Toward precision physics with jet substructure

Marat Freytsis

Tel Aviv/IAS New Physics Forum, Kavli IPMU May 9, 2019

MF, J. Lin, I. Moult, B. Nachman, JHEP 1810 (2018) 101, MF, P. Harris, A. Hinzmann, I. Moult, N. Tran, C. Vernieri, JHEP 1902 (2019) 003 + ongoing work

From searches to precision

- Detailed LHC jet measurements \longrightarrow explosion of new ideas and observables
- Original focus (mostly) on signals of BSM
- Better theory understanding has made us realize many of these observables are interesting in their own right
- Detailed study of observables
 - \longrightarrow start to really understand underlying theory

[arXiv:1307.0007]

[arXiv:1711.08341]

LHC: Know your jets, know your theory

- We are now in a position to start using jet observables as probes of the SM itself
- Both experimental and theoretical understanding will have to advance to make full use of this opportunity
- But some early steps can already be taken

Plan

- Introduction
- Boosting $H
 ightarrow b ar{b}$ with machine learning
 - Method and architecture
 - Tagging boosted Higgs
 - Performance and projected constraints
- Prospects for an all-hadronic W mass measurement
 - General method
 - Statistical uncertainties
 - Systematic uncertainties
- Concluding thoughts

Boosted H on the verge

Search based on double *b*-tagging and m_{groom} event selection

More sensitivity through more substructure

- Unlike most background $bar{b}, H o bar{b}$ is a color singlet
- "Traditional" measurement of color flow via jet pull

[arXiv:1001.5027]

$$\mathbf{r}_i = (\Delta y_i, \Delta \phi_i), \qquad \mathbf{t} = \sum_{i \in \mathrm{jet}} rac{p_{T,i} |r_i|}{p_T^{\mathrm{jet}}} \mathbf{r}_i$$

• More modern variable built out of N-subjetiness

[arXiv:1710.01305]

$$\beta_{3} = \left(\tau_{1}^{(0.5)}\right)^{a} \left(\tau_{1}^{(1)}\right)^{b} \left(\tau_{1}^{(2)}\right)^{c} \left(\tau_{2}^{(1)}\right)^{d} \left(\tau_{2}^{(2)}\right)^{e} \\ \tau_{N}^{(\beta)} = \sum_{i \in jet} \frac{p_{T,i}}{p_{T}^{jet}} \min\{R_{1i}^{\beta}, \dots R_{Ni}^{\beta}\}$$

• Can we do better?

Taking the next step with machine learning

Two-stream convolutional neural network

- Split event into full event image + individual jet images
 - ▶ Add padding layers to event image to account for ϕ invariance
 - Split into charged p_T, neutral p_T, and multiplicity "colors"
- Smear jet cores in event images to remove substructure

Tagger performance Significance (= $\epsilon_S/\sqrt{\epsilon_B}$) improvement

- Binned likelihood fit in 7 GeV bins for $p_T > 450 \text{ GeV}$
- CNNs outperform best single human-built variables (β_3)
- Removing neutral layer still leads to noticeable improvement
 - method is pileup resistant

Tagger performance Are we learning anything new?

- 1. Reweight all events by $1/\beta_3$ to remove correlated info
- 2. Retrain network with new dataset
- Radiation patterns still show residual sensitivity

Tagger performance Detection with integrated luminosity

- Observation possible with data already recorded
- Both discovery and measurement by the end of Run III
- + O(1) of the significance is coming from event image stream
 - ▶ Color singlet/octet information exists at sizable *R* away from jets

Constraining the SM EFT

Modifying pp o H

$$\begin{split} \mathcal{L}_{\text{eff}} &= \mathcal{L}_{\text{SM}} \! + \! \left(c_y \frac{y_t}{v^2} |H|^2 \bar{Q}_L \tilde{H} t_R + \text{h.c.} \right) \! + \! c_H \frac{1}{2v^2} \partial_\mu |H|^2 \partial^\mu |H|^2 \\ &+ c_g \frac{\alpha_s}{12\pi v^2} |H|^2 G^a_{\mu\nu} G^{a\mu\nu} + \bar{c}_g \frac{\alpha_s}{8\pi v^2} |H|^2 G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \,. \end{split}$$

- Degeneracy in total rate only broken at high p_T
- Constraints with ML will be better than global average without Higgs by factor of $\sim 2\text{--}3$

Plan

• Introduction

- Boosting $H
 ightarrow b ar{b}$ with machine learning
 - Method and architecture
 - Tagging boosted Higgs
 - Performance and projected constraints
- Prospects for an all-hadronic W mass measurement
 - General method
 - Statistical uncertainties
 - Systematic uncertainties
- Concluding thoughts

Current state of m_W

Gfitter, [arXiv:1803.01853]

Previous measurements

$$\begin{split} \Delta m_W^{(\ell\nu)} &= \pm 7 \pm 11 \pm 14 \, \text{MeV} \\ \text{stat. + exp. syst. + mod. syst.} \\ & \text{ATLAS, [arXiv:1701.07240]} \\ & \text{also CDF, [arXiv:1203.0275]} \\ & \text{D0, [arXiv:1203.0293]} \end{split}$$

The all-jet final state? (HL)-LHC edition

hard? \longleftrightarrow crazy?

13/27

Signal and background

- $W + \text{jets}, Z + \text{jets}, \text{QCD multijets}, t\bar{t}, \text{ single } t$
- MadGraph with simple detector simulation tuned to current ATLAS/CMS jet substructure performance
- Pseudodata corresponding to HL-LHC luminosity

Choice of tagger

- Flatten background by decorrelating jet substructure selection from m_j [arXiv:1603.00027]
- Small effect on signal efficiency, better control of background

Extracting of W and Z mass peaks

- Enriched sample of Z bosons with double b tag
- Measure Δm_{WZ} so that many experimental systematics cancel

Statistical uncertainty

- Assume current detector performance and triggers
- Statistical precision for m_W

Selection	Int. luminosity	σ_{m_W} [MeV]
decorrelated $N_2^{eta=1}1\%$, $p_T > 500{ m GeV}$	$300\mathrm{fb}^{-1}$	75
decorrelated $N_2^{areta=1}1\%, p_T > 500{ m GeV}$	$3000\mathrm{fb}^{-1}$	23

• Statistical precision for Δm_{WZ}

Selection	Int. luminosity	σ_{m_W} [MeV]
$\overline{ m decorrelated} N_2^{eta=1}2\%, p_T>500{ m GeV}$	$300\mathrm{fb}^{-1}$	171
$ ext{decorrelated} N_2^{eta=1}5\%, p_T > 500 ext{GeV}$	$3000\mathrm{fb}^{-1}$	48

• Limited by
$$Z o b ar{b}$$
 cross section

Where the LHC stands now

no double b tag

double b tag

CMS, [arXiv:1709.05543]

Trigger strategy

- Current trigger threshold for ATLAS/CMS $p_T\gtrsim 500\,{
 m GeV}$
- Alternative approaches storing lower size events at higher rates allows going to $p_T \gtrsim 200 \text{ GeV}$
- Assume substructure evaluated at L1 or HLT level at HL-LHC

CMS, [arXiv:1806.00843]

Strategy	Selection	Int. luminosity	σ_{m_W} [MeV]
measure m_W	decorrelated $\mathrm{N}_2^{eta=1}1\%, p_T > 500\mathrm{GeV}$	$3000{\rm fb}^{-1}$	23
measure m_W	decorrelated $\mathrm{N}_2^{eta=1}1\%, p_T > 400\mathrm{GeV}$	//	21
measure m_W	decorrelated N $_2^{areta=1}2\%$, $p_T>300{ m GeV}$	//	13
measure Δm_{WZ}	decorrelated $\mathrm{N}_2^{eta=1}5\%, p_T > 500\mathrm{GeV}$	//	48
measure Δm_{WZ}	decorrelated $\mathrm{N}_2^{ ilde{eta}=1}5\%$, $p_T>400\mathrm{GeV}$	//	40
measure Δm_{WZ}	decorrelated N $_2^{areta=1}5\%$, $p_T>200{ m GeV}$	"	32

Systematic uncertainties

Experimental uncertainties

- Assume particle-flow reconstruction, evaluating systematic effects separately on charged particles, γ (and π^0), and h^0
- Estimate precision of energy scale calibration needed to achieve $\Delta m_W < 10 \, {\rm MeV}$

Effect	${f Understanding\ needed}\ {f for\ }\sigma_{m_W}=10\ {f MeV}$	Typical current precision
Charged particle energy scale	0.03%	0.05%
Photon (and π^0) energy scale	0.06%	0.1%
Neutral hadron energy scale	0.1%	1%
200 pileup interactions	1.4%	1%

- Uncertainties cancel when measuring Δm_{WZ}
 - Residual effects from hadronization model affecting $W \rightarrow q\bar{q}'$ vs. $Z \rightarrow b\bar{b}$ jet response (more below)

Perturbative effects

 $p_T > 300 \, \mathrm{GeV}$

- Prediction of *W* boson kinematics not a limiting factor in hadronic final state
- Need prediction at 5 % level of how much substructure selection changes m_W

Nonperturbative effects

- Disabling non-perturbative effects (MPI and hadronization in Pythia8) to estimate size of effect on both m_W and Δm_{WZ}
 - ▶ 10 times smaller for Δm_{WZ} than for m_W
- Comparing $Z \to q\bar{q}$ and $Z \to b\bar{b}$ mass peaks to estimate size of hadronization effects on Δm_{WZ}

Quantity	Effect	Size of effect	Understanding needed
			$\text{for } \sigma_{m_W} = 10 \text{MeV}$
m_W	$N_2^{eta=1} < 0.2$ selection	310 MeV	3%
m_W	non-pert. corrections	1100 MeV	0.9%
Δm_{WZ}	non-pert. corrections	110 MeV	9%
m_Z	$Z o qar q { m vs.} Z o bar b$	$140 { m MeV}$	7%

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and nonperturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection
- $\delta m_W^{
 m had} \sim 200 {-} 1000 \, {
 m MeV}$
- $\delta m_{WZ}^{
 m had} \sim 50{-}500\,{
 m MeV}$
- $\delta m_Z^{bar b}\sim 50{-}500\,{
 m MeV}$

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and nonperturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection
- $\delta m_W^{
 m had} \sim 200 {-} 1000 \, {
 m MeV}$
- $\delta m_{WZ}^{
 m had} \sim 50{-}500\,{
 m MeV}$
- $\delta m_Z^{bar b}\sim 50{-}500\,{
 m MeV}$

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and nonperturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection
- $\delta m_W^{
 m had} \sim 200 {-} 1000 \, {
 m MeV}$
- $\delta m_{WZ}^{
 m had} \sim 50{-}500\,{
 m MeV}$
- $\delta m_Z^{bar b} \sim 50\text{--}500\,\mathrm{MeV}$

Constraining nonperturbative effects

- Nonperturbative effects strongly reduced by substructure selection and at high jet p_T
- Pythia–Herwig difference for Δm_{WZ} reduced to 10–50 MeV at $p_T > 500 \,{
 m GeV}$
- Differential measurement of Δm_{WZ} vs. p_T and substructure promising to contain nonperturbative effects

Discussion

- The leading theoretical task will be an extraction of nonperturbative corrections, either from other data or self-consistently with mass measurement itself
 - ▶ *W* boson groomed *N*² and groomed mass (a color singlet)
 - ▶ *cf.* groomed *D*₂ [arXiv:1708.06760,1710.00014,1710.06859]
 - ▶ *cf.* groomed *m*_t [arXiv:1708.02586]
 - A statement on universality of nonperturbative corrections for hadronic W and Z decays
- Measurement of m_W peak interesting in itself, since it can help to better understand hadronization of boosted W/Zbosons, supporting searches
- HE-LHC would allow access to even higher p_T with smaller nonpertrubative effects

Plan

• Introduction

- Boosting $H
 ightarrow b ar{b}$ with machine learning
 - Method and architecture
 - Tagging boosted Higgs
 - Performance and projected constraints
- Prospects for an all-hadronic W mass measurement
 - General method
 - Statistical uncertainties
 - Systematic uncertainties
- Concluding thoughts

Conclusions

- Using modern ML techniques high- $p_T H \rightarrow b\bar{b}$ is already on the verge of of discovery
 - Can soon be turned into measurement and precision constraint opportunity
 - Two-stream NN approach suggests there is more information in color flow waiting to be used
- Hadronic m_W measurement could avoid experimental systematic uncertainties related to measurement of E_T and theoretical uncertainties related to m_T
 - Measurement of Δm_{WZ} more feasible than m_W itself
 - New trigger strategies needed to reach statistical uncertainty of 30 MeV with 3000 fb⁻¹ of HL-LHC data
 - Measurement limited by the understanding of nonperturbative contributions the the masses of $W \rightarrow q\bar{q}'$ and $Z \rightarrow b\bar{b}$
- In both cases, much work still to be done

Thank you!