conformal invariance

V(o) a SO(4,1) — ISO(3)
Maldacena (2002);

Creminelli & Zaldarriaga (2004);
Hinterbichler, Hui & Khoury (2012,2013);
Creminelli, Norena & Simonovic (2012);
Goldberger, Hui & Nicolis (2013);

Hui, Joyce & Wong (2018)




© Chiara Cammarota (KCL)




Unfolded

Molten globule

Native state




