Fermilab Office of Science

Gravitational Dark Matter Direct Detection Gordan Krnjaic

+ Daniel Carney, Sohitri Ghosh, Jacob Taylor 2 1903.00492

APEC Seminar, Kavli IPMU, April 15, 2019

Open Questions in Fundamental Physics

Also Quantum Gravity

Galactic Rotation Curves

Dramatic effect: requires ~85% of matter to be "dark"

M33 Galaxy, E. Corbelli, P. Salucci (2000)

"Weighs" total matter: requires ~85% of matter to be "dark"

~ 85% of total mass passed through without scattering

CMB Power Spectrum

~85% of matter is gravitating, but not exerting pressure

Image: Planck 2013

Matter Power Spectrum

Observation & theory agree with ~85% pressure-less matter, 15% conventional "baryonic"

10⁰ Light Element Yields @ BBN 10-1 Element Abundance (Relative to Hydrogen) Deuterium (2H) t/sec10-2 10^{6} 10^{4} 10^{5} 0.11000 1 1010010-3 D b.n. Η 1 10-4 $Y_{\rm p}$ Ν 10^{-2} SBBN f.o. Helium (³He) 10-5 ν dec. n/p dec. D/H 10^{-4} 10-6 e^{\pm} ann. $^{3}\mathrm{He/H}$ 10^{-6} T/H10-7 10^{-8} $^{7}\mathrm{Be/H}$ 10-8 10^{-10} 7 Li/H 10-9 10^{-12} 10-10 6 Li/H Lithium (⁷Li) 10^{-14} 10-11 10-12 10-10 10-11 1000 100 10T/keVDensity of Ordinary Matter (Relative to Photons)

Pospelov, Pradler '10

10-8

10.7

Helium 4 (⁴He)

WMAP Observation

10-9

Requires baryon density to be ~ 15% of total

Single parameter theory

$$\Omega_b \equiv \rho_b / \rho_{\rm tot}$$

Key point: DM can't be SM particles This counts everything

NASA/WMAP Science Tea

Impressive Evidence for Dark Matter

Galactic Rotation Curves

Gravitational Lensing

CMB Power Spectrum

Matter Power Spectrum

BBN Element Yields

But all ultimately based how DM gravitates Holy Grail: understand its *particle nature* Step 1: *guess* plausible non-gravitational interaction
Optional — available evidence all relies on gravity
Broad — endless variety of viable choices

Step 2: choose mass optimized for an experimental technique Every technique has a finite sensitivity range Choice usually dictated by technology

Concern: DM becomes moving target living under a lamp post Hard to make firm statements about DM

How do we usually look for DM?

(scattering)

(annihilation)

(production)

Updating Priors on WIMPs

XENON 1T Collaboration arXiv:1805.12562

Updating Priors on WIMPs

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2019										$\sqrt{s} = 13$ lev
Model		Signa	ture ∫	`£ dt [ſЪ`	'] Ma:	ss limit				Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{t}_{1}^{0}$	0 e, μ 2-6 mono-jet 1-3	ets E_T^{miss} ets E_T^{miss}	36.1 36.1	↓ [2x, 8x Degen.] ↓ [1x, 8x Degen.]	0.43	0.9 0.71	1.55	m(ຊັ ⁰ ₁)<100 GeV m(ຢູ່)-m(ຊັ ⁰ ₁)=5 GeV	1712.02332 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{g}\tilde{t}_{1}^{0}$	0 e,µ 2-6	jets E_T^{miss}	36.1	R R		Forbidden	2.0 0.95-1.6	m(ξ ⁰ ₁)<200 GeV m(ξ ⁰ ₁)=900 GeV	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell \ell)\tilde{k}_{1}^{0}$	3 e,μ 4 je ee,μμ 2 je	Hs E_T^{miss}	36.1 36.1	R R			1.85	m(\hat{t}_{1}^{0})<800 GeV m(\hat{t}_{1}^{0})=50 GeV	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{t}_{1}^{0}$	0 e.μ 7-11 3 e.μ 4 je	jets E ^{miss} NS	36.1 36.1	Ř Ř		0.98	1.8	$m(\tilde{t}_{1}^{0}) <400 \text{ GeV}$ $m(\tilde{\chi})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	1708.02794 1706.03731
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{t}_1^0$	0-1 <i>e</i> ,μ 3 3 <i>e</i> ,μ 4 je	b E _T miss Ms	79.8 36.1	Ř Ř			1.25	5 m(ξ ⁰ ₁)<200 GeV m(ξ)-m(ξ ⁰ ₁)=300 GeV	ATLAS-CONF-2018-041 1706.03731
3 rd gen, squarks direct production	$b_1 b_1, b_1 {\rightarrow} b \hat{t}_1^0 / t \hat{t}_1^x$	Mult Mult	iple iple iple	36.1 36.1 36.1	$egin{array}{ccc} eta_1 & Forbidden \ eta_1 & eta_1 \ eta_1 & eta_1 \end{array}$	Forbidden Forbidden	0.9 0.58-0.82 0.7	$m(\tilde{t}_1^0)$	$m(\hat{t}_{1}^{0})=300 \text{ GeV}, BR(i\hat{t}_{1}^{0})=1$ $m(\hat{t}_{1}^{0})=300 \text{ GeV}, BR(i\hat{t}_{1}^{0})=BR(i\hat{t}_{1}^{0})=0.5$ $=200 \text{ GeV}, m(\hat{t}_{1}^{+})=300 \text{ GeV}, BR(i\hat{t}_{1}^{+})=1$	1708.09266, 1711.03301 1708.09266 1706.03731
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{t}_2^0 \rightarrow b h \tilde{t}_1^0$	0 <i>e</i> ,µ 6	$b = E_T^{miss}$	139	δ ₁ Forbidden δ ₁	0.23-0.48	0	.23-1.35	$\begin{array}{l} \Delta m(\tilde{k}_{2}^{0},\tilde{k}_{1}^{0}){=}130{\rm GeV},m(\tilde{k}_{1}^{0}){=}100{\rm GeV}\\ \Delta m(\tilde{k}_{2}^{0},\tilde{k}_{1}^{0}){=}130{\rm GeV},m(\tilde{k}_{1}^{0}){=}0{\rm GeV} \end{array}$	SUSY/2018-31 SUSY/2018-31
	$\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{t}_{1}^{0} \text{ or } t\tilde{t}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}, \text{ Well-Tempered LSP}$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow \tilde{t}_{1}bv, \tilde{\tau}_{1} \rightarrow \tau \tilde{G}$	0-2 e,μ 0-2 jet: Mult 1 τ + 1 e,μ,τ 2 jet:	1-2 <i>b</i> E _T miss liple 1/1 <i>b</i> E _T miss	36.1 36.1 36.1	i i i i		1.0 0.48-0.84	m(\tilde{t}_1^0	$m(\tilde{t}_{1}^{0})=1 \text{ GeV}$ =150 GeV, $m(\tilde{t}_{1}^{2})-m(\tilde{t}_{1}^{0})=5 \text{ GeV}$, $\tilde{t}_{1} \approx \tilde{t}_{L}$ $m(\tilde{t}_{1})=800 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1803.10178
	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow c \tilde{\mathcal{K}}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\mathcal{K}}_1^0$	0 e,μ 2 0 e,μ mon	$c = E_T^{miss}$ p-jet E_T^{miss}	36.1 36.1	2 71 71	0.46 0.43	0.85		m(\tilde{k}_{1}^{0})=0 GeV m(\tilde{t}_{1},\tilde{z})-m(\tilde{k}_{1}^{0})=50 GeV m(\tilde{t}_{1},\tilde{z})-m(\tilde{k}_{1}^{0})=5 GeV	1805.01649 1805.01649 1711.00301
	$\tilde{t}_2\tilde{t}_2,\tilde{t}_2{\rightarrow}\tilde{t}_1+h$	1-2 e, µ 4	$b = E_T^{miss}$	36.1	i ₂		0.32-0.88		$m(\tilde{t}_1^0)$ =0 GeV, $m(\tilde{r}_1)$ - $m(\tilde{t}_1^0)$ = 180 GeV	1706.03966
EW direct	$\hat{\chi}_{1}^{\pm}\hat{\chi}_{2}^{0}$ via WZ	$2-3 e, \mu$ $ee, \mu\mu \ge$	E_T^{miss} 1 E_T^{miss}	36.1 36.1	$\frac{\hat{x}_{1}^{*}/\hat{x}_{2}^{*}}{\hat{x}_{1}^{*}/\hat{x}_{2}^{*}} = 0.17$	0.6	8	$m(\tilde{t}_{1}^{n})=0$ $m(\tilde{t}_{1}^{n})-m(\tilde{t}_{1}^{n})=10 \text{ GeV}$		1403.5294, 1806.02293 1712.08119
	$\bar{\chi}_1^{\pm} \bar{\chi}_2^{\mp}$ via WW $\bar{\chi}_1^{\pm} \bar{\chi}_2^{0}$ via Wh	2 e,μ 0-1 e,μ 2	E_T^{min} E_T^{min}	139 36.1	\hat{x}_{1}^{h} $\hat{x}_{1}^{h}/\hat{x}_{2}^{h}$	0.42	0.68		$m(\tilde{t}_1^0)=0$ $m(\tilde{t}_1^0)=0$	ATLAS-CONF-2019-008 1812-09432
	$\begin{array}{c} \chi_1 \chi_1 \; \text{via} \; \ell_L / \tilde{\nu} \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} {\rightarrow} \tilde{\tau}_1 \nu (\tau \tilde{\nu}), \tilde{\chi}_2^0 {\rightarrow} \tilde{\tau}_1 \tau (\nu \tilde{\nu}) \end{array}$	2 <i>1</i> ,µ 2 <i>1</i>	E_T E_T^{miss}	36.1	$\frac{X_1}{\hat{X}_1^4/\hat{X}_2^4}$ $\frac{X_1^4/\hat{X}_2^4}{\hat{X}_1^4/\hat{X}_2^4}$ 0.22		0.76	$\begin{array}{c} m(t, \hat{v}) = 0.5(m(\tilde{\kappa}_1^-) + m(\tilde{\kappa}_1^-)) \\ m(\tilde{\kappa}_1^-) = 0, \ m(\tilde{\tau}, \hat{v}) = 0.5(m(\tilde{\kappa}_1^+) + m(\tilde{\kappa}_1^0)) \\ m(\tilde{\kappa}_1^-) - m(\tilde{\kappa}_1^0) = 100 \ \text{GeV}, \ m(\tilde{\tau}, \hat{v}) = 0.5(m(\tilde{\kappa}_1^-) + m(\tilde{\kappa}_1^0)) \end{array}$		1708.07875 1708.07875
	$\tilde{\ell}_{\mathbf{L},\mathbf{R}}\tilde{\ell}_{\mathbf{L},\mathbf{R}}, \tilde{\ell} \rightarrow \ell \tilde{\ell}_{1}^{0}$	2 <i>e</i> ,µ 0)e 2 <i>e</i> ,µ ≥	1 E_T^{miss} 1 E_T^{miss}	139 36.1	2 2 0.18		0.7	$m(\tilde{t}_{1}^{0})=0$ $m(\tilde{t})-m(\tilde{t}_{1}^{0})=5 \text{ GeV}$		ATLAS-CONF-2019-008 1712.08119
	ĤĤ, Ĥ→ħĜ/ZĜ	0 e,μ ≥ 3 4 e,μ 0 je	$b = E_{T_{mixs}}^{mixs}$ Ms E_{T}^{mixs}	36.1 36.1	ÎI 0.13-0.23 ÎI 0.3		0.29-0.88		$BR(\tilde{t}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{t}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 1804.03602
Long-lived particles	$\operatorname{Direct} \hat{x}_1^* \hat{x}_1^- \operatorname{prod.}, \operatorname{long-lived} \hat{x}_1^\pm$	Disapp. trk 1 j	et E_T^{miss}	36.1	$ \frac{\tilde{x}_{1}^{+}}{\tilde{x}_{1}^{+}} = 0.15 $	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\ell}_1^0$	Mult	iple iple	36.1 36.1	2 χ [τ(χ) =10 ns, 0.2 ns]		_	2.0	2.4 m(t ^a)=100 GeV	1902.01636,1808.04095 1710.04901,1808.04095
RPV	LFV $pp \rightarrow \bar{v}_r + X_r \bar{v}_r \rightarrow e\mu/e\tau/\mu\tau$ $\tilde{\chi}_1^+ \tilde{\chi}_1^+ / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ $\tilde{g}_{\tilde{\chi}}^- \tilde{g} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	εμ,ετ.μτ 4 ε.μ 0 jr 4-5 larg Mult	nts E ^{miss} e-Rjets iple	3.2 36.1 36.1 36.1	\hat{v}_{τ} $\hat{X}_{1}^{*}/\hat{X}_{2}^{*} = [\lambda_{03} \neq 0, \lambda_{124} \neq 0]$ $\hat{k} = [m(\hat{X}_{1}^{*})=200 \text{ GeV}, 1100 \text{ GeV}]$ $\hat{k} = [X_{112}^{*}=20.4, 20.5]$		0.82	1.9 1.33 1.3 1.9 5 2.0	λ'_{111} =0.11, $\lambda_{112(110/23)}$ =0.07 m(\tilde{t}_{1}^{0})=100 GeV Large λ''_{112} m(\tilde{t}_{1}^{0})=200 GeV, bino-like	1607.06079 1804.03602 1804.03568 ATLAS-CONF-2018-003
	$u_1, t \rightarrow t \mathcal{K}_1, \mathcal{K}_1 \rightarrow t b s$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b s$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q \ell$	2 jets 2 e,μ 2 1 μ D	+2b b V	36.1 36.7 36.1 136	$ \begin{array}{l} \bar{x}_{11} = [qq, b_1] \\ \bar{x}_{11} = [qq, b_2] \\ \bar{x}_{11} = [1e{-}10{<} x'_{211} < 1e{-}0, 3e{-}10{<} x'_{212} \\ \end{array} $	0.55 0.42 0.6 <3e-9]	1.0	0.4-1.45 1.6	m(r_i)=200 GeV, bino-like BR($\tilde{r}_i \rightarrow b_V / \bar{r}_{34}$)>20% BR($\tilde{r}_i \rightarrow g_H$)=100%, cosR,=1	ATLAS-CONF-2018-003 1710.07171 1710.05544 ATLAS-CONF-2019-006

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

10-1

ATLAS Preliminary

5 12 ToV

Mass scale [TeV]

1

Lots of new ideas for light DM detection < GeV

Grabowska, Melia, Rajendran 1807.03788

DD target

New Ideas in Heavy DM

Planck scale DM, GeV scale "mediator"

 A_d

Can have large interaction rate Multiple scattering at DD experiments

Davoudiasl, Mohlabeng 1809.07768

DD target

How do we usually approach DM?

Step 1: choose mass optimized for an experimental technique Every technique has a finite sensitivity range Choice usually dictated by technology

Step 2: *guess* plausible non-gravitational interaction Optional — available evidence all relies on gravity Broad — endless variety of viable choices

Goal of this talk:

How far can we just using gravity in the laboratory?

Necessary Caveats

This talk is NOT:

- 1) An experimental proposal or
- 2) A realistic present-day strategy

Necessary Caveats

This talk is NOT:

- 1) An experimental proposal or
- 2) A realistic present-day strategy

This talk IS:

- 1) An *outline* of a new direct detection strategy
- 2) The beginning of a conversation to identify new opportunities
- 3) What is necessary to detect DM gravity w/ existing technology

Think Big & Small

Heavy DM

Planckian masses

Tiny gravitational forces

Think Big & Small

Naively this is crazy because

$$\frac{G_N}{G_F} \sim \left(\frac{v}{m_{\rm Pl}}\right)^2 \sim 10^{-34}$$

But gravity is long range and heavy DM has large "charge"

e.g. for Planckian DM $m_{\rm Pl} \approx 0.2 \,\mathrm{mg}$

$$F_{\rm sig} = \frac{G_N m_{\chi} m_{\rm det}}{b^2} \simeq 7 \times 10^{-17} \,\mathrm{N} \,\left(\frac{m_{\chi}}{\mathrm{mg}}\right) \left(\frac{m_{\rm det}}{\mathrm{mg}}\right) \left(\frac{\mathrm{mm}}{b}\right)^2$$

This is tiny...but smaller forces have already been measured!

Zeptonewton Force Detection 10^{-21} N

Zeptonewton force sensing with nanospheres in an optical lattice

Gambhir Ranjit, Mark Cunningham, Kirsten Casey, Andrew A. Geraci^{*} Department of Physics, University of Nevada, Reno, Reno NV, USA

Optically trapped nanospheres in high-vacuum experience little friction and hence are promising for ultra-sensitive force detection. Here we demonstrate measurement times exceeding 10^5 seconds and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice. The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors by

Ranjit, Cunningham, Casey, Geraci arXiv:1805.12562

Total Force on Test Mass

$$F_{\rm in}(t) = F_{\rm sig}(t) + F_{\rm th}(t) + F_{\rm meas}(t).$$

$$F_{\rm in}(t) = F_{\rm sig}(t) + F_{\rm th}(t) + F_{\rm meas}(t).$$
3
Dark matter signal

5

DM Signal: One Test Mass

DM Signal: One Test Mass

DM Signal: One Test Mass

$$F_{\rm sig} = \frac{G_N m_d m_{\chi} b}{(b^2 + v^2 t^2)^{3/2}}.$$

5

Time dependent transverse force on test mass

$$I = \int_0^{t_{\rm int}} dt F_{\rm sig}(t) \to \frac{2G_N m_\chi m_{\rm det} \tau}{b^2} \equiv 2\bar{F}\tau$$

Impulse delivered in one DM crossing time $\tau = b/v \sim t_{int}$

Total Force on Test Mass

5

Thermal Noise on Test Mass

Mechanical oscillator coupled to support structure

$$\langle \Delta I^2 \rangle \equiv \int dt \int dt' F_{\text{noise}}(t) F_{\text{noise}}(t') \propto \delta(t-t')$$

Impulse from random Brownian motion uncorrelated

Thermal Noise on Test Mass

Mechanical oscillator coupled to support structure

$$\langle \Delta I^2 \rangle \propto \delta(t - t') \qquad \Delta I^2 = \alpha t_{\rm int} \qquad \alpha \ {\rm damping \ parameter}$$

Thermal noise (squared) grows linearly with integration time

For *N* uncorrelated sensors, noise decreases as \sqrt{N} $I_{\text{sig}}^2 \propto N^2$, $\Delta I_{\text{thermal}}^2 \propto N \implies \text{SNR}^2 = \frac{I^2}{\Delta I^2} = \frac{4\bar{F}^2 N\tau}{\alpha}$

Correlated signal along *only one* linear track Uncorrelated along *all other* possible linear tracks

For mechanical oscillator $\alpha_{mech} = 4m_{det}k_BT\gamma$

$$\mathrm{SNR}^2 = \frac{4\bar{F}^2 N\tau}{\alpha} = \left(\frac{G_N^2 m_{\chi}^2}{v}\right) \left(\frac{L}{b^4}\right) \left(\frac{m_{\mathrm{det}}}{k_B T\gamma}\right)$$

$$\begin{array}{c} \chi \\ & & \\ &$$

Not very promising in this basic formulation (need~ 5)

Event Rates: Mechanical Resonators

Dark Matter Mass $\log m / C_0 V$

Event Rates: Free Falling Masses

For ~ mg mass detectors, usual DD BGs *are* thermal noise e.g. neutrons, cosmic rays, radiological activity... induce **uncorrelated** forces on different sensors

Possible concern from charged particles passing through detector In principle can be vetoed/reduced with shielding Can also apply B field to curve track

Unlike LIGO, seismic noise does not fake the signal Seismic activity affects **all** sensors simultaneously DM signal only yields signal in **one** linear track

Total Force on Test Mass

Previous discussion valid only if thermal noise dominates

Prepare detector wave packet of size $\sim \Delta x \rightarrow \Delta p \gtrsim \hbar/\Delta x$ Measure again at later time $\tau \rightarrow \Delta x + \hbar \tau / \Delta x m_{det}$

Previous discussion valid only if thermal noise dominates

Prepare detector wave packet of size $\sim \Delta x \rightarrow \Delta p \gtrsim \hbar/\Delta x$ Measure again at later time $\tau \rightarrow \Delta x + \hbar \tau / \Delta x m_{det}$

Optimize for position resolution: Standard Quantum Limit $\Delta x_{SQL}^2 \sim \hbar \tau / m_{det} \rightarrow \Delta I_{SQL}^2 = \hbar m_{det} / \tau^2$

At SQL:
$$\frac{\Delta I_{meas}^2}{\Delta I_{th}^2} = \begin{cases} \hbar v^2 / 4k_{\rm B}T\gamma d^2, & \text{mechanical} \\ \hbar m_{\rm d}/PA_{\rm d}d^2\sqrt{m_{\rm a}k_{\rm B}T}, & \text{free-falling.} \end{cases}$$

Need 50, 100 dB reduction in measurement noise to win if $T\sim 10 {\rm mK}~,~\gamma\sim 10^{-6} {\rm Hz}~,~P=10^{-10}\,{\rm Pa}$

Measuring With Squeezed States of Light

Mechanical position encoded only in phase quadrature Reduce noise in phase, increase noise in amplitude Beating SQL demonstrated, but only ~ 12 dB so far

Caves, PRD 23, 1693 (1981) Purdy et. al. PRX 3, 031012 (2013) Asai et. al. Nature Photonics 7, 613 (2013)

Back-Action Evasion (Quantum Speedometer) Back action noise = random fluctuations in radiation pressure Possible for shot noise to cancel back-action noise Measure velocity instead of position

Knyazev, Danilishin, Hild, Khalili. 1701.01694 Braginsky and F. Khalili, Phys. Lett. A 147, 251 (1990). Other Long Range Forces

Same logic applies to other DM force with > mm range $U(1)_{B-L}$, $U(1)_{B-3L_i}$, $U(1)_{L_i-L_j}$

Strong bounds on SM coupling from 5th force searches

Viable DM models testable with smaller setup

Conclusions

Great advances in quantum control over mechanical systems
Single sensor zepto-Newton sensitivity already achieved
Detect ~ mg DM gravity w/ large array of precision sensors
Probe models with non thermal histories (WIMPzillas, pBH...)
Trigger on signal across DM path; no correlation elsewhere

Mechanical Resonators: practically limited by thermal noise Free Falling Masses: difficult setup, but promising SNR scaling

Key Challenges:

Scaling up existing concepts (need ~1e9 in ~meter volume) Evading measurement noise (e.g. squeezed light)

Potential sensitivity to other possible DM-SM long range forces