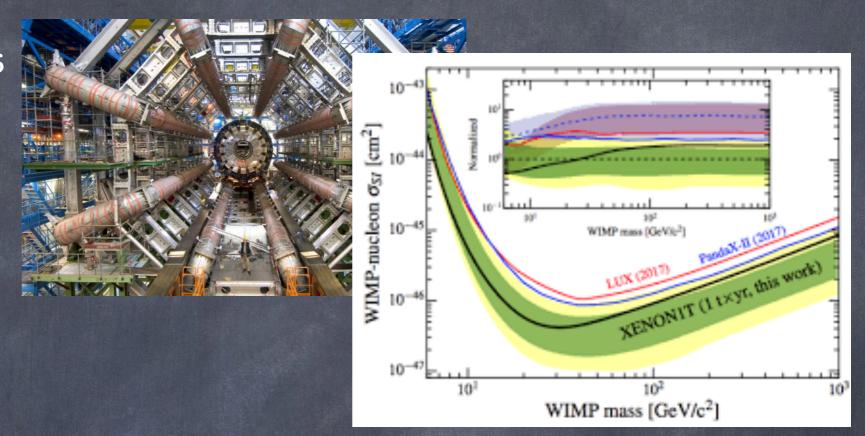
Search Optimization, Dynamical Criticality, and Higgs Metastability

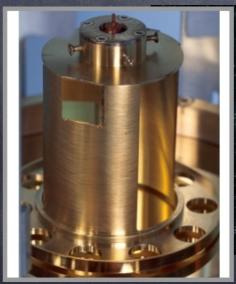
Justin Khoury (U. Penn)
with Onkar Parrikar, to appear

The Post-Naturalness Era?

- What stabilizes the Higgs mass (hierarchy problem)?
- No new physics at LHC
- No WIMPs detected

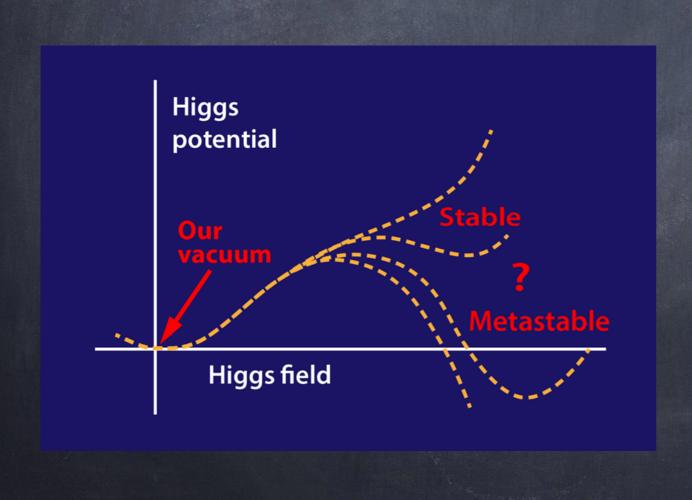


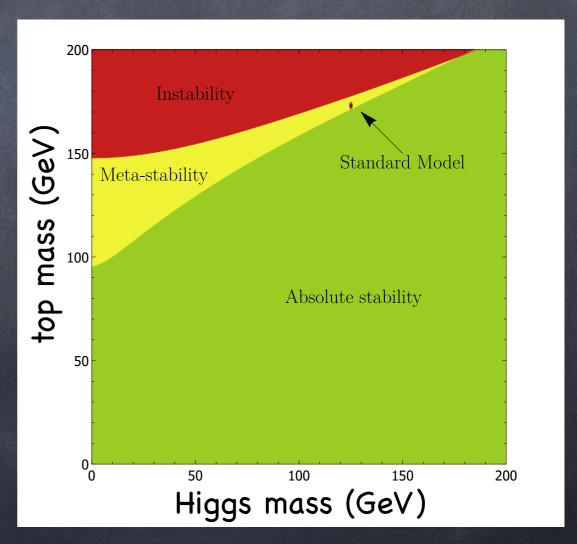
- What explains the vacuum energy (cosmological constant problem)?
- Constraints on deviations from GR are increasingly tight



Higgs metastability Frampton (1976); Sher (1989); Degrassi et al. (2012); Buttazzo et al. (2013); Bednyakov et al. (2015); Andreassen, Frost and Schwartz (2017)

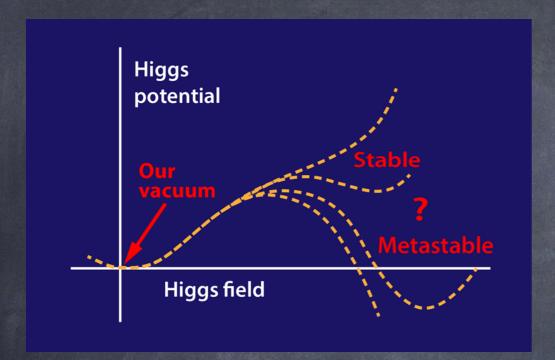
- A disturbing consequence of a "grand desert" above the weak scale is the metastability of our vacuum
- Higgs discovery with $m_h \simeq 125~{
 m GeV}$ fixes all SM parameters, and allows computation of quantum effective potential





Andreassen, Frost and Schwartz (2017)

Higgs metastability as near criticality



Nucleation prob. within observable universe:

$$\kappa \equiv rac{\Gamma_{
m decay}}{H_0^4}$$

Percolation transition:

$$10^{-6} \lesssim \kappa_{\rm c} \lesssim 0.24$$

Guth & Weinberg (1983)

our vacuum:

Estimated lifetime of our vacuum:
$$\tau = 10^{526^{+409}_{-202}} \; \mathrm{years}$$

Andreassen et al. (2017)

Reassuringly long, but hinges on delicate numerical cancellation:

$$P_{\text{decay}} \simeq \frac{\mu_*^4}{H_0^4} \exp\left(-\frac{8\pi^2}{3|\lambda(\mu_*)|}\right) \qquad \mu_* \simeq 3 \times 10^{17} \text{ GeV}$$

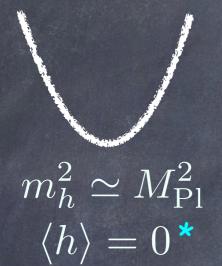
- This delicate numerical conspiracy cannot be an accident
- Difficult to conjure up an anthropic explanation

Why is our universe so precariously close to instability?

Other fine-tunings can be understood as problems of criticality.

Weak hierarchy: Giudice & Rattazzi (2006)

$$-M_{\rm Pl}^2 \lesssim m_h^2 \lesssim M_{\rm Pl}^2$$



$$m_h^2 \simeq 0$$
 $\langle h \rangle = 246 \text{ GeV}$

$$m_h^2 \simeq -M_{\rm Pl}^2$$

 $\langle h \rangle \sim M_{\rm Pl}$

* In SM, electroweak still broken at QCD scale by Higgs coupling to quark condensate.

Cosmological constant:

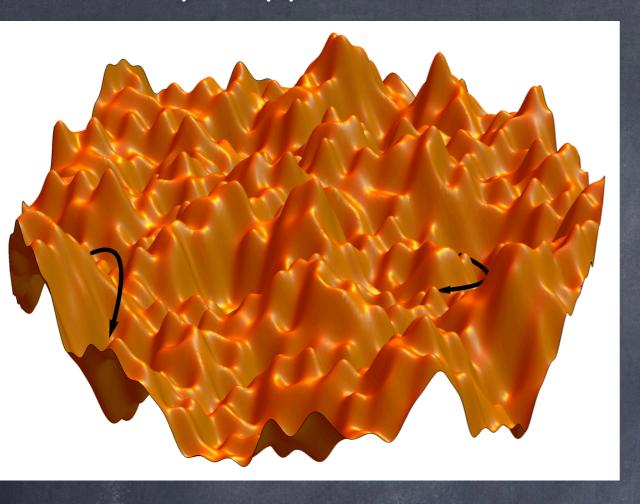
$$\Lambda > 0$$
 stable

$$\Lambda < 0$$

Non-linearly unstable

Landscape approach

Landscape approach



- Physical parameters vary across a vast landscape of metastable vacua
- Observed values are environmentally determined

Usual strategy: Garriga & Vilenkin (1998)

Focus on late-time, stationary/equilibrium distribution

$$f_i^{\infty} \equiv$$
 fraction of comoving volume occupied by $i^{\rm th} {\rm vacuum}$

Hope: among all hospitable vacua, our vacuum is typical/generic

(Principle of mediocrity)

Challenges with the usual approach

Many long-lived vacua

exponentially long relaxation time

(glassy system)

Relatedly, finding vacua within hospitable range of Λ is NP-hard

Denef & Douglas (2007)

@ Bubbles of all types are generated ∞ -many times as $t \to \infty$

Predictions depend on choice of time variable

Predictions also depend on comoving vs physical volume

(Measure problem)

Linde & Mezhlumian (1993)
Garcia-Bellido, Linde & Linde (1994)
Garriga & Vilenkin (1998)
Garriga et al. (2006)
Vanchurin & Vilenkin (2006)
Bousso (2006)
Bousso, Freivogel & Yang (2009)...

Instead of focusing on equilibrium distributions, in this talk we will study the approach to equilibrium

Denef, Douglas, Greene & Zukowski (2018):

Suppose that the multiverse has existed for a time much shorter than the exponentially-long mixing time ($t \ll t_{\rm relax}$).

Instead of asking:

What hospitable vacua occur most frequently according to late-time equilibrium distribution?

... the question becomes:

What hospitable vacua have the right properties to be easily accessed early on?

With Onkar Parrikar, to appear

This suggests a natural selection mechanism, which selects vacua at criticality.

Near-criticality of our universe

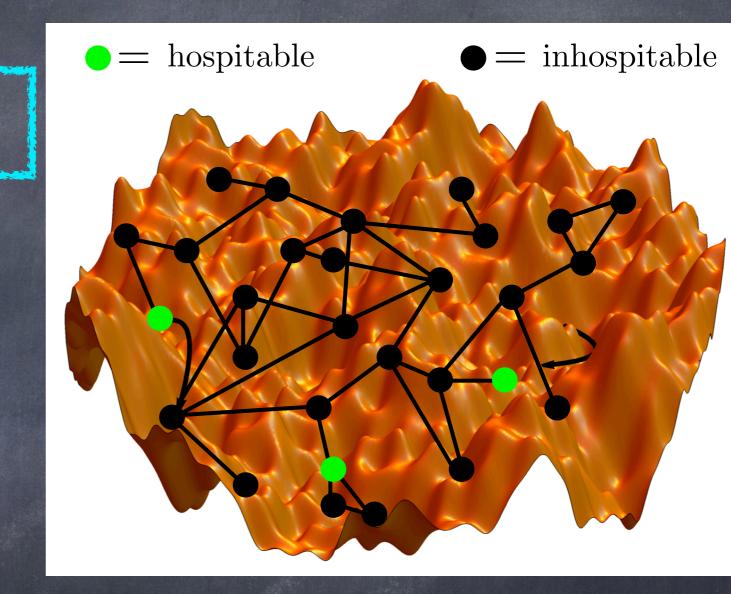
Non-equilibrium phase transitions in landscape dynamics Consider a finite region of the landscape containing $N\gg 1\,$ vacua. (Assume all dS vacua, and treat as closed system)

$$f_i(t) \equiv rac{ ext{fraction of comoving volume}}{ ext{occupied by } i^{ ext{th}} ext{vacuum}}$$

Volume is conserved: $\sum_{i=1}^{N} f_i(t) = 1$

$$\kappa_{ij} \equiv$$
 transition rate for $j
ightarrow i$

Satisfies linear master equation for Markov process:



$$\frac{\mathrm{d}f_i}{\mathrm{d}t} = \sum_{j} \left(\kappa_{ij} f_j - \kappa_{ji} f_i\right)$$

Garriga & Vilenkin (1998)

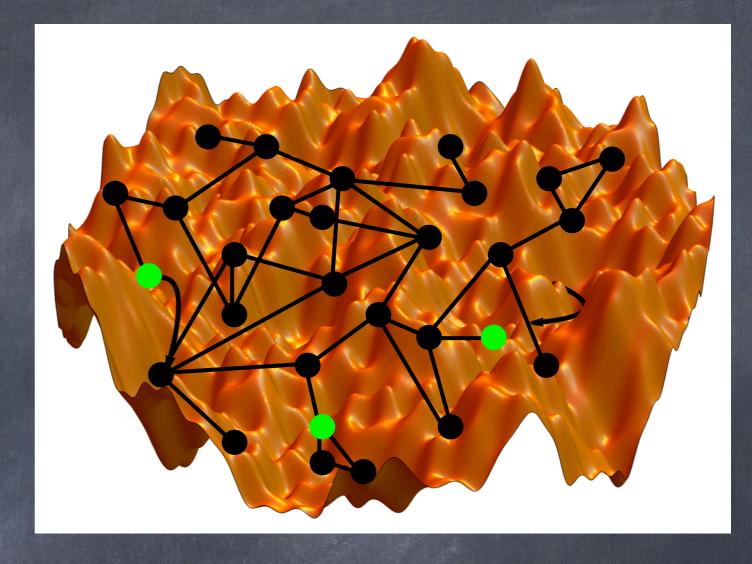
transitions into i

transitions out of i

Landscape dynamics as random walk

$$\frac{\mathrm{d}f_i}{\mathrm{d}t} = \sum_j \left(\kappa_{ij} f_j - \kappa_{ji} f_i\right)$$

$$\kappa_{ij} \equiv$$
 transition rate for $j
ightarrow i$



Alternative interpretation:

 $f_i(t)\equiv$ probability that random walker is in $i^{
m th}$ vacuum

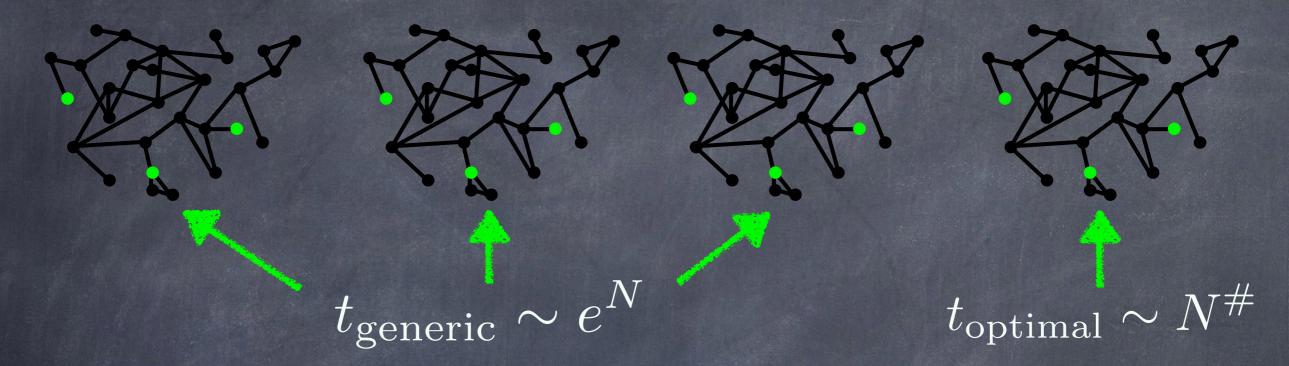
Random walks on complex networks

- Biological networks
- Epidemiology
- Urban traffic

- World wide web
- Power grids

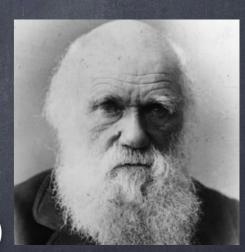
•••

In the vastness of the landscape, imagine many replicas of the fiducial region, each with slight differences in transition rates, network topology etc.



Textbook example of <u>natural</u> selection:

- Ensemble = gene pool; Each region = set of alleles
- "Genetic" make-up is heritable (cosmological expansion)
- Hospitable alleles compete for a finite resource (comoving volume)



Target alleles (i.e., hospitable vacua) best adapted to (i.e., easily accessed by) their environment (i.e., other vacua in the region) get naturally selected.

Naturally-selected hospitable vacua, far from being typical/mediocre, are exceptional and fine-tuned, much like complex organisms in the natural world are fine-tuned.

But they are fine-tuned for a purpose:

Hospitable vacua residing in optimal regions are exponentially more efficient at being accessed early on

In Nature, striking relation between complexity and criticality.

(Criticality hypothesis)

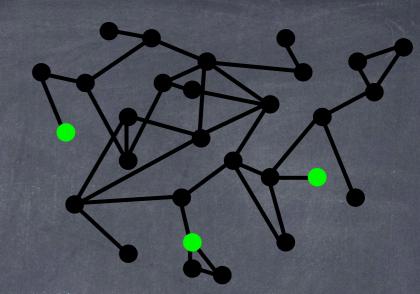
Natural selection/ search optimization

Importantly, optimality criteria (and phenomenological predictions) will be time-reparametrization invariant and independent of comoving vs physical volume.

Transition rates on the landscape

Coleman-De Luccia:

$$\kappa_{ij} = \frac{A_{ij}}{w_j}$$



adjacency matrix:

$$A_{ij}=A_{ji}=\left(M^4\mathrm{e}^{-S_{\mathrm{bounce}}}
ight)_{ij}$$
 Lee & Weinberg (1987)

weights:

$$w_j = H_j^3 \mathcal{N}_j^{-1} e^{\frac{2\pi}{GH_j^2}}$$

de Sitter entropy

(Low-energy vacua exponentially weighted)

lapse function:

$$\mathrm{d}\tau_j = \mathcal{N}_j \mathrm{d}t$$

proper time

global time

(In this talk, remain agnostic about choice of global time)

Random walk on <u>weighted</u>, <u>undirected</u> network

Zhang et al. (2013)

Detailed balance:

$$\frac{\kappa_{ji}}{\kappa_{ij}} = \frac{w_j}{w_i}$$

Lee & Weinberg (1987)

(Regional) equilibrium distribution

Master equation:
$$rac{\mathrm{d}f_i}{\mathrm{d}t} = \sum_j M_{ij} f_j$$
 $M_{ij} \equiv \kappa_{ij} - \delta_{ij} \sum_r \kappa_{rj}$

$$M_{ij} \equiv \kappa_{ij} - \delta_{ij} \sum_{r} \kappa_{rj}$$

Transition matrix

Perron-Frobenius theorem: M_{ij} has one vanishing eigenvalue

$$\lambda_1 = 0$$

All others are strictly negative:

$$0 > \lambda_2 \ge \ldots \ge \lambda_N$$

Zero-mode sets the stationary/equilibrium distribution:

- Depends only on the weights
- Low-energy vacua exponentially favored

First-Passage Processes

How quickly is equilibrium reached?

A popular measure of search efficiency is the mean first-passage time:

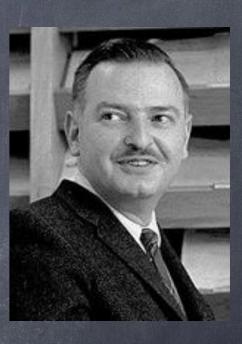
$$\langle t_{i
ightarrow \ell}
angle \equiv {}^{ ext{Avg time for walker starting}}_{ ext{from node }i}$$
 to reach node ℓ



Global mean first-passage time (Kemeny's constant):

$$t_{\mathrm{MFPT}} \equiv \sum_{k} \langle t_{i \to k} \rangle f_k^{\infty}$$

Famously, independent of starting node!



Neatly expressed as spectral sum:

$$t_{\text{MFPT}} = \sum_{\ell=2}^{N} \frac{1}{|\lambda_{\ell}|}$$

Non-zero eigenvalues of ${\cal M}_{ij}$

Must diagonalize large $N \times N$ matrix — a daunting numerical task!

Recall detailed balance:
$$\frac{\kappa_{ji}}{\kappa_{ij}} = \frac{w_j}{w_i} \sim e^{-\frac{2\pi}{G}\left(\frac{1}{H_j^2} - \frac{1}{H_i^2}\right)} \quad \text{``upward'' transitions' exponentially suppressed'}$$

In downward approx'n, neglect upward transitions to leading order.

By labeling vacua by increasing pot., $V_1 \leq V_2 \leq \ldots \leq V_N$, transition matrix becomes upper-triangular:

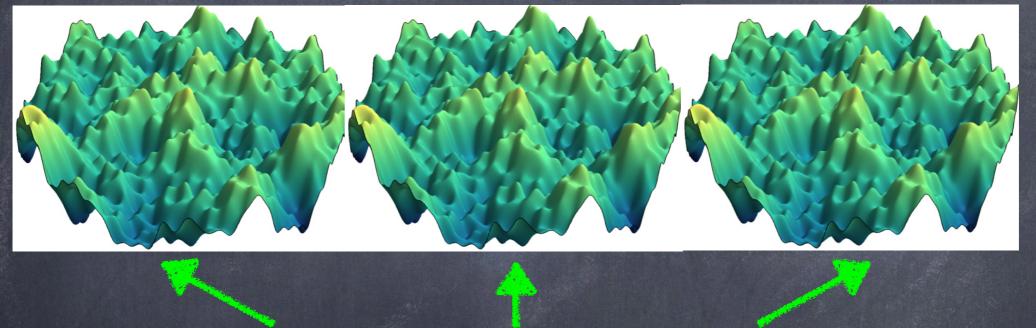
But eigenvalues of upper-triangular matrix are diagonal entries:

$$\implies \lambda_{\ell} \simeq -\kappa_{\ell}$$

Global mean first-passage time

$$t_{\rm MFPT} = \sum_{j=2}^{N} \frac{1}{|\lambda_j|} \simeq \sum_{j=2}^{N} \frac{1}{\kappa_j} \qquad \begin{array}{l} \text{Total residency time} \\ \text{(diffusion in disordered media)} \end{array}$$

Ensemble of regions:



Typical regions include vacua whose only allowed transitions are upward jumps

$$\Longrightarrow$$
 Exponentially long $t_{
m MFPT}$

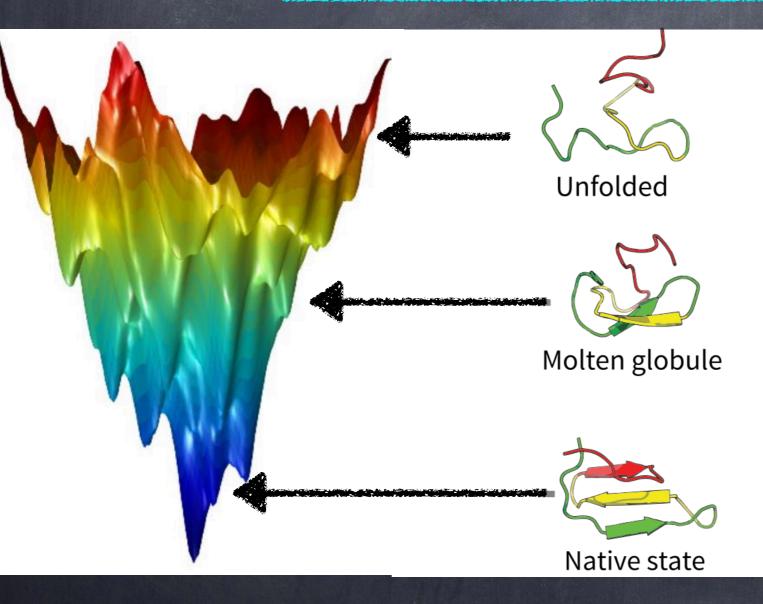
$$\implies t_{\text{MFPT}} \sim e^{\frac{2\pi}{GH_{\min}^2}} \sim e^N$$

Consistent with NP-hard complexity class Denef & Douglas (2007)

Global mean first-passage time

$$t_{\mathrm{MFPT}} = \sum_{j=2}^{N} \frac{1}{|\lambda_j|} \simeq \sum_{j=2}^{N} \frac{1}{\kappa_j}$$

Total residency time (diffusion in disordered media)



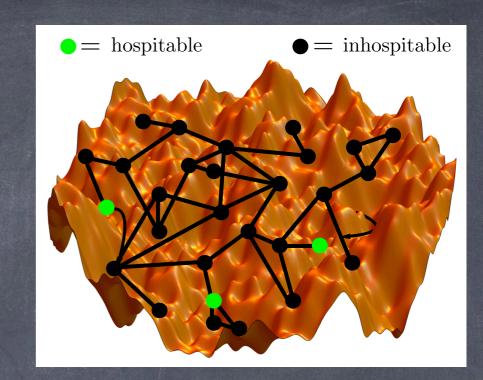
$$\implies t_{\text{MFPT}} \sim N^{\#}$$

(NP-hardness is 'worst-case'. Special cases can be polynomial.)

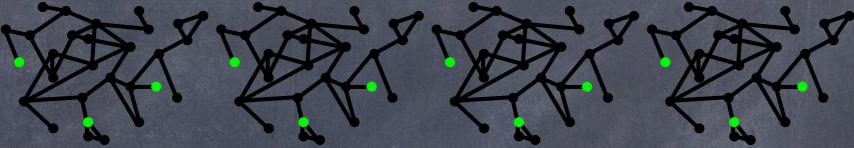
Quick recap

Landscape dynamics: random walk on weighted, undirected network

$$\frac{\mathrm{d}f_i}{\mathrm{d}t} = \sum_j \left(\kappa_{ij}f_j - \kappa_{ji}f_i\right) \; ; \qquad \kappa_{ij} = \frac{A_{ij}}{w_j}$$



Ensemble:



- $oldsymbol{\circ}$ Statistically identical equilibrium distribution: f_i°
- $f_i^{\infty} = \frac{w_i}{\sum_j w_j}$
- lacktriangle But vastly different A_{ij} , hence different "mixing times":

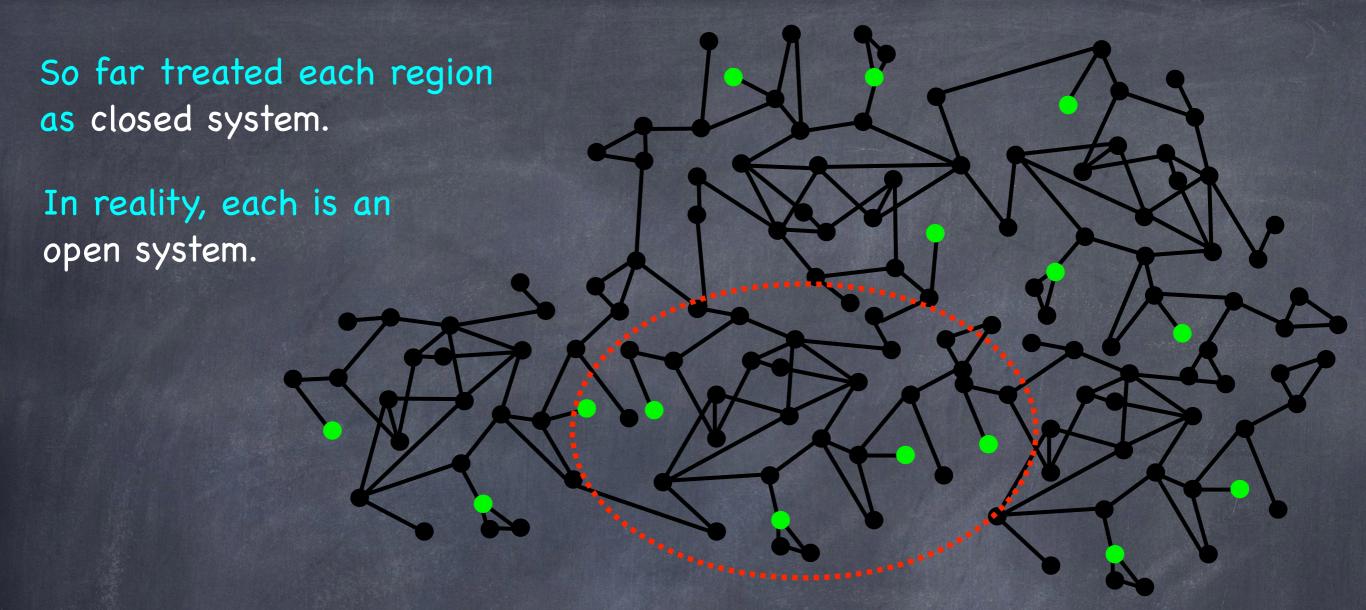
Typical, glassy region:

$$t_{\mathrm{MFPT}} \sim e^{N}$$

Golden, funnel-like region:

$$t_{\mathrm{MFPT}} \sim N^{\#}$$

- Constrains topology of optimal region
- Otherwise, favors fastest rates possible



Once random walker lands in a golden region, how can we minimize the probability of escape?

In principle requires modeling environment...

Instead study a proxy requirement that depends solely on the intrinsic dynamics of the region:

Demand that walks be recurrent in the $N o \infty$ limit.

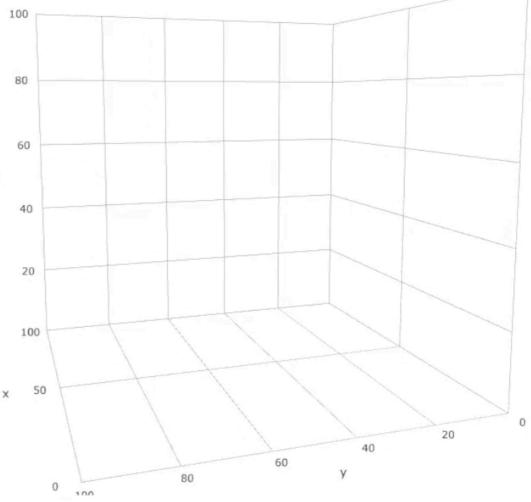
Recurrent and Transient Random Walks

Recurrence: Random walker will eventually return to starting node (Equivalently, random walker will eventually visit every node.)

Transience: Random walker may never return to starting node

Pólya's theorem

Simple random walks on \mathbb{R}^d are recurrent for $d \leq 2$, and transient for d > 2 .



"A drunk man will find his way home, but a drunk bird may get lost forever."

- Shizuo Kakutani, UCLA Colloquium

Recurrent/Transient Random Walks on Networks

First-passage probability: $F_{ki}(t)\equiv \frac{1}{1}$ probability density that walker, who started at node i, visits node k for the 1st time at time t

Note: MFPT is first moment,
$$\langle t_{i \to k} \rangle = \int_0^\infty \mathrm{d}t \, t F_{ki}(t)$$

In particular, $F_{ii}(t) \equiv$ first-return probability density

Escape probability: Probability that walker never returns to starting node

$$\lim_{t \to \infty} S_{ii}(t) = 1 - \int_0^\infty dt \, F_{ii}(t)$$

$$\lim_{t\to\infty} S_{ii}(t) = 0 \qquad \Longleftrightarrow \qquad \text{Recurrence}$$

$$\lim_{t\to\infty} S_{ii}(t) = \text{finite} \qquad \Longleftrightarrow \qquad \text{Transience}$$

Importantly, recurrence/transience criterion is time-reparam. invariant

Escape probability:
$$\lim_{t \to \infty} S_{ii}(t) \equiv \frac{1}{\mathcal{T}_i}$$
; $\mathcal{T}_i = \infty \iff$ Recurrence $\mathcal{T}_i < \infty \iff$ Transience

- lacktriangle Walks are always recurrent for finite N
- Non-trivial case: $N \to \infty$ (First send $N \to \infty$, then $t \to \infty$.)

Averaged over all nodes, neatly expressed as spectral sum:

$$\langle \mathcal{T}
angle = \lim_{N o \infty} rac{1}{N} \sum_{\ell=2}^N rac{1}{\Delta t \, |\lambda_\ell|} = \lim_{N o \infty} rac{t_{ ext{MFPT}}}{\Delta t \, N} \qquad \Delta t \equiv rac{ ext{discrete}}{ ext{time step}}$$

$$\Delta t \equiv rac{ ext{discrete}}{ ext{time step}}$$

- Remarkably, simply related to global MFPT
- Recognized as dimensionless mean residency time.
- lacktriangle In downward approx'n, $\lambda_\ell \simeq -\kappa_\ell$, reduces to $\langle \mathcal{T}
 angle \simeq \lim_{N o\infty} \left\langle rac{1}{\kappa_i \Delta t}
 ight
 angle$

$$\langle \mathcal{T} \rangle \simeq \lim_{N \to \infty} \left\langle \frac{1}{\kappa_i \Delta t} \right\rangle$$

2 competing requirements

- ullet Search efficiency \Longleftrightarrow minimal $t_{
 m MFPT}$
- lacktriangle Sweeping exploration \iff recurrence: $\dfrac{t_{ ext{MFPT}}}{\Delta t\,N} \mathop{\longrightarrow}\limits_{N o \infty} \infty$

Optimal regions reach a compromise by having the shortest MFPT compatible with recurrence.

Optimality select regions at critical boundary between recurrence and transience.

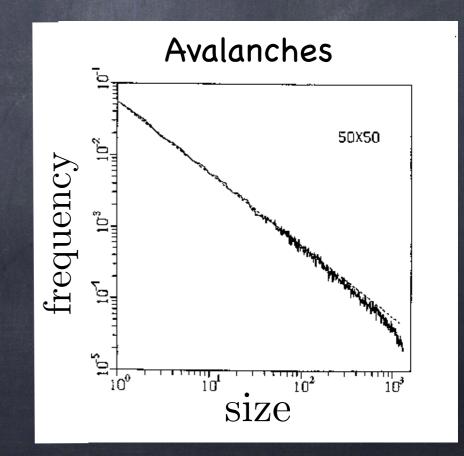
Different notions of criticality

© Equilibrium phase transitions $(T
ightarrow T_{
m c})$



Non-equilibrium (dynamical) phase transitions

Bak, Tang & Wiesenfeld (1987)

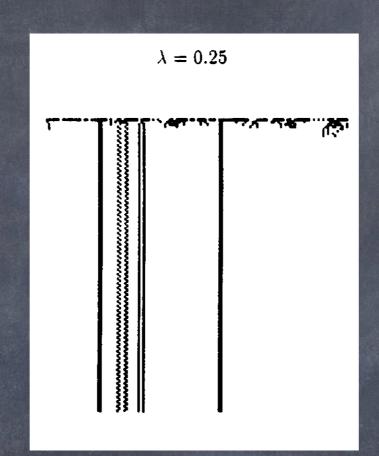


"Edge of chaos" dynamical phase transition: critical boundary

between stable and unstable dynamics

Cellular automata:

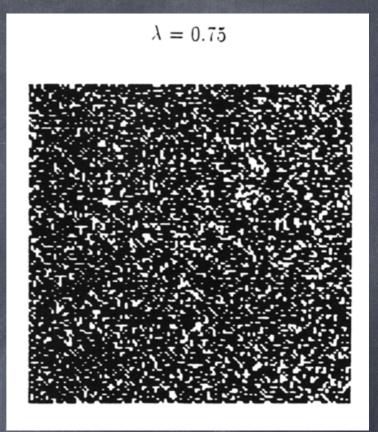
Wolfram (1984); Langton (1990); Crutchfield et al. (1993)



In cellular automata, associated with optimal information processing

- information storage/transfer
- dynamic response
- universal computation

 $\lambda = 0.50$



Dynamical criticality via natural selection

- Poised at dynamical criticality: compromise between <u>robustness</u> and <u>adaptability</u>

Dynamical criticality

Recurrence:
$$\langle \mathcal{T} \rangle \simeq \lim_{N \to \infty} \left\langle \frac{1}{\kappa_i \Delta t} \right\rangle = \infty$$

- $m{ ilde{\circ}}$ Use proper time, $\kappa_i \Delta t = \kappa_i^{
 m proper} \Delta au_i$ H_i^{-1}
- In the continuum limit,

$$\langle \mathcal{T} \rangle = \int \mathrm{d}V \frac{\sqrt{V}}{M_{\mathrm{Pl}}} \, \kappa^{-1}(V) \, \mathcal{P}(V) \qquad \begin{array}{l} \mathcal{P}(V) \equiv \text{ probability distribution} \\ \kappa(V) \equiv \text{average proper} \\ \text{transition rate} \end{array}$$

lacktriangledown Assume $\mathcal{P}(V) \simeq \mathrm{const.}$ as $V \to 0$ Weinberg (2003)

$$\Longrightarrow \langle \mathcal{T} \rangle \simeq \int_0 \mathrm{d}V \frac{\sqrt{V}}{M_{\mathrm{Pl}}} \, \kappa^{-1}(V) \;\; \underline{\text{diverges}} \; \text{for} \;\; \kappa(V) \sim V^{\frac{3}{2} + \alpha} \, ; \;\; \alpha \geq 0$$

<u>Critical case</u> ($\alpha = 0$):

$$\kappa_{
m crit}(V) \sim rac{V^{3/2}}{M_{
m Pl}^5} \qquad \Longrightarrow \qquad \langle \mathcal{T} \rangle \sim \int_{V_{
m min}} rac{{
m d}V}{V} \sim \ln V_{
m min} \sim \ln N$$

Identical to <u>dynamical phase transition</u> from normal to anomalous diffusion in disordered media

Phenomenological Implications (Do not rely on anthropics)

Metastability of our vacuum

The critical decay rate implies an optimal lifetime for our vacuum of

$$\tau \sim \frac{M_{\rm Pl}^2}{H_0^3} \sim 10^{130} \text{ years}$$

SM estimate:
$$\tau = 10^{526^{+409}_{-202}} \text{ years}$$

Agrees to within $\gtrsim 2\sigma$.

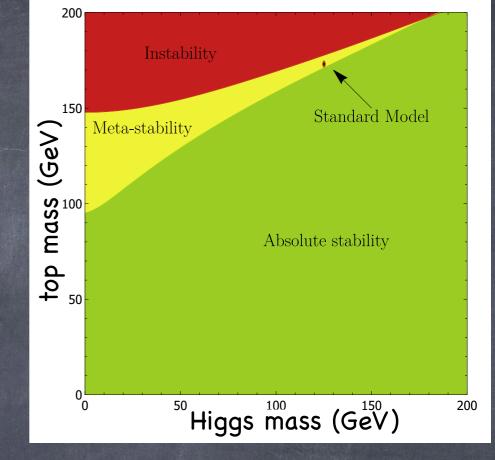
Prediction for top: $m_t^{
m pole} \simeq 174.5~{
m GeV}$

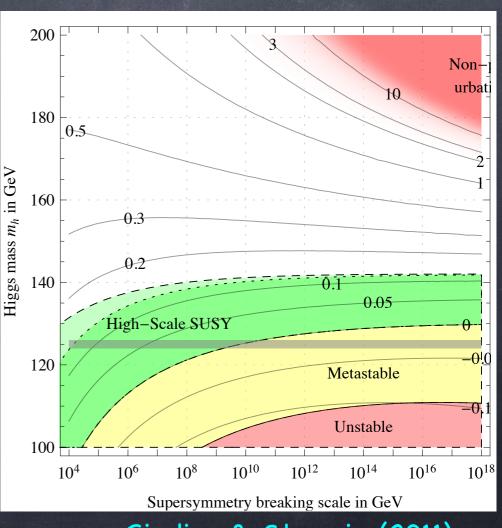
Why no low-scale SUSY?

Suppose all SUSY partners have mass at $m_{\rm SUSY}$.

$$\implies m_{\rm SUSY} \gtrsim 10^{10} \; {\rm GeV}$$

High-scale SUSY favored by optimal search strategy





Giudice & Strumia (2011)

Right-handed neutrinos

Sufficiently massive RH neutrinos make EW vacuum less stable

Can bring SM lifetime closer to optimality with

$$M_N \sim 10^{13} - 10^{14} \text{ GeV}$$

Strong CP and QCD axion

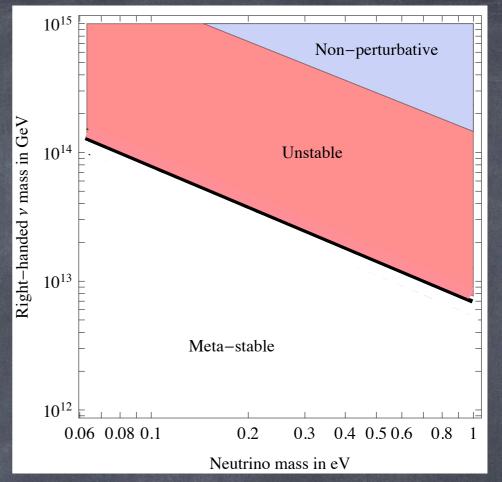
QCD axion makes EW vacuum more stable

$$f_{\rm a} \gtrsim 10^{10} \; {\rm GeV}$$

Hertzberg (2011)

Meanwhile,

$$\Omega_{\rm a}h^2 \simeq 0.7 \left(\frac{\theta_{\rm i}}{\pi}\right)^2 \left(\frac{f_{\rm a}}{10^{12}~{
m GeV}}\right)^{7/6}$$



Elias-Miró et al. (2011)

Cosmological constant (NOT time-reparam invariant)

Local equilibrium distribution:
$$f_i^{\infty} \sim \mathrm{e}^{\frac{2\pi}{GH_i^2}}$$

Exponentially favors vacuum with smallest potential energy V_{\min} . With N vacua, this is statistically

$$V_{
m min} \sim rac{M_{
m Pl}^4}{N}$$

 $V_{
m min} \sim rac{M_{
m Pl}^4}{N}$ Can explain observed C.C. if our region contains $N \gtrsim 10^{120}$

Note: Could make same argument in the "global" approach to the landscape e.q. Linde & Vanchurin (2010)

- \Rightarrow favors smallest potential energy anywhere on the landscape
- But expect such vacuum to be nearly supersymmetric, with tiny $m_{3/2}$ and $V_{\rm min}\sim m_{3/2}^4$.

Instead our mechanism predicts:

$$rac{V_{
m min}}{m_{3/2}^4} \sim rac{1}{N}$$

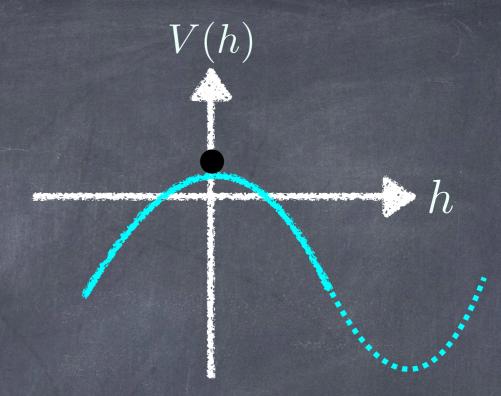
"Given the value of the CC, why is the SUSY breaking scale so large?"

Banks (2001)

AdS vacua

Tunneling into AdS vacua

 $dS \to AdS$ transition rate can be reliably calculated $\mbox{\sc Coleman~\&~De~Luccia}$



Within a Hubble time, AdS region starts to collapse

Big Crunch singularity?

AdS vacua are terminal

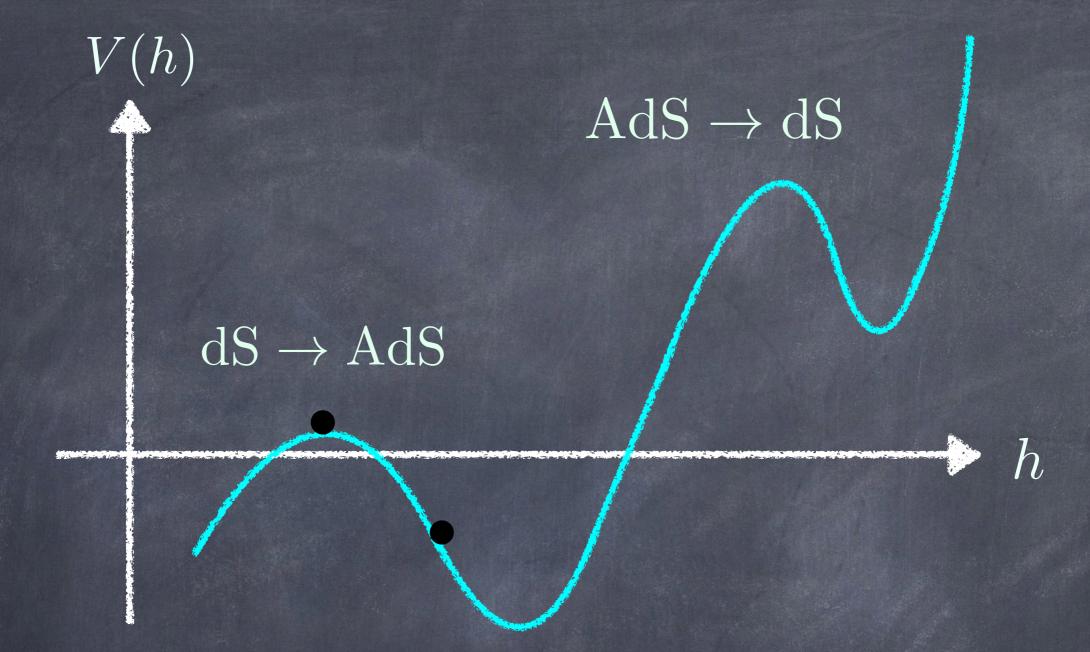
⇒ probability sinks

Death?

Garriga, Schwartz-Perlov, Vilenkin & Winitzki (2005)

AdS regions bounce contraction \Longrightarrow expansion $\Longrightarrow \mathrm{AdS} \to \mathrm{dS}$ transitions

Piao (2004,2009); Nomura (2011) Garriga & Vilenkin (2012,2013)



Because of high (Planckian?) energy reached at the bounce,

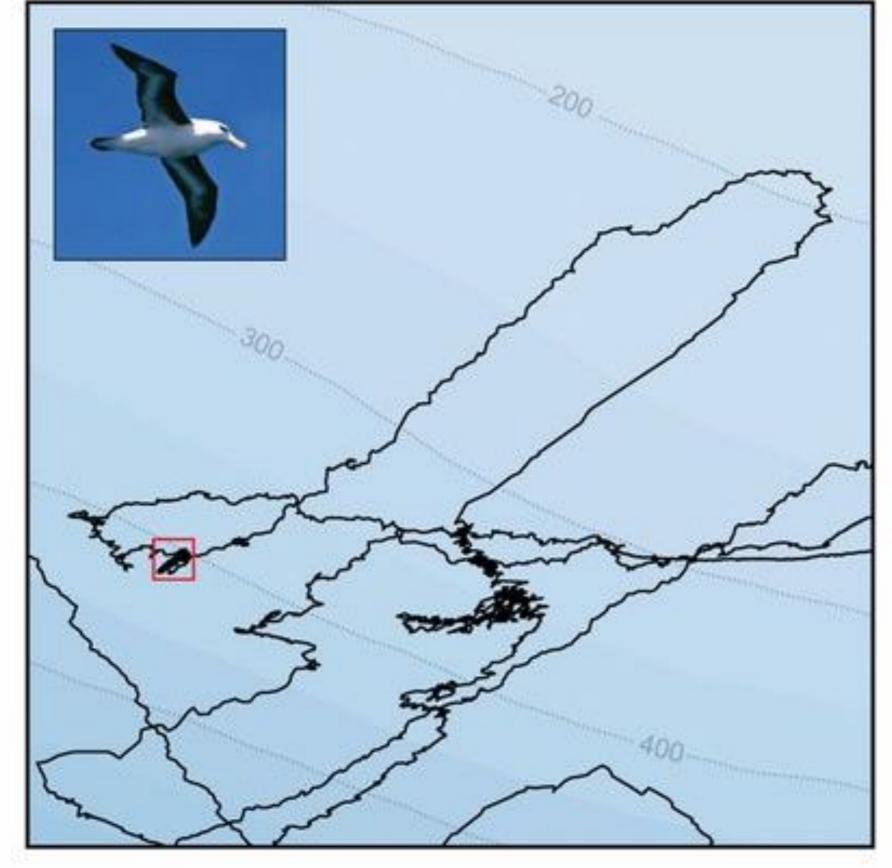
- lacktriangledown $\mathrm{AdS} \to \mathrm{dS}$ is nearly instantaneous
- can transition (classically) to far away, high-energy vacua

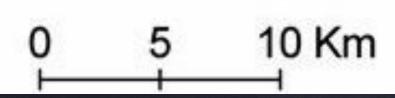
 \longrightarrow AdS vacua are short-lived mediators

Suggest

© Ef

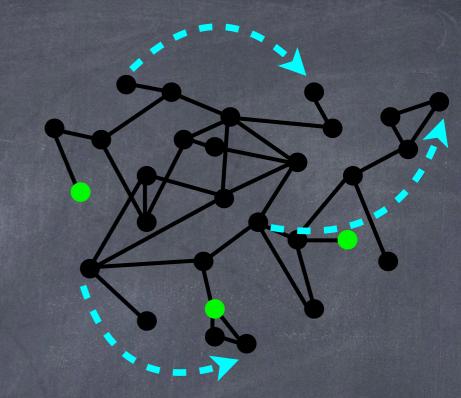
@ Ne







Random walks with Lévy flights



$$\kappa_{ij} = \alpha \, \kappa_{ij}^{\text{CDL}} + (1 - \alpha) \, \kappa_{ij}^{\text{AdS}}$$

$$0 \le \alpha \le 1$$

Local/Brownian moves

Non-local/Lévy moves

Similar to Google's PageRank matrix

$$\alpha = 0.85$$

Brin & Page (1998)

Final thoughts

Most fine-tuning problems are problems of criticality

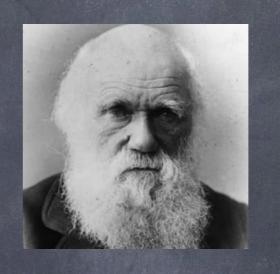
- Generic? Naturalness: small parameters protected by symmetries
 - Landscape (standard approach): principle of mediocrity

Natural selection: outcomes are fine-tuned and nearly critical

Search optimization on the landscape: powerful natural selection mechanism

Optimal region: nearly critical vacua

- → © Higgs metastability
- ⇒ Absence of low-scale SUSY



Evolutionary biology

Cosmology

Network theory

Tantalizing questions:

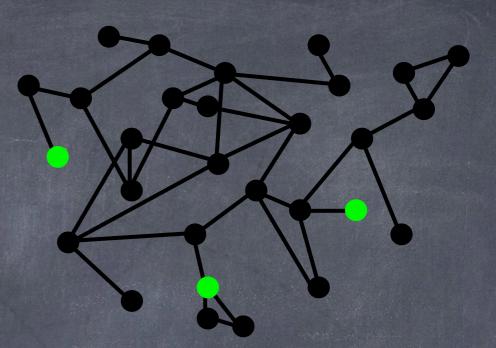
Enhanced computational capabilities?

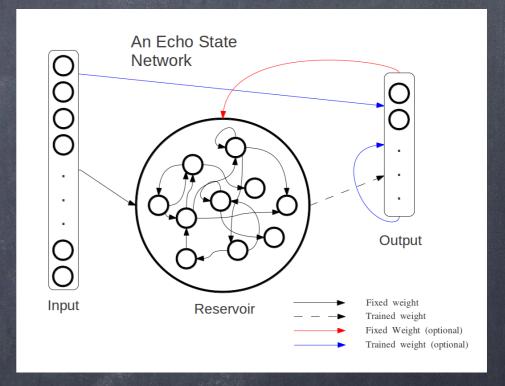
Criticality in cellular automata, random boolean networks and neural networks is associated with optimal information processing

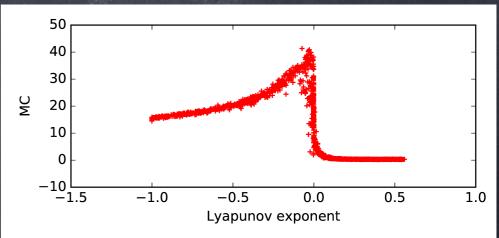
Non-equilibrium critical landscape dynamics

Optimal information processing

 $\lambda = 0.50$





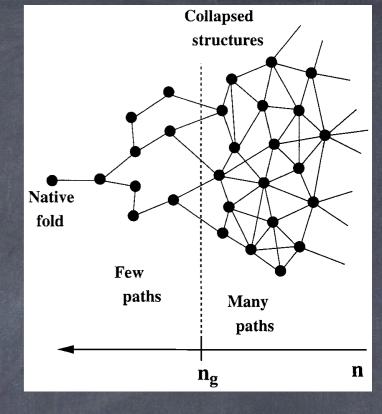


Tantalizing questions:

Why (no more than) 3 dim'ns?

Search optimality might favor landscape regions with low effective moduli-space dimensionality, particularly near the lowest-energy vacuum.

e.g. Protein landscapes

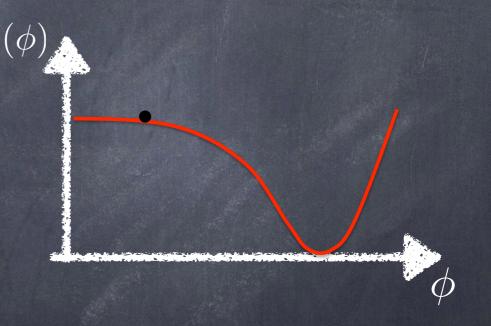


The early universe

Slow-roll inflation also a problem of near-criticality

$$SO(4,1) \longrightarrow ISO(3)$$

Naturally by-product in optimal/near-critical regions of the landscape?

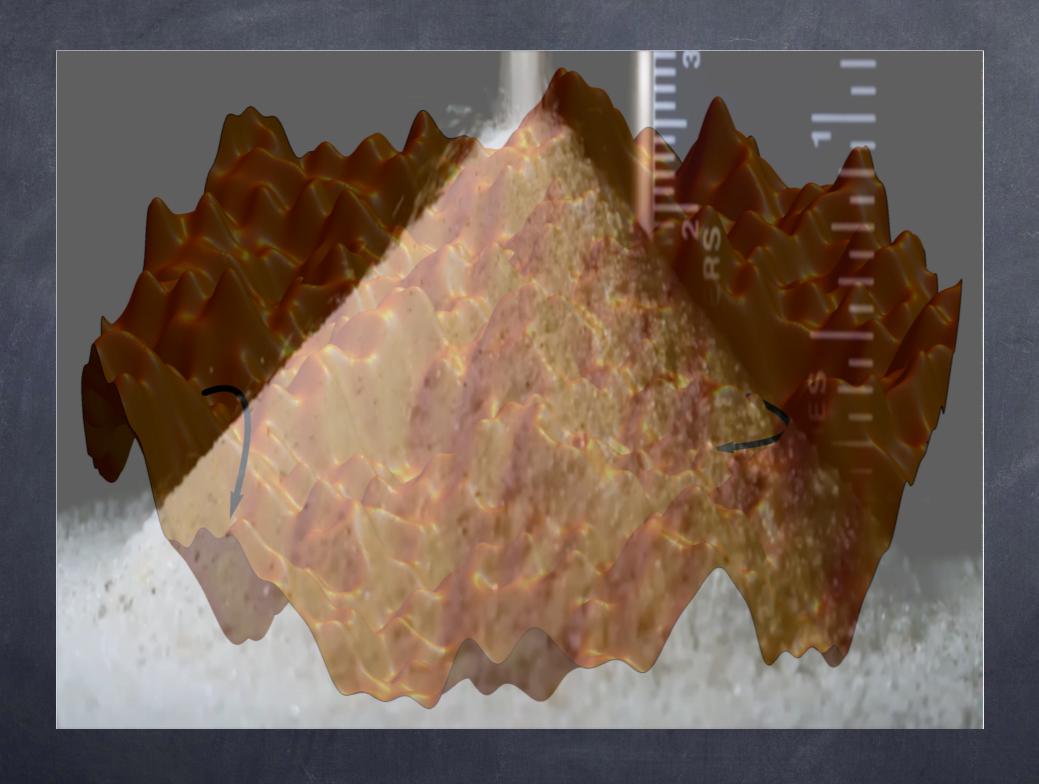


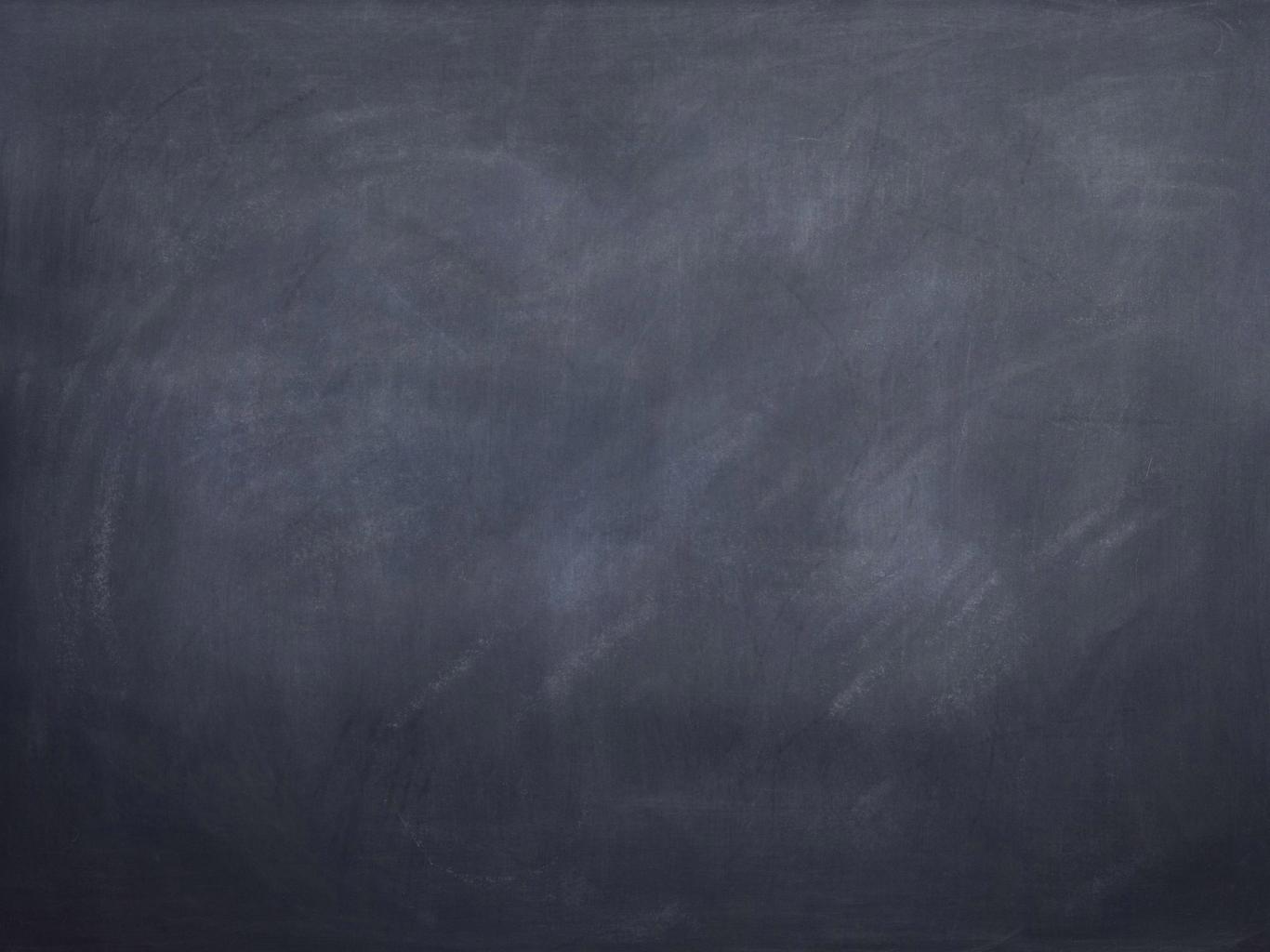
More tantalizingly: New ways of realizing inflation?

Optimal regions are open systems \Longrightarrow

non-equilibrium inflationary dynamics?

scale-invariant inflationary avalanches?

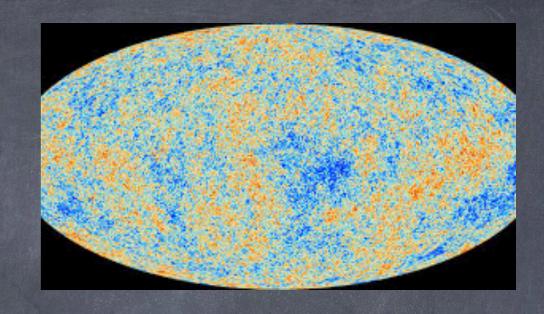




The early universe

Scale invariant primordial spectrum suggests near-criticality in the early universe

$$P(k) \sim k^{n_s - 1} \qquad n_s \simeq 0.96$$



The mechanism traditionally invoked (i.e. slow-roll inflation) relies on approximate conformal invariance



$$SO(4,1) \longrightarrow ISO(3)$$

Maldacena (2002); Creminelli & Zaldarriaga (2004); Hinterbichler, Hui & Khoury (2012,2013); Creminelli, Norena & Simonovic (2012); Goldberger, Hui & Nicolis (2013); Hui, Joyce & Wong (2018)

