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What is this stuff ?

Zeroth Order Outstanding Problems

Accelerated

Expansion
Cosmic

Matter Asymmetry

Also Quantum Gravity

Inflation
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Neutrino Masses

Open Questions in Fundamental Physics



Galactic Rotation Curves 

Dramatic effect: requires ~85% of  matter to be “dark”

Evidence for Dark Matter

  M33 Galaxy,  E. Corbelli, P. Salucci (2000)



Evidence for Dark Matter

Gravitational Lensing 

“Weighs” total matter: requires ~85% of  matter to be “dark”

Images NASA/ESA

get bent”
-Bart

Simpson
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 Galaxy Cluster Collisions 

Image overlay  

 ~ 85% of  total mass passed through without 
scattering  

Total 
 Matter

Visible
Matter

Evidence for Dark Matter

Hubble & Chandra

gravitational
 lensing



CMB Power Spectrum 

~85% of  matter is gravitating, but not exerting pressure

Planck 2013
Image: 

Evidence for Dark Matter



Matter Power Spectrum 

~85% pressure-less matter, 15% conventional “baryonic”
Observation & theory agree with 

Evidence for Dark Matter

FIG. 1: The power spectrum of matter. Red points with error bars are the data from the Sloan

Digital Sky Survey [9]; heavy black curve is the ΛCDM model, which assumes standard general

relativity and contains 6 times more dark matter than ordinary baryons. The dashed blue curve is

a “No Dark Matter” model in which all matter consists of baryons (with density equal to 20% of

the critical density), and the baryons and a cosmological constant combine to form a flat Universe

with the critical density. This model predicts that inhomogenities on all scales are less than unity

(horizontal black line), so the Universe never went nonlinear, and no structure could have formed.

TeVeS (solid blue curve) solves the no structure problem by modifying gravity to enhance the

perturbations (amplitude enhancement shown by arrows). While the amplitude can now exceed

unity, the spectrum has pronounced Baryon Acoustic Oscillations, in violent disagreement with

the data.

matter model, on the other hand, the oscillations should be just as apparent in matter as

they are in the radiation. Indeed, Fig. 1 illustrates that – even if a generalization such

as TeVeS fixes the amplitude problem – the shape of the predicted spectrum is in violent

5

Dodelson, 2011

MOND

no DM
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Light Element Yields @ BBN

Single parameter theory

Requires baryon density to be ~ 15% of  total
Key point: DM can’t be SM particles 

Evidence for Dark Matter

 This counts everything⌦b ⌘ ⇢b/⇢tot.

Big Bang Nucleosynthesis as a Probe of New Physics 7
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Figure 1: Time and temperature evolution of all standard big bang nucleosynthesis (SBBN)-

relevant nuclear abundances. The vertical arrow indicates the moment at T9 ≃ 0.85 at

which most of the helium nuclei are synthesized. The gray vertical bands indicate main

BBN stages. From left to right: neutrino decoupling, electron-positron annihilation and n/p

freeze-out, D bottleneck, and freeze-out of all nuclear reactions. Protons (H) and neutrons

(N) are given relative to nb whereas Yp denotes the 4He mass fraction.

Below we discuss the fusion of the light elements and compare their SBBN predictions with

observations.

1.1.1 O(0.1) abundances: 4He. The beauty of the SBBN prediction for 4He lies in

its simplicity. Only a few factors that determine it. The rates for weak scattering processes

that inter-convert n ↔ p at high plasma temperatures scale as G2
FT

5, where GF is the

Fermi constant. As the Universe cools, these rates drop below the T 2-proportional Hubble

rate H(T ) Eq. (6). The neutron-to-proton transitions slow down, and the ratio of their

respective number densities cannot follow its chemical-equilibrium exponential dependence,

n/p|eq ≃ exp(−∆mnp/T ). Around T ≃ 0.7MeV this dependence freezes out to n/p ≃

1/6 but continues to decrease slowly due to residual scattering and β-decays of neutrons.

The formation of D during this intermission period is delayed by its photo-dissociation

process that occurs efficiently because of the overwhelmingly large number of photons [see

Pospelov, Pradler ’10
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All consistent  with ~ 85 % DM, inconsistent & discrepant without

BBN Element Yields 

Impressive Evidence for Dark Matter

Galactic Rotation Curves

Gravitational Lensing 

CMB Power Spectrum

Matter Power Spectrum 

Independent observations over kpc-Gpc scales spanning ~ 10 Gyr 

11

But all ultimately based how DM gravitates

Holy Grail: understand its particle nature



How do we usually approach DM?

Step 1: *guess* plausible non-gravitational interaction

Step 2: choose mass optimized for an experimental technique 

Optional — available evidence all relies on gravity

Choice usually dictated by technology

Every technique has a finite sensitivity range 

Broad — endless variety of viable choices

Concern: DM becomes moving target living under a lamp post
Hard to make firm statements about DM 



How to look for “WIMPs”

Direct Detection Indirect Detection Colliders

Fermi Telescope

Goodman, Witten 1984 Gunn, Lee, Lerche,

 Stecker 1978

Bai, Fox, Harnik

 Tait, Yu 2010

Goodman, Ibe, 
Rajaraman, Shepherd,Schramm, Steigman,

19

(scattering) (annihilation) (production)

How do we usually look for DM?
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FIG. 5: 90% confidence level upper limit on �SI from this
work (thick black line) with the 1� (green) and 2� (yel-
low) sensitivity bands. Previous results from LUX [6] and
PandaX-II [7] are shown for comparison. The inset shows
these limits and corresponding ±1� bands normalized to the
median of this work’s sensitivity band. The normalized me-
dian of the PandaX-II sensitivity band is shown as a dotted
line.

model to correctly describe events with enlarged S1s due
to additional scatters in the charge-insensitive region be-
low the cathode. These events comprise 13% of the to-
tal neutron rate in Table I. Third, we implemented the
core mass segmentation to better reflect our knowledge
of the neutron background’s Z distribution, motivated
again by the neutron-like event. This shifts the prob-
ability of a neutron (50 GeV/c2 WIMP) interpretation
for this event in the best-fit model from 35% (49%) to
75% (7%) and improves the limit (median sensitivity)
by 13% (4%). Fourth, the estimated signal e�ciency
decreased relative to the pre-unblinding model due to
further matching of the simulated S1 waveform shape
to 220Rn data, smaller uncertainties from improved un-
derstanding and treatment of detector systematics, and
correction of an error in the S1 detection e�ciency nui-
sance parameter. This latter set of improvements was
not influenced by unblinded DM search data.

In addition to blinding, the data were also “salted” by
injecting an undisclosed number and class of events in
order to protect against fine-tuning of models or selec-
tion conditions in the post-unblinding phase. After the
post-unblinding modifications described above, the num-
ber of injected salt and their properties were revealed to
be two randomly selected 241AmBe events, which had
not motivated any post-unblinding scrutiny. The num-
ber of events in the NR reference region in Table I is con-
sistent with background expectations. The profile like-
lihood analysis indicates no significant excesses in the
1.3 t fiducial mass at any WIMP mass. A p-value calcu-
lation based on the likelihood ratio of the best-fit includ-

ing signal to that of background-only gives p = 0.28, 0.41,
and 0.22 at 6, 50, and 200 GeV/c2 WIMP masses, respec-
tively. Figure 5 shows the resulting 90% confidence level
upper limit on �SI , which falls within the predicted sen-
sitivity range across all masses. The 2� sensitivity band
spans an order of magnitude, indicating the large random
variation in upper limits due to statistical fluctuations of
the background (common to all rare-event searches). The
sensitivity itself is una↵ected by such fluctuations, and is
thus the appropriate measure of the capabilities of an ex-
periment [44]. The inset in Fig. 5 shows that the median
sensitivity of this search is ⇠7.0 times better than previ-
ous experiments [6, 7] at WIMP masses > 50 GeV/c2.

Table I shows an excess in the data compared to the to-
tal background expectation in the reference region of the
1.3 t fiducial mass. The background-only local p-value
(based on Poisson statistics including a Gaussian uncer-
tainty) is 0.03, which is not significant enough, including
also an unknown trial factor, to trigger changes in the
background model, fiducial boundary, or consideration
of alternate signal models. This choice is conservative as
it results in a weaker limit.

In summary, we performed a DM search using an ex-
posure of 278.8 days ⇥ 1.3 t = 1.0 t⇥yr, with an ER
background rate of (82+5

�3 (sys) ± 3 (stat)) events/(t ⇥
yr ⇥ keVee), the lowest ever achieved in a DM search
experiment. We found no significant excess above back-
ground and set an upper limit on the WIMP-nucleon
spin-independent elastic scattering cross-section �SI at
4.1⇥10�47 cm2 for a mass of 30 GeV/c2, the most strin-
gent limit to date for WIMP masses above 6 GeV/c2. An
imminent detector upgrade, XENONnT, will increase the
target mass to 5.9 t. The sensitivity will improve upon
this result by more than an order of magnitude.

We gratefully acknowledge support from the National
Science Foundation, Swiss National Science Foundation,
German Ministry for Education and Research, Max
Planck Gesellschaft, Deutsche Forschungsgemeinschaft,
Netherlands Organisation for Scientific Research (NWO),
Netherlands eScience Center (NLeSC) with the support
of the SURF Cooperative, Weizmann Institute of Science,
Israeli Centers Of Research Excellence (I-CORE), Pazy-
Vatat, Initial Training Network Invisibles (Marie Curie
Actions, PITNGA-2011-289442), Fundacao para a Cien-
cia e a Tecnologia, Region des Pays de la Loire, Knut and
Alice Wallenberg Foundation, Kavli Foundation, and Is-
tituto Nazionale di Fisica Nucleare. Data processing is
performed using infrastructures from the Open Science
Grid and European Grid Initiative. We are grateful to
Laboratori Nazionali del Gran Sasso for hosting and sup-
porting the XENON project.

⇤ daniel.coderre@physik.uni-freiburg.de

Updating Priors on WIMPs

XENON 1T Collaboration arXiv:1805.12562



Updating Priors on WIMPs
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FIG. 2. Estimated detected event rate, cut o↵ by demanding 5� SNR, with various detector configurations. Here we use the
same fiducial parameters as in (6),(7): helium background gas at pressure 10�10 Pa, resonator damping rates � = 10�6 Hz,
with 109 sensors. Blue curves represent arrays of milligram-scale detectors spaced at either 1 mm or 1 cm, while red curves
represent arrays of gram-scale detectors at either 1 cm or 10 cm spacing. The dotted lines represent how our sensitivity floor
varies as a function of detector temperature. The left column shows detectors arrayed in a cubical lattice as pictured in figure
1. The right column shows detectors in a planar array, one detector thick.

mPl

Bosonic Wave DM

mGUT

Thermal DM
Dark Sectors, WIMPsAxion, ALPs, “Fuzzy” DM

This Work

Composite, Primordial Black Holes
WIMPzillas, Nonthermal DM

100 mPlkeV GeV TeV10�22 eV eV

Dark Matter Mass log[m/GeV]

FIG. 3. Broad classification of DM theory classes according to mass. For masses below ⇠ 10�22 eV, the DM wavelength is
too large to fit inside ⇠ kpc dwarf galaxies. For masses below ⇠ 10 eV, DM must be bosonic; fermionic DM in this mass
range primarily fill shells of phase space that exceed galactic escape velocity. Between the keV-100 TeV range, DM can viably
be in thermal equilibrium with the SM in the early universe. In our detectable mass range, between mGUT ⇠ 1016 GeV and
mPl ⇠ 1019 GeV, DM must have a nonthermal cosmolgocial history; for trans-Planckian masses, the candidate must also be a
composite state, primordial black hole, or an extended object (e.g a topological defect).

ADMX

Lots of new ideas for light DM detection < GeV 

ABRACADABRA
LDMX
MiniBooNE

BDX

SENSEI

For a review https://arxiv.org/abs/1707.04591

CASPER
DM Radio

What about here?

https://arxiv.org/abs/1707.04591


New Ideas in Heavy DM

Grabowska, Melia, Rajendran 1807.03788

Ultra heavy dark “blobs” (or nuclei)
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FIG. 5: MX � ⇤� parameter space for a fermionic blob, assuming a short-range mediator of mass

µ =TeV. Both CDMS and Hydrophones look for total energy deposition while MACRO looks for

ionization and scintillation signals.
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whereas the energy deposited through coherent scattering is
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(20)

where T is the temperature of the medium, yielding the de-Broglie wavelength ⇠ 1/
p
TmN

of the nuclear probe, and we assume that the geometric cross section is not yet saturated.

In both cases, the cross-section is suppressed by phase space factors emerging from the fact

that only momenta ⇠ ⇤� and 1/�p can be transferred to the nucleus in the incoherent and

coherent scattering case respectively. The above formulae are valid in the regime where the

scattering cross-section is smaller than the geometric size of the blob—for µ ' TeV, this

criterion is satisfied.
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FIG. 6: a) Scalar DM pair production from electron-beam col-

lisions. An on-shell A0
is radiated and decays o↵ diagonally to

'h,` pairs. b) Inelastic up scattering of the lighter '` into the

heavier state via A0
exchange. For order-one (or larger) mass

splittings, the metastable state promptly de-excites inside the

detector via 'h ! '`e
+e�. The signal of interest is involves

a recoiling target with energy ER and two charged tracks to

yield a instinctive, zero background signature.
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FIG. 7: a) Scalar DM pair production in electron-nucleus col-

lisions. An on-shell A0
is radiated and decays o↵ diagonally to

'h,` pairs. b) Inelastic up scattering of the lighter '` into the

heavier state via A0
exchange inside the detector. For order-

one (or larger) mass splittings, the metastable state promptly

de-excites inside the detector via 'h ! '`e
+e�. This process

yields a target (nucleus, nucleon, or electron) recoil ER and

two charged tracks, which is a instinctive, zero background

signature, so nuclear recoil cuts need not be limiting.

DD target

Can have large form factor enhancements
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Planck scale DM, GeV scale “mediator”5

FIG. 1: Current limits on ↵d, plotted versus mAd . The dotted contours correspond to values of constant �n�. The top green
shaded region is ruled out by ⌥(1S) decay, requiring ↵d < 0.014 [9, 10]. The solid black and gray dashed contours represent
bounds and future projections obtained from anomalous ⌘ and ⌘0 decays, as described in Ref. [17]. The left panel shows bounds
assuming the existence of an ultraviolet complete model without (energy/mass)2 enhanced contributions from a longitudinal
Ad mode. The presented bounds are not sensitive to the levels of kinetic mixing considered in this work. On the right panel
we include bounds from enhanced longitudinal Ad emission. The blue shaded region is the bound from B ! K Ad and the
red shaded region is the region constrained by Z ! � Ad as in Refs. [26, 27]. The darker grey region illustrates bounds from
B ! K Ad searches at LHCb and are obtained from Ref. [36]. For the bounds in the red and grey regions Ad is assumed to
decay visibly to leptons, mediated by kinetic mixing. The bound in cyan is the LHCb limit on the search for visibly decaying
dark photons rescaled to include a baryon coupling as in Ref. [36].

kaons are roughly similar and this would not alter our
conclusions significantly.

Since beyond the 3m⇡ limit, both branching ratios of
Ad ! l+l� and Ad ! ⇡+⇡� are highly suppressed com-
pared to Ad ! ⇡0⇡+⇡� and Ad ! ⇡0�, the correspond-
ing BABAR and KLOE bounds on " are loosened by a
factor of O(10) or more. Hence, for mAd & 800 MeV
we roughly end up with a bound of " . 10�2 for
↵d = 10�3. Also in Fig. 2 we show the upper bound
extracted from electroweak precision observables at LEP
and LHC [43, 44]. The gray shaded area is the region
excluded by the muon g � 2 experiment at 5� and the
black dot-dashed band is the 2� allowed explanation of
the gµ � 2 anomaly with the black solid line as the cen-
tral value [42, 45, 46]. Absent longitudinally enhanced Ad

emission constraints, future measurements, for example
by Belle II, should be able to probe the " . 10�2 region
in Fig. 2 in our setup. In case a signal is detected in this
regime, one could potentially conclude that the ultravio-
let theory does not give rise to the longitudinal enhance-
ments indicated by the red shaded region in the figure.
Hence, probing the kinetic mixing parameter, within the
baryon current U(1)d model, could in principle shed light
on the underlying dynamics of anomaly cancellation at
much higher energies.

ASTROPHYSICAL CONSIDERATIONS

In Ref. [2], limits on the annihilation cross section of
PSDM into SM states have been derived, based on the

stability of white dwarfs against runaway nuclear fusion
which would lead to a type Ia supernova. The authors
of Ref. [2] find that the typical minimum mass for the
PSDM trapped inside a white dwarf that would lead to
a constraint is ⇠ 1017 GeV.

Given that we have adopted a specific model here, we
should ensure that choices of parameters that could lead
to potential direct detection of PSDM are consistent with
astrophysical observations. The pair annihilation cross
section ��� v� of PSDM, �̄� ! Ad Ad, in our scenario
can be approximated by

��� v� ⇠
4⇡ ↵2

d

m2
�

⇠ 10�54 cm
3

s

✓
↵d

10�2

1017 GeV

m�

◆2

(6)

where v� is the typical velocity of �.

The analysis in Ref. [2] suggests that for 1017 GeV .
m� . 1019 GeV, agreement with astrophysical observa-
tions require ��� v� . 10�65 cm3 s�1, assuming a stable
radius rc = 10�10 cm to which the DM has collapsed in-
side the star, ��n = 10�32 cm2, and ⇢� = 0.4 GeV cm�3

as the local DM energy density. Hence, within the model
adopted in our work, the mass range ⇠ 1017�19 GeV ap-
pears disfavored due to astrophysical constraints.3 Possi-
ble deviations from the assumed parameters in that anal-
ysis, for example a larger value of rc, could change the

3 Those constraints also disfavor larger m� which may be interest-
ing to consider, for example if DM is a composite state.

Can have large interaction rate
Multiple scattering at DD experiments
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New Ideas in Heavy DM



How do we usually approach DM?

Step 2: *guess* plausible non-gravitational interaction

Optional — available evidence all relies on gravity

Broad — endless variety of viable choices

Step 1: choose mass optimized for an experimental technique 

Choice usually dictated by technology

Every technique has a finite sensitivity range 

How far can we just using gravity in the laboratory?
Goal of this talk:



Necessary Caveats

1) An experimental proposal or

This talk is NOT:

2) A realistic present-day strategy



Necessary Caveats

2) A realistic present-day strategy

This talk is NOT:

1) An outline of a new direct detection strategy 

This talk IS:

2) The beginning of a  conversation to identify new opportunities

3) What is necessary to detect DM gravity w/ existing technology

1) An experimental proposal or



Think Big & Small

Heavy DM Tiny gravitational
Planckian masses forces



Naively this is crazy because

But gravity is long range and heavy DM has large “charge”

Fsig =
GNm�mdet

b2
' 7⇥ 10�17 N

✓
m�

mg

◆✓
mdet

mg

◆⇣mm

b

⌘2

e.g. for Planckian DM

This is tiny…but smaller forces have already been measured!

mPl ⇡ 0.2mg

Think Big & Small

GN

GF
⇠

✓
v

mPl

◆2

⇠ 10�34



Zeptonewton Force Detection

3

cooling, the temperature in Eq. 1 becomes Te↵ and the
damping rate �e↵ includes the e↵ect of the cooling laser.

We perform force measurements in the x�direction.
Data for the bead position and a reference signal (typi-
cally at 9 kHz) are recorded with a sampling rate of 125
kHz. Fig. 2 shows a typical displacement spectral den-
sity in the x�direction of a bead held at low vacuum of
2 Torr with no feedback cooling applied, and a spectrum
at high vacuum (HV) of 5 ⇥ 10�6 Torr with feedback
cooling. At 2 Torr we observe an x-resonant frequency
of 2830 Hz and gas damping rate of approximately 1.4
kHz. In the orthogonal directions (y�, z�) (not shown)
resonance frequencies of (3410, 7300) Hz are observed, re-
spectively. At HV, a Lorentzian fit to the data reveals
cooling of the center of mass motion to 460 ± 60 mK,
with a damping rate of 460 ± 49 Hz in the x� direc-
tion. CM motion in the y� and z� directions are cooled
to temperatures of 610 ± 190 mK and 7.9 ± 3 K, with
damping rates of approximately 1.3 kHz and 1 kHz, re-
spectively. The frequencies of the peaks are shifted when
feedback cooling is applied due to the optical spring ef-
fect that occurs if the feedback phase is not precisely 90
degrees. The force sensitivity in the x�direction corre-

sponds to S1/2
F,x = 1.63 ± 0.37 aN/Hz1/2, with the error

dominated by the uncertainty in the particle size. The
lowest attainable temperature appears to be limited by
noise in the QPD imaging electronics and trapping laser.
The expected sensitivity at this pressure would be ap-
proximately ⇠ 10 times better in the absence of laser
noise and cross-talk between feedback channels.

In the absence of an applied force, we expect the signal
due to thermal noise to average down as b1/2. This be-
havior is shown in Fig. 2 for averaging times exceeding
105 seconds. Force sensing at the level of 5.8± 1.3 zN is
achievable at this timescale. Also shown is the calculated
Fmin using the measured parameters for Te↵ , !0, and �e↵ ,
which agree with measured data within uncertainty. We
find that approximately 90% of the beads trapped have
zero electric charge; the remaining beads tend to have
only 1 or 2 excess electrons. Data are shown for charged
(1e�, 2e�) and uncharged beads in Fig. 2 for a known
applied electric field. The expected force for a charge of
1 (2) electrons is shown as a dotted line in Fig. 2. An in-
dependent calibration can be achieved by comparing the
spectra of the beads after they have been transported to
adjacent trapping sites in the optical lattice, as discussed
previously. The determined calibration factors are con-
sistent in each case within experimental uncertainty.

IV. TRAP STABILITY AND LIFETIME

In the absence of applied feedback cooling, the particle
is lost from the trap as the pressure is dropped below the
10 mTorr range. Fig. 3a illustrates statistics for the typ-
ical trap loss pressure for beads without feedback cooling
applied, as a function of trapping laser intensity, along
with previous data obtained for 3 µm diameter beads [23].

FIG. 2: (Color Online) Measured force on a bead as a func-
tion of averaging time at 2 Torr and 5 ⇥ 10�6 Torr (HV)
for charged and uncharged beads, while driving with a sinu-
soidally varying electric field of 1 kV/m. (inset) Measured
x� displacement spectrum of a 300 nm sphere at 2 Torr and
HV with feedback cooling applied. Lorentzian fits indicate
cooling to 460 mK at HV.

Following a similar analysis to that presented in Ref. [23],
we find that radiometric forces may also be a likely loss
mechanism for the smaller beads. The expected temper-
ature gradient across the sphere is significantly reduced
for the 300 nm sphere however, consistent with the lower
loss pressures. Once HV is attained, we can reduce the
optical feedback cooling rate by over an order of magni-
tude compared with what is used while pumping from 2
Torr to HV, and maintain the trap stability. This sug-
gests that gas collisions play a role in the loss mechanism
around ⇠ 10 mTorr. While larger beads tend to be lost
at higher pressures for increasing intensity, the 300 nm
beads tend to get lost at higher pressures for decreasing
intensity. This di↵erence may be due to the reduced trap
depth for the smaller particles.
The trap lifetime at high vacuum at intensities around

1010 W/m2 is typically indefinite over several days, how-
ever at higher intensity we notice an exponential reduc-
tion of lifetime with increasing laser power, as shown in
Fig. 3c. The estimated timescale to reach thermal equi-
librium in each case is less than 1 s, as shown in Fig. 3d,
despite lifetimes ranging from minutes to a few hours.
Here we consider a range of possible values for the imag-
inary permittivity ✏2, varying from the bulk silica value
✏2 = 2.5⇥ 10�7 [36] up to ✏2 = 10�6, an upper bound we
infer from holding particles for several seconds at inten-
sities above 2⇥ 1010 W/m2 without particle evaporation
or loss. The exact loss mechanism shown in Fig. 3c is
uncertain. A process whereby the particle may undergo
annealing or a glass-crystalline transition after remaining
at an elevated temperature for a significant time could be
responsible for loss if the new phase has higher absorp-
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FIG. 1: (Color Online) (a) A standing-wave trap for 300
nm beads is formed using counter-propagating 1064 nm laser
beams focused at nearly the same spatial location. Active
feedback cooling is performed using 780 nm lasers (shown as
green) in 3 dimensions. (b) Calculated optical force along
the z�axis assuming total power of 2.2 W, waist of 8 µm,
and a 0.2% intensity modulation due to interference from the
counter-propagating beam, corresponding well with the mea-
sured trap frequencies. (c) Time-trace for 1 s of particle mo-
tion in the axial direction at P = 2 Torr. When subject to
an applied sinusoidal optical force, the particle hops to an
adjacent trapping site as a result of the perturbation. Dotted
lines indicate expected antinode spacing.

loaded by vibrating a glass substrate to aerosolize beads
under 5 � 10 Torr of N2 gas, which provides su�cient
damping to slow and capture the particles. More detail
of the vacuum system has been previously described in
Ref. [23].

The polarizing cube beam splitter transmits approxi-
mately 1.5 percent of the p-polarized laser power along
the s-beam path due to imperfect polarization separa-
tion. This p-polarized component can interfere with the
anti-parallel p-polarized beam to create a standing wave
potential, as illustrated in Fig. 1b. The optical poten-
tial results from the superposition of the scattering and
dipole forces from the beams and includes a modulation
produced by the interference. The intensity modulation
depends on the coherence length of the laser as well as
the purity of the beam polarizations.

The position of the nanosphere is measured by imaging
the scattered light from the nanosphere onto two quad-
rant photodetectors (QPDs). We define the “axial” or z�
axis in the direction of the dipole trap beams, and the
“horizontal” or x� axis is perpendicular to both the ver-

tical and axial axes. The axial-horizontal (vertical) mo-
tion is measured using QPD 1 (2). The position signals
from the QPDs are phase shifted by 90 degrees to provide
a signal proportional to the bead’s instantaneous veloc-
ity using either a derivative or phase shifter circuit. The
phase shifted signals are used to adjust the RF ampli-
tude of three acoustic optical modulators (AOMs), which
modulate the intensity of a 780 nm laser beam to provide
a velocity-dependent optical damping force in each direc-
tion. Such feedback has proven necessary for maintaining
the particle in the trap while pumping to high-vacuum.
The feedback light is focused onto the sphere using a lens
outside of the vacuum chamber in the horizontal direc-
tion, one of the dipole trap lenses for the axial direction,
and an in-vacuum lens for the vertical direction.
Prior to pumping to high vacuum, the center-of-mass

temperature as derived from the position spectrum of the
beads is largely independent of pressure and trap laser
power for su�ciently high pressure and su�ciently low
laser intensity. We can thus assume the bead is in ther-
mal equilibrium with the background gas at and above
2 Torr. This allows us to determine a scale factor to
convert the quadrant photodetector voltage into a dis-
placement. From this conversion factor we can deduce
the force sensitivity of the bead at lower vacuum con-
ditions. As a check of the scale factor, the bead can be
transferred between adjacent trapping sites by applying a
perturbation with a laser. In this case we utilize the feed-
back cooling laser in a driving mode. In Fig. 1c we show
the time trace of a bead subject to a perturbation which
causes it to transition between adjacent trapping sites.
A calibration is made possible using the half-wavelength
spacing of the trap antinodes, along the axial direction
of the trap. From the fit to thermal spectra, the mea-
sured displacement of this transition is 514 ± 43 nm, in
reasonable agreement with the expected value of 532 nm.

III. FORCE MEASUREMENT

At high vacuum, time-averaged sub-aN force measure-
ments can be performed. The minimum force detectable
for a harmonic oscillator in thermal equilibrium with a
bath at temperature T is

Fmin = S1/2
F b1/2 =

s
4kBTbk

!0Q
(1)

where b is the measurement bandwidth, S1/2
F is the

thermal-noise force spectral density , k is the spring con-
stant of the oscillator, kB is Boltzmann’s constant, w0

is the resonance frequency, and Q is the quality fac-
tor. In the absence of laser cooling, Eq. 1 can be writ-
ten for a nanosphere as Fmin =

p
4kBTm�Mb where

�M = 16P/(⇡⇢vr) is the damping coe�cient of the sur-
rounding gas, v is the mean speed of the gas, m is the
mass of the sphere, ⇢ is its density, r is its radius, and P
is the pressure. For a sphere cooled with laser feedback
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over an order of magnitude, and enables a variety of applications including electric field sensing,
inertial sensing, and gravimetry. The particle is confined at the anti-nodes of the optical standing
wave, and by studying the motion of a particle which has been moved to an adjacent trapping site,
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particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity
and gas pressure, and examine the heating rate of the particle in vacuum without feedback cooling.
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I. INTRODUCTION

Sub-attonewton force sensing facilitates a variety of ap-
plications including magnetic resonance force microscopy
[1], tests of gravitational physics at short range [2, 3],
investigations of surface forces including the Casimir
e↵ect [4], as well as inertial sensing [5]. State-of-
the-art resonant solid state mechanical sensors such as
micro-cantilevers, nano-membranes, and nanotubes typ-
ically operate in a cryogenic environment to improve
their thermal-noise limited force sensitivity. Room-
temperature solid-state sensors have achieved sensitivity
in the ⇠ 10�100 aN/Hz1/2 range [6–10], while cryogenic
nanotube mechanical oscillators have recently achieved
⇠ 10 zN/Hz1/2 [11]. The excellent environmental de-
coupling of optically levitated mechanical systems [12–
17, 19] in high vacuum can allow such systems to achieve
similar or better force sensitivity at room temperature
[17, 18, 20]. However, a challenge has been the optical
confinement of such particles under high vacuum [18, 21–
23], in particular in standing-wave optical traps [16, 24].

In this paper we describe robust optical trapping of
300 nm silica nanospheres in an optical lattice at high
vacuum, where particles can be trapped indefinitely over
several days. The optical potential allows the particle to
be confined in a number of possible trapping sites. By
perturbing the system with a laser, we are able to trans-
fer the particle between di↵erent trap anti-nodes, which
shows promise for sensing experiments where the particle
position must be adjusted and controlled precisely [3]. By
studying the motion of a particle which has been moved
to an adjacent trapping site, the known spacing of the
lattice anti-nodes can also serve as a ruler to calibrate
the displacement spectrum of the particle. While elec-
tric fields can be used to calibrate the force sensitivity of
charged microspheres [23, 25], the standing wave method

⇤ageraci@unr.edu

can be a useful calibration tool for neutral objects, which
are applicable for a variety of experiments where charge
can produce unwanted backgrounds. We find that for
a charged particle the standing-wave method produces
results consistent with the electric field method.
Using active-feedback laser cooling in three dimen-

sions, we demonstrate cooling of the center of mass mo-
tion to ⇠ 400 mK at a pressure of 5⇥10�6 Torr, resulting
in a force sensitivity of 1.6 aN/Hz1/2. The system per-
mits time-averaged measurements over long integration
times, and we demonstrate force sensing at the 6 zN level.
Due to the reduced particle size and improved imaging
and feedback cooling, these results are more than two
orders of magnitude more sensitive that those previously
reported by our group using 3 µm particles in a dual-
beam optical dipole trap [23].
Finally, we study the dependence of the trap stability

and lifetime on laser intensity and background gas pres-
sure, and measure the heating rate of the particle in high
vacuum in the absence of optical feedback cooling. We
find stable trapping for a range of intensities that are lim-
ited by the trapping depth on one hand and the internal
heating of the particle on the other.
In addition to force sensing applications, stable op-

tically trapped nanospheres at high vacuum are also
promising for quantum information science [12, 13],
tests of classical and quantum thermodynamics [22],
testing quantum superpositions [26–28], quantum opto-
mechanics with hybrid systems [29], matter wave inter-
ferometers [30–34], and gravitational wave detection [35].

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig.
1. A 300 nm fused silica sphere is trapped using two
equal-power counter-propagating beams formed by split-
ting a 1064 nm laser beam with a polarizing cube beam
splitter. The beam foci are o↵set axially by 75 µm. The
trap is initially operated with a total power of 2.2 W
and a waist size of approximately 8 µm, and the trap is
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FIG. 1. Elements of our detection paradigm. Left: Kinematics of the DM-detector scattering event, viewed from above
the scattering plane. Center left: Circuit diagram depicting our backaction-evading velocity measurement. An optical pulse
�1 interacts with the mechanical detector d twice via (10), with opposite phase and a time delay td, leading to a velocity
measurement. A second pulse �2 then enables a measurement of the impulse �I. Right: Schematics of the detector array, with
suspended pendula used as mechanical resonators on the left and magnetically levitated superconducting spheres as free-falling
particles on the right. In both cases, as the DM passes through the array, it produces a correlated impulse on the detectors
nearest its track.

Detector paradigm.–Our basic problem is the detection
of a passing DM particle via gravity. See figure 1 for
a diagram of the kinematics. Since the force is long-
range, we are interested in the eikonal (“classical”) limit
dominated by the exchange of many virtual gravitons,
i.e. the Newton force FN = GNm�mdr̂/r

2 between a
detector of mass md and DM particle of mass m�. A lab
at rest on Earth sees the DM pass by with average “wind
speed” v ⇡ 220 km/s. Thus the DM imparts momentum
to the detector on a very short timescale ⌧ . For a fiducial
impact parameter b of approximately a millimeter, we
have ⌧ ⇡ b/v ⇠ 10�8 s.

The fundamental limitation to force sensing is noise.
The total force incident on the sensor is

Fin(t) = Fsig(t) + Fth(t) + Fmeas(t). (1)

The first term is the signal; for concreteness we will focus
on the transverse component of the force (see figure 1),

Fsig =
GNmdm�b

(b2 + v2t2)3/2
. (2)

The noise terms Fnoise = Fth + Fmeas are random vari-
ables. The measurement-added noise Fmeas is a funda-
mental quantum limitation, and depends on the system
observable we probe and how precisely we perform the
readout (see [41] for a review). Meanwhile, the thermal
noise Fth is set by the detector temperature T and the
nature of the thermal bath coupling to the detectors, but
independent of the measurement readout scheme.

Our basic observable is the total impulse delivered to
the detector,

I =

Z
tint/2

�tint/2
dt Fsig(t) ! 2GNmdm�⌧/b

2 = 2F ⌧, (3)

where tint is the integration time for the measure-
ment, F is the average force, and we assume tint �
⌧ and su�cient incoming velocity to prevent orbit.
The noise is characterized by the variance h�I

2i =

R R
dtdt

0 hFnoise(t)Fnoise(t0)i. For stationary noise, this
correlation function is proportional to �(t� t

0). Thus the
noise grows as a square root in time

�I
2 = ↵tint, (4)

for some constant ↵, characteristic of Brownian motion.
A continuous measurement integrated over some amount
of time tint therefore serves to average out the noise on a
single detector. We can further improve the situation by
letting a single DM particle interact with N > 1 sensors.
Assuming the noise is not correlated across these, the
standard error decreases like 1/

p
N . Thus, in total, the

signal-to-noise ratio (SNR) is given by

SNR2 = 2F
2
N⌧/↵, (5)

taking the measurement integration time tint ⇡ ⌧ . It is
critical that the signal here is the entire, correlated track
of moving detectors. A single detector moving is just
noise. This in particular means that our backgrounds
(discussed later) are very di↵erent from traditional di-
rect detection experiments. It also means that the signal
includes complete directional information.

Our basic result (5) can be used to estimate the
SNR for any particular detector scheme. Let us assume
that thermal noise is dominant over measurement-added
noise. We will return to this key assumption later. For
detectors mechanically coupled to a support structure
at temperature T , we have ↵mech = 4mdkBT� with �

the detector’s mechanical damping rate [41]. For freely-
falling detectors, we are limited instead by the latent gas
pressure P , which gives ↵gas = PAd

p
makBT , where Ad

is the cross-sectional area of each detector and ma is the
mass of the gas atoms [42]. Numerically, we thus obtain
the following estimates for the SNR:

SNR2 =
G
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FIG. 1. Elements of our detection paradigm. Left: Kinematics of the DM-detector scattering event, viewed from above
the scattering plane. Center left: Circuit diagram depicting our backaction-evading velocity measurement. An optical pulse
�1 interacts with the mechanical detector d twice via (10), with opposite phase and a time delay td, leading to a velocity
measurement. A second pulse �2 then enables a measurement of the impulse �I. Right: Schematics of the detector array, with
suspended pendula used as mechanical resonators on the left and magnetically levitated superconducting spheres as free-falling
particles on the right. In both cases, as the DM passes through the array, it produces a correlated impulse on the detectors
nearest its track.

Detector paradigm.–Our basic problem is the detection
of a passing DM particle via gravity. See figure 1 for
a diagram of the kinematics. Since the force is long-
range, we are interested in the eikonal (“classical”) limit
dominated by the exchange of many virtual gravitons,
i.e. the Newton force FN = GNm�mdr̂/r

2 between a
detector of mass md and DM particle of mass m�. A lab
at rest on Earth sees the DM pass by with average “wind
speed” v ⇡ 220 km/s. Thus the DM imparts momentum
to the detector on a very short timescale ⌧ . For a fiducial
impact parameter b of approximately a millimeter, we
have ⌧ ⇡ b/v ⇠ 10�8 s.

The fundamental limitation to force sensing is noise.
The total force incident on the sensor is

Fin(t) = Fsig(t) + Fth(t) + Fmeas(t). (1)

The first term is the signal; for concreteness we will focus
on the transverse component of the force (see figure 1),

Fsig =
GNmdm�b

(b2 + v2t2)3/2
. (2)

The noise terms Fnoise = Fth + Fmeas are random vari-
ables. The measurement-added noise Fmeas is a funda-
mental quantum limitation, and depends on the system
observable we probe and how precisely we perform the
readout (see [41] for a review). Meanwhile, the thermal
noise Fth is set by the detector temperature T and the
nature of the thermal bath coupling to the detectors, but
independent of the measurement readout scheme.

Our basic observable is the total impulse delivered to
the detector,

I =

Z
tint/2

�tint/2
dt Fsig(t) ! 2GNmdm�⌧/b

2 = 2F ⌧, (3)

where tint is the integration time for the measure-
ment, F is the average force, and we assume tint �
⌧ and su�cient incoming velocity to prevent orbit.
The noise is characterized by the variance h�I

2i =

R R
dtdt

0 hFnoise(t)Fnoise(t0)i. For stationary noise, this
correlation function is proportional to �(t� t

0). Thus the
noise grows as a square root in time

�I
2 = ↵tint, (4)

for some constant ↵, characteristic of Brownian motion.
A continuous measurement integrated over some amount
of time tint therefore serves to average out the noise on a
single detector. We can further improve the situation by
letting a single DM particle interact with N > 1 sensors.
Assuming the noise is not correlated across these, the
standard error decreases like 1/

p
N . Thus, in total, the

signal-to-noise ratio (SNR) is given by

SNR2 = 2F
2
N⌧/↵, (5)

taking the measurement integration time tint ⇡ ⌧ . It is
critical that the signal here is the entire, correlated track
of moving detectors. A single detector moving is just
noise. This in particular means that our backgrounds
(discussed later) are very di↵erent from traditional di-
rect detection experiments. It also means that the signal
includes complete directional information.

Our basic result (5) can be used to estimate the
SNR for any particular detector scheme. Let us assume
that thermal noise is dominant over measurement-added
noise. We will return to this key assumption later. For
detectors mechanically coupled to a support structure
at temperature T , we have ↵mech = 4mdkBT� with �

the detector’s mechanical damping rate [41]. For freely-
falling detectors, we are limited instead by the latent gas
pressure P , which gives ↵gas = PAd

p
makBT , where Ad

is the cross-sectional area of each detector and ma is the
mass of the gas atoms [42]. Numerically, we thus obtain
the following estimates for the SNR:
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FIG. 1. Elements of our detection paradigm. Left: Kinematics of the DM-detector scattering event, viewed from above
the scattering plane. Center left: Circuit diagram depicting our backaction-evading velocity measurement. An optical pulse
�1 interacts with the mechanical detector d twice via (10), with opposite phase and a time delay td, leading to a velocity
measurement. A second pulse �2 then enables a measurement of the impulse �I. Right: Schematics of the detector array, with
suspended pendula used as mechanical resonators on the left and magnetically levitated superconducting spheres as free-falling
particles on the right. In both cases, as the DM passes through the array, it produces a correlated impulse on the detectors
nearest its track.

Detector paradigm.–Our basic problem is the detection
of a passing DM particle via gravity. See figure 1 for
a diagram of the kinematics. Since the force is long-
range, we are interested in the eikonal (“classical”) limit
dominated by the exchange of many virtual gravitons,
i.e. the Newton force FN = GNm�mdr̂/r

2 between a
detector of mass md and DM particle of mass m�. A lab
at rest on Earth sees the DM pass by with average “wind
speed” v ⇡ 220 km/s. Thus the DM imparts momentum
to the detector on a very short timescale ⌧ . For a fiducial
impact parameter b of approximately a millimeter, we
have ⌧ ⇡ b/v ⇠ 10�8 s.

The fundamental limitation to force sensing is noise.
The total force incident on the sensor is

Fin(t) = Fsig(t) + Fth(t) + Fmeas(t). (1)

The first term is the signal; for concreteness we will focus
on the transverse component of the force (see figure 1),

Fsig =
GNmdm�b

(b2 + v2t2)3/2
. (2)

The noise terms Fnoise = Fth + Fmeas are random vari-
ables. The measurement-added noise Fmeas is a funda-
mental quantum limitation, and depends on the system
observable we probe and how precisely we perform the
readout (see [41] for a review). Meanwhile, the thermal
noise Fth is set by the detector temperature T and the
nature of the thermal bath coupling to the detectors, but
independent of the measurement readout scheme.

Our basic observable is the total impulse delivered to
the detector,

I =

Z
tint/2

�tint/2
dt Fsig(t) ! 2GNmdm�⌧/b

2 = 2F ⌧, (3)

where tint is the integration time for the measure-
ment, F is the average force, and we assume tint �
⌧ and su�cient incoming velocity to prevent orbit.
The noise is characterized by the variance h�I

2i =

R R
dtdt

0 hFnoise(t)Fnoise(t0)i. For stationary noise, this
correlation function is proportional to �(t� t

0). Thus the
noise grows as a square root in time

�I
2 = ↵tint, (4)

for some constant ↵, characteristic of Brownian motion.
A continuous measurement integrated over some amount
of time tint therefore serves to average out the noise on a
single detector. We can further improve the situation by
letting a single DM particle interact with N > 1 sensors.
Assuming the noise is not correlated across these, the
standard error decreases like 1/

p
N . Thus, in total, the

signal-to-noise ratio (SNR) is given by

SNR2 = 2F
2
N⌧/↵, (5)

taking the measurement integration time tint ⇡ ⌧ . It is
critical that the signal here is the entire, correlated track
of moving detectors. A single detector moving is just
noise. This in particular means that our backgrounds
(discussed later) are very di↵erent from traditional di-
rect detection experiments. It also means that the signal
includes complete directional information.

Our basic result (5) can be used to estimate the
SNR for any particular detector scheme. Let us assume
that thermal noise is dominant over measurement-added
noise. We will return to this key assumption later. For
detectors mechanically coupled to a support structure
at temperature T , we have ↵mech = 4mdkBT� with �

the detector’s mechanical damping rate [41]. For freely-
falling detectors, we are limited instead by the latent gas
pressure P , which gives ↵gas = PAd

p
makBT , where Ad

is the cross-sectional area of each detector and ma is the
mass of the gas atoms [42]. Numerically, we thus obtain
the following estimates for the SNR:
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FIG. 1. Elements of our detection paradigm. Left: Kinematics of the DM-detector scattering event, viewed from above
the scattering plane. Center left: Circuit diagram depicting our backaction-evading velocity measurement. An optical pulse
�1 interacts with the mechanical detector d twice via (10), with opposite phase and a time delay td, leading to a velocity
measurement. A second pulse �2 then enables a measurement of the impulse �I. Right: Schematics of the detector array, with
suspended pendula used as mechanical resonators on the left and magnetically levitated superconducting spheres as free-falling
particles on the right. In both cases, as the DM passes through the array, it produces a correlated impulse on the detectors
nearest its track.

Detector paradigm.–Our basic problem is the detection
of a passing DM particle via gravity. See figure 1 for
a diagram of the kinematics. Since the force is long-
range, we are interested in the eikonal (“classical”) limit
dominated by the exchange of many virtual gravitons,
i.e. the Newton force FN = GNm�mdr̂/r

2 between a
detector of mass md and DM particle of mass m�. A lab
at rest on Earth sees the DM pass by with average “wind
speed” v ⇡ 220 km/s. Thus the DM imparts momentum
to the detector on a very short timescale ⌧ . For a fiducial
impact parameter b of approximately a millimeter, we
have ⌧ ⇡ b/v ⇠ 10�8 s.

The fundamental limitation to force sensing is noise.
The total force incident on the sensor is

Fin(t) = Fsig(t) + Fth(t) + Fmeas(t). (1)

The first term is the signal; for concreteness we will focus
on the transverse component of the force (see figure 1),

Fsig =
GNmdm�b

(b2 + v2t2)3/2
. (2)

The noise terms Fnoise = Fth + Fmeas are random vari-
ables. The measurement-added noise Fmeas is a funda-
mental quantum limitation, and depends on the system
observable we probe and how precisely we perform the
readout (see [41] for a review). Meanwhile, the thermal
noise Fth is set by the detector temperature T and the
nature of the thermal bath coupling to the detectors, but
independent of the measurement readout scheme.

Our basic observable is the total impulse delivered to
the detector,

I =

Z
tint/2

�tint/2
dt Fsig(t) ! 2GNmdm�⌧/b

2 = 2F ⌧, (3)

where tint is the integration time for the measure-
ment, F is the average force, and we assume tint �
⌧ and su�cient incoming velocity to prevent orbit.
The noise is characterized by the variance h�I

2i =

R R
dtdt

0 hFnoise(t)Fnoise(t0)i. For stationary noise, this
correlation function is proportional to �(t� t

0). Thus the
noise grows as a square root in time

�I
2 = ↵tint, (4)

for some constant ↵, characteristic of Brownian motion.
A continuous measurement integrated over some amount
of time tint therefore serves to average out the noise on a
single detector. We can further improve the situation by
letting a single DM particle interact with N > 1 sensors.
Assuming the noise is not correlated across these, the
standard error decreases like 1/

p
N . Thus, in total, the

signal-to-noise ratio (SNR) is given by

SNR2 = 2F
2
N⌧/↵, (5)

taking the measurement integration time tint ⇡ ⌧ . It is
critical that the signal here is the entire, correlated track
of moving detectors. A single detector moving is just
noise. This in particular means that our backgrounds
(discussed later) are very di↵erent from traditional di-
rect detection experiments. It also means that the signal
includes complete directional information.

Our basic result (5) can be used to estimate the
SNR for any particular detector scheme. Let us assume
that thermal noise is dominant over measurement-added
noise. We will return to this key assumption later. For
detectors mechanically coupled to a support structure
at temperature T , we have ↵mech = 4mdkBT� with �

the detector’s mechanical damping rate [41]. For freely-
falling detectors, we are limited instead by the latent gas
pressure P , which gives ↵gas = PAd

p
makBT , where Ad

is the cross-sectional area of each detector and ma is the
mass of the gas atoms [42]. Numerically, we thus obtain
the following estimates for the SNR:

SNR2 =
G

2
N

m
2
�

v

L

d4

md

kBT�

⇡ 10�1 ⇥
✓

m�

1 mg

◆2 ✓
md

1 mg

◆✓
1 mm

d

◆4 (6)

Total Force on Test Mass

Thermal noise



h�I2i ⌘
Z

dt

Z
dt0Fnoise(t)Fnoise(t

0) / �(t� t0)

Impulse from random Brownian motion uncorrelated

Thermal Noise on Test Mass

Mechanical oscillator coupled to support structure

T ⇠ 10mK Oscillator at finite temp



Thermal Noise on Test Mass

h�I2i / �(t� t0) damping↵

Mechanical oscillator coupled to support structure

Thermal noise (squared) grows linearly with integration time

parameter�I2 = ↵ tint

Oscillator at finite tempT ⇠ 10mK



Signal & Noise�

For N uncorrelated sensors, noise decreases as 

I2sig / N2 , �I2thermal / N =) SNR2 =
I2

�I2
=

4F̄ 2N⌧

↵

b

L = N/b

b

v

p
N



�

Correlated signal along only one linear track 
Uncorrelated along all other possible linear tracks

b

L = Nb

Measure every resonator each  tint . ⌧

Signal & Noise



For mechanical oscillator ↵mech = 4mdetkBT�

Signal & Noise�

b

b

v

SNR2 =
4F̄ 2N⌧

↵
=

✓
G2

Nm2
�

v

◆✓
L

b4

◆✓
mdet

kBT�

◆

L = Nb



�

b

b

v

SNR
2 ⇠ 10

�1

✓
m�

mg

◆2 ✓mdet

mg

◆✓
L

m

◆⇣
mm

b

⌘4
✓
10mK

T

◆✓
10

�6
Hz

�

◆

Not very promising in this basic formulation  (need~ 5)

Signal & Noise

L = Nb



Event Rates: Mechanical Resonators

3

FIG. 2. Estimated detected event rate, cut o↵ by demanding 5� SNR, with various detector configurations. Here we use the
same fiducial parameters as in (6),(7): helium background gas at pressure 10�10 Pa, resonator damping rates � = 10�6 Hz,
with 109 sensors. Blue curves represent arrays of milligram-scale detectors spaced at either 1 mm or 1 cm, while red curves
represent arrays of gram-scale detectors at either 1 cm or 10 cm spacing. The dotted lines represent how our sensitivity floor
varies as a function of detector temperature. The left column shows detectors arrayed in a cubical lattice as pictured in figure
1. The right column shows detectors in a planar array, one detector thick.
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FIG. 3. Broad classification of DM theory classes according to mass. For masses below ⇠ 10�22 eV, the DM wavelength is
too large to fit inside ⇠ kpc dwarf galaxies. For masses below ⇠ 10 eV, DM must be bosonic; fermionic DM in this mass
range primarily fill shells of phase space that exceed galactic escape velocity. Between the keV-100 TeV range, DM can viably
be in thermal equilibrium with the SM in the early universe. In our detectable mass range, between mGUT ⇠ 1016 GeV and
mPl ⇠ 1019 GeV, DM must have a nonthermal cosmolgocial history; for trans-Planckian masses, the candidate must also be a
composite state, primordial black hole, or an extended object (e.g a topological defect).
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in the case of detectors mechanically coupled to a support
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for freely-falling detectors. Here for simplicity we as-
sumed a cubical array of side length L (so that the
number of sensors nearest the DM path is N ⇠ L/d)
with L = 1 m, and assumed dilution fridge temper-
atures T = 10 mK, helium ion-pump vacuum pres-
sures P = 10�10 Pa, ma = 4 u, mechanical damping
� = 10�6 Hz, and typical solid density ⇢solid ⇠ 10 g/cm3

for the detectors.

The signal-to-noise ratios (6), (7) represent our fun-
damental detection sensitivities. A DM candidate of
mass m� passing through a detector will be detected
with 5�� confidence if the detector parameters are such
that SNR � 5. Clearly, detecting a heavier DM candi-
date is easier. On the other hand, the number density of
DM at high mass is low. The observed local DM density
⇢� ⇡ 0.3 GeV / cm3 [43] means that, for a detector array
of total cross-section A, the rate of DM passing through
the array is

R =
⇢vA

m�

⇠ 50

year

✓
mPl

m�

◆✓
A

102 m2

◆
. (8)

In figure 2, we plot our predicted event rates with a va-
riety of detector geometries. These results suggest that
it would be straightforward to detect DM with masses
around the Planck mass, using an array of 106 � 109

detectors in a meter-scale apparatus. Reaching heavier
masses can be achieved with a sparse, larger array of
detectors; reaching smaller masses is best achieved with
more detectors and lower background temperatures and
pressures.

Reaching thermally-limited detection.–Our optimal
measurement sensitivities (6), (7) were derived assuming
that thermal noise dominates over measurement-added
noise. Measurement noise is an unavoidable limitation
imposed by quantum mechanics itself. The prototypical
example was given by Caves [9], who studied the funda-
mental limits to continuous position sensing of a detector
mass md. Suppose we prepare the detector in a narrow
wavepacket of width �x. The mass will then have mo-
mentum uncertainty �p � ~/�x. Performing another
measurement of position a time ⌧ later will thus have
position uncertainty of order �x + ~⌧/md�x. Optimiz-
ing this as a function of the initial packet size, we see that
we cannot resolve the position better than the standard
quantum limit (SQL) �x

2
SQL

⇠ ~⌧/md. Converting this
to an impulse measurement, we have �I

2
SQL

= ~md/⌧
2.

In our case, achieving the SQL would give the ratio of

measurement-added noise to thermal noise as

�I
2
meas

�I
2
th

=

(
~v2

/4kBT�d
2
, mechanical

~md/PAdd
2
p

makBT , free-falling.
(9)

Unfortunately, the measurement-added noise is actu-
ally dominant! For mm, mg scale detectors with res-
onator dampings � ⇠ 10�6 Hz and helium gas pres-
sures ⇠ 10�10 Pa at T ⇠ 10 mK, we would need
10 log10 �Imeas/�Ith ⇡ 50, 100 dB reduction in the
measurement noise, respectively. This is a fundamental
problem for achieving our desired sensitivities.

Fortunately, there are known ways to beat the SQL.
One is to use squeezed input light [9–12]. This method is
based on the di↵erent roles of the amplitude and phase
quadratures X, Y of the light used to probe the detec-
tor. In position measurement, the mechanical position
is encoded only in the phase quadrature Y , through the
optomechanical coupling

HOM = gxX. (10)

Here, g / g0

p
P is the optomechanical coupling strength

enhanced by a laser with input power P , and the quadra-
tures are conjugate variables [X, Y ] = i. By squeezing
the input vacuum state of the light fluctuations about
this laser, one can reduce noise in the Y quadrature at
the expense of increasing noise in the X quadrature; since
we are only looking at Y , this allows us to reduce the
measurement-added noise. While in principle there is no
limit to this noise reduction, in practice, this scheme has
been limited to date to about 12 dB of squeezing.

For our purposes, another approach may be the most
fruitful: monitoring of the velocity. Note that our sig-
nal (2) is a highly broadband impulse signal, delivered
on timescales ⌧ much faster than the mechanical scales
in our problem. In particular, the impulse is delivered
so fast that the detector is essentially a free particle over
the course of a given event. Since the velocity operator
commutes with the free particle Hamiltonian, measure-
ment of velocity produces no backaction–it is a quantum
non-demolition measurement [13]. Based on early work
of Braginsky and Khalili [13, 14], we have developed a
protocol which appears capable of achieving the neces-
sary amount of backaction-evasion needed to realize our
thermally-limited estimate, a schematic of which appears
in figure 1. The fundamental limitation here is simply
due to optical losses; in principle, the reduction in noise is
unlimited. The details of this protocol are somewhat in-
tricate, and will appear in a separate publication, but we
note that related approaches from electromechanics [16]
and LIGO [13, 17] have previously been demonstrated.
Concrete realizations.–The most familiar example of a

mechanical resonator involves a suspended mirror, as in
LIGO [8]. The mirror acts as a pendulum of frequency
!m and forms an end of an optical cavity. The opti-
cal mode is used to readout of the mechanical position.
In our proposed array with many sensors, using optical
light may be di�cult; one could instead consider mirrors

Event rate (slope) set only by local DM flux
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FIG. 2. Estimated detected event rate, cut o↵ by demanding 5� SNR, with various detector configurations. Here we use the
same fiducial parameters as in (6),(7): helium background gas at pressure 10�10 Pa, resonator damping rates � = 10�6 Hz,
with 109 sensors. Blue curves represent arrays of milligram-scale detectors spaced at either 1 mm or 1 cm, while red curves
represent arrays of gram-scale detectors at either 1 cm or 10 cm spacing. The dotted lines represent how our sensitivity floor
varies as a function of detector temperature. The left column shows detectors arrayed in a cubical lattice as pictured in figure
1. The right column shows detectors in a planar array, one detector thick.
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FIG. 3. Broad classification of DM theory classes according to mass. For masses below ⇠ 10�22 eV, the DM wavelength is
too large to fit inside ⇠ kpc dwarf galaxies. For masses below ⇠ 10 eV, DM must be bosonic; fermionic DM in this mass
range primarily fill shells of phase space that exceed galactic escape velocity. Between the keV-100 TeV range, DM can viably
be in thermal equilibrium with the SM in the early universe. In our detectable mass range, between mGUT ⇠ 1016 GeV and
mPl ⇠ 1019 GeV, DM must have a nonthermal cosmolgocial history; for trans-Planckian masses, the candidate must also be a
composite state, primordial black hole, or an extended object (e.g a topological defect).
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for freely-falling detectors. Here for simplicity we as-
sumed a cubical array of side length L (so that the
number of sensors nearest the DM path is N ⇠ L/d)
with L = 1 m, and assumed dilution fridge temper-
atures T = 10 mK, helium ion-pump vacuum pres-
sures P = 10�10 Pa, ma = 4 u, mechanical damping
� = 10�6 Hz, and typical solid density ⇢solid ⇠ 10 g/cm3

for the detectors.

The signal-to-noise ratios (6), (7) represent our fun-
damental detection sensitivities. A DM candidate of
mass m� passing through a detector will be detected
with 5�� confidence if the detector parameters are such
that SNR � 5. Clearly, detecting a heavier DM candi-
date is easier. On the other hand, the number density of
DM at high mass is low. The observed local DM density
⇢� ⇡ 0.3 GeV / cm3 [43] means that, for a detector array
of total cross-section A, the rate of DM passing through
the array is

R =
⇢vA

m�

⇠ 50

year

✓
mPl

m�

◆✓
A

102 m2

◆
. (8)

In figure 2, we plot our predicted event rates with a va-
riety of detector geometries. These results suggest that
it would be straightforward to detect DM with masses
around the Planck mass, using an array of 106 � 109

detectors in a meter-scale apparatus. Reaching heavier
masses can be achieved with a sparse, larger array of
detectors; reaching smaller masses is best achieved with
more detectors and lower background temperatures and
pressures.

Reaching thermally-limited detection.–Our optimal
measurement sensitivities (6), (7) were derived assuming
that thermal noise dominates over measurement-added
noise. Measurement noise is an unavoidable limitation
imposed by quantum mechanics itself. The prototypical
example was given by Caves [9], who studied the funda-
mental limits to continuous position sensing of a detector
mass md. Suppose we prepare the detector in a narrow
wavepacket of width �x. The mass will then have mo-
mentum uncertainty �p � ~/�x. Performing another
measurement of position a time ⌧ later will thus have
position uncertainty of order �x + ~⌧/md�x. Optimiz-
ing this as a function of the initial packet size, we see that
we cannot resolve the position better than the standard
quantum limit (SQL) �x

2
SQL

⇠ ~⌧/md. Converting this
to an impulse measurement, we have �I

2
SQL

= ~md/⌧
2.

In our case, achieving the SQL would give the ratio of

measurement-added noise to thermal noise as

�I
2
meas

�I
2
th

=

(
~v2

/4kBT�d
2
, mechanical

~md/PAdd
2
p

makBT , free-falling.
(9)

Unfortunately, the measurement-added noise is actu-
ally dominant! For mm, mg scale detectors with res-
onator dampings � ⇠ 10�6 Hz and helium gas pres-
sures ⇠ 10�10 Pa at T ⇠ 10 mK, we would need
10 log10 �Imeas/�Ith ⇡ 50, 100 dB reduction in the
measurement noise, respectively. This is a fundamental
problem for achieving our desired sensitivities.

Fortunately, there are known ways to beat the SQL.
One is to use squeezed input light [9–12]. This method is
based on the di↵erent roles of the amplitude and phase
quadratures X, Y of the light used to probe the detec-
tor. In position measurement, the mechanical position
is encoded only in the phase quadrature Y , through the
optomechanical coupling

HOM = gxX. (10)

Here, g / g0

p
P is the optomechanical coupling strength

enhanced by a laser with input power P , and the quadra-
tures are conjugate variables [X, Y ] = i. By squeezing
the input vacuum state of the light fluctuations about
this laser, one can reduce noise in the Y quadrature at
the expense of increasing noise in the X quadrature; since
we are only looking at Y , this allows us to reduce the
measurement-added noise. While in principle there is no
limit to this noise reduction, in practice, this scheme has
been limited to date to about 12 dB of squeezing.

For our purposes, another approach may be the most
fruitful: monitoring of the velocity. Note that our sig-
nal (2) is a highly broadband impulse signal, delivered
on timescales ⌧ much faster than the mechanical scales
in our problem. In particular, the impulse is delivered
so fast that the detector is essentially a free particle over
the course of a given event. Since the velocity operator
commutes with the free particle Hamiltonian, measure-
ment of velocity produces no backaction–it is a quantum
non-demolition measurement [13]. Based on early work
of Braginsky and Khalili [13, 14], we have developed a
protocol which appears capable of achieving the neces-
sary amount of backaction-evasion needed to realize our
thermally-limited estimate, a schematic of which appears
in figure 1. The fundamental limitation here is simply
due to optical losses; in principle, the reduction in noise is
unlimited. The details of this protocol are somewhat in-
tricate, and will appear in a separate publication, but we
note that related approaches from electromechanics [16]
and LIGO [13, 17] have previously been demonstrated.
Concrete realizations.–The most familiar example of a

mechanical resonator involves a suspended mirror, as in
LIGO [8]. The mirror acts as a pendulum of frequency
!m and forms an end of an optical cavity. The opti-
cal mode is used to readout of the mechanical position.
In our proposed array with many sensors, using optical
light may be di�cult; one could instead consider mirrors
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FIG. 1. Elements of our detection paradigm. Left: Kinematics of the DM-detector scattering event, viewed from above
the scattering plane. Center left: Circuit diagram depicting our backaction-evading velocity measurement. An optical pulse
�1 interacts with the mechanical detector d twice via (10), with opposite phase and a time delay td, leading to a velocity
measurement. A second pulse �2 then enables a measurement of the impulse �I. Right: Schematics of the detector array, with
suspended pendula used as mechanical resonators on the left and magnetically levitated superconducting spheres as free-falling
particles on the right. In both cases, as the DM passes through the array, it produces a correlated impulse on the detectors
nearest its track.

Detector paradigm.–Our basic problem is the detection
of a passing DM particle via gravity. See figure 1 for
a diagram of the kinematics. Since the force is long-
range, we are interested in the eikonal (“classical”) limit
dominated by the exchange of many virtual gravitons,
i.e. the Newton force FN = GNm�mdr̂/r

2 between a
detector of mass md and DM particle of mass m�. A lab
at rest on Earth sees the DM pass by with average “wind
speed” v ⇡ 220 km/s. Thus the DM imparts momentum
to the detector on a very short timescale ⌧ . For a fiducial
impact parameter b of approximately a millimeter, we
have ⌧ ⇡ b/v ⇠ 10�8 s.

The fundamental limitation to force sensing is noise.
The total force incident on the sensor is

Fin(t) = Fsig(t) + Fth(t) + Fmeas(t). (1)

The first term is the signal; for concreteness we will focus
on the transverse component of the force (see figure 1),

Fsig =
GNmdm�b

(b2 + v2t2)3/2
. (2)

The noise terms Fnoise = Fth + Fmeas are random vari-
ables. The measurement-added noise Fmeas is a funda-
mental quantum limitation, and depends on the system
observable we probe and how precisely we perform the
readout (see [41] for a review). Meanwhile, the thermal
noise Fth is set by the detector temperature T and the
nature of the thermal bath coupling to the detectors, but
independent of the measurement readout scheme.

Our basic observable is the total impulse delivered to
the detector,

I =

Z
tint/2

�tint/2
dt Fsig(t) ! 2GNmdm�⌧/b

2 = 2F ⌧, (3)

where tint is the integration time for the measure-
ment, F is the average force, and we assume tint �
⌧ and su�cient incoming velocity to prevent orbit.
The noise is characterized by the variance h�I

2i =

R R
dtdt

0 hFnoise(t)Fnoise(t0)i. For stationary noise, this
correlation function is proportional to �(t� t

0). Thus the
noise grows as a square root in time

�I
2 = ↵tint, (4)

for some constant ↵, characteristic of Brownian motion.
A continuous measurement integrated over some amount
of time tint therefore serves to average out the noise on a
single detector. We can further improve the situation by
letting a single DM particle interact with N > 1 sensors.
Assuming the noise is not correlated across these, the
standard error decreases like 1/

p
N . Thus, in total, the

signal-to-noise ratio (SNR) is given by

SNR2 = 2F
2
N⌧/↵, (5)

taking the measurement integration time tint ⇡ ⌧ . It is
critical that the signal here is the entire, correlated track
of moving detectors. A single detector moving is just
noise. This in particular means that our backgrounds
(discussed later) are very di↵erent from traditional di-
rect detection experiments. It also means that the signal
includes complete directional information.

Our basic result (5) can be used to estimate the
SNR for any particular detector scheme. Let us assume
that thermal noise is dominant over measurement-added
noise. We will return to this key assumption later. For
detectors mechanically coupled to a support structure
at temperature T , we have ↵mech = 4mdkBT� with �

the detector’s mechanical damping rate [41]. For freely-
falling detectors, we are limited instead by the latent gas
pressure P , which gives ↵gas = PAd

p
makBT , where Ad

is the cross-sectional area of each detector and ma is the
mass of the gas atoms [42]. Numerically, we thus obtain
the following estimates for the SNR:
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for freely-falling detectors. Here for simplicity we as-
sumed a cubical array of side length L (so that the
number of sensors nearest the DM path is N ⇠ L/d)
with L = 1 m, and assumed dilution fridge temper-
atures T = 10 mK, helium ion-pump vacuum pres-
sures P = 10�10 Pa, ma = 4 u, mechanical damping
� = 10�6 Hz, and typical solid density ⇢solid ⇠ 10 g/cm3

for the detectors.

The signal-to-noise ratios (6), (7) represent our fun-
damental detection sensitivities. A DM candidate of
mass m� passing through a detector will be detected
with 5�� confidence if the detector parameters are such
that SNR � 5. Clearly, detecting a heavier DM candi-
date is easier. On the other hand, the number density of
DM at high mass is low. The observed local DM density
⇢� ⇡ 0.3 GeV / cm3 [43] means that, for a detector array
of total cross-section A, the rate of DM passing through
the array is

R =
⇢vA

m�

⇠ 50

year

✓
mPl

m�

◆✓
A

102 m2

◆
. (8)

In figure 2, we plot our predicted event rates with a va-
riety of detector geometries. These results suggest that
it would be straightforward to detect DM with masses
around the Planck mass, using an array of 106 � 109

detectors in a meter-scale apparatus. Reaching heavier
masses can be achieved with a sparse, larger array of
detectors; reaching smaller masses is best achieved with
more detectors and lower background temperatures and
pressures.

Reaching thermally-limited detection.–Our optimal
measurement sensitivities (6), (7) were derived assuming
that thermal noise dominates over measurement-added
noise. Measurement noise is an unavoidable limitation
imposed by quantum mechanics itself. The prototypical
example was given by Caves [9], who studied the funda-
mental limits to continuous position sensing of a detector
mass md. Suppose we prepare the detector in a narrow
wavepacket of width �x. The mass will then have mo-
mentum uncertainty �p � ~/�x. Performing another
measurement of position a time ⌧ later will thus have
position uncertainty of order �x + ~⌧/md�x. Optimiz-
ing this as a function of the initial packet size, we see that
we cannot resolve the position better than the standard
quantum limit (SQL) �x

2
SQL

⇠ ~⌧/md. Converting this
to an impulse measurement, we have �I

2
SQL

= ~md/⌧
2.

In our case, achieving the SQL would give the ratio of

measurement-added noise to thermal noise as

�I
2
meas

�I
2
th

=

(
~v2

/4kBT�d
2
, mechanical

~md/PAdd
2
p

makBT , free-falling.
(9)

Unfortunately, the measurement-added noise is actu-
ally dominant! For mm, mg scale detectors with res-
onator dampings � ⇠ 10�6 Hz and helium gas pres-
sures ⇠ 10�10 Pa at T ⇠ 10 mK, we would need
10 log10 �Imeas/�Ith ⇡ 50, 100 dB reduction in the
measurement noise, respectively. This is a fundamental
problem for achieving our desired sensitivities.

Fortunately, there are known ways to beat the SQL.
One is to use squeezed input light [9–12]. This method is
based on the di↵erent roles of the amplitude and phase
quadratures X, Y of the light used to probe the detec-
tor. In position measurement, the mechanical position
is encoded only in the phase quadrature Y , through the
optomechanical coupling

HOM = gxX. (10)

Here, g / g0

p
P is the optomechanical coupling strength

enhanced by a laser with input power P , and the quadra-
tures are conjugate variables [X,Y ] = i. By squeezing
the input vacuum state of the light fluctuations about
this laser, one can reduce noise in the Y quadrature at
the expense of increasing noise in the X quadrature; since
we are only looking at Y , this allows us to reduce the
measurement-added noise. While in principle there is no
limit to this noise reduction, in practice, this scheme has
been limited to date to about 12 dB of squeezing.

For our purposes, another approach may be the most
fruitful: monitoring of the velocity. Note that our sig-
nal (2) is a highly broadband impulse signal, delivered
on timescales ⌧ much faster than the mechanical scales
in our problem. In particular, the impulse is delivered
so fast that the detector is essentially a free particle over
the course of a given event. Since the velocity operator
commutes with the free particle Hamiltonian, measure-
ment of velocity produces no backaction–it is a quantum
non-demolition measurement [13]. Based on early work
of Braginsky and Khalili [13, 14], we have developed a
protocol which appears capable of achieving the neces-
sary amount of backaction-evasion needed to realize our
thermally-limited estimate, a schematic of which appears
in figure 1. The fundamental limitation here is simply
due to optical losses; in principle, the reduction in noise is
unlimited. The details of this protocol are somewhat in-
tricate, and will appear in a separate publication, but we
note that related approaches from electromechanics [16]
and LIGO [13, 17] have previously been demonstrated.
Concrete realizations.–The most familiar example of a

mechanical resonator involves a suspended mirror, as in
LIGO [8]. The mirror acts as a pendulum of frequency
!m and forms an end of an optical cavity. The opti-
cal mode is used to readout of the mechanical position.
In our proposed array with many sensors, using optical
light may be di�cult; one could instead consider mirrors

At SQL:

Need 50, 100 dB reduction in measurement noise to win if

�x2
SQL ⇠ ~⌧/mdet ! �I2SQL = ~mdet/⌧

2

T ⇠ 10mK , � ⇠ 10
�6

Hz , P = 10
�10

Pa



Beating the SQL

Braginsky and F. Khalili, Phys. Lett. A 147, 251 (1990).

Back-Action Evasion (Quantum Speedometer)
Back action noise = random fluctuations in radiation pressure 

Measuring With Squeezed States of Light
Mechanical position encoded only in phase quadrature 
Reduce noise in phase, increase noise in amplitude

Caves, PRD 23, 1693 (1981)

Beating SQL demonstrated, but only ~ 12 dB so far 

Asai et. al. Nature Photonics 7, 613 (2013)
 Purdy et. al. PRX 3, 031012 (2013)

Knyazev, Danilishin, Hild, Khalili. 1701.01694

Measure velocity instead of position
Possible for shot noise to cancel back-action noise



Other Long Range Forces

Same logic applies to other DM force with > mm range

U(1)B�L , U(1)B�3Li , U(1)Li�Lj

Strong bounds on SM coupling from 5th force searches
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Conclusions

Great advances in quantum control over mechanical systems

Detect ~ mg DM gravity w/  large array of precision sensors 

Single sensor zepto-Newton sensitivity already achieved 

Potential sensitivity to other possible DM-SM long range forces

Probe models with non thermal histories (WIMPzillas, pBH…)
Trigger on signal across DM path; no correlation elsewhere 

Mechanical Resonators:  practically limited by thermal noise
Free Falling Masses: difficult setup, but promising SNR scaling

Key Challenges:
Scaling up existing concepts  (need ~1e9 in ~meter volume)
Evading measurement noise (e.g. squeezed light)


