

Cardy formula of 4d N=1 SCFT

Joonho Kim (KIAS)

Based on 1810.12067, 1811.08646, 1904.03455 with Sunjin Choi, Seok Kim, June Nahmgoong, Jaewon Song.

@ Kavli IPMU / May 20, 2019

Cardy Formula

 When we study a conformal field theory, it is natural to consider the partition function of the canonical ensemble:

$$Z(\beta) \equiv \operatorname{tr}_{\mathcal{H}} \left(e^{-\beta H} \right) = \sum_{i \in \mathcal{H}} e^{-\beta E_i} \qquad \text{weighted sum over energy eigenstates}$$

Temperature of the canonical ensemble controls the weight factor.

$$\beta = T^{-1}$$

At low temperature, all high energy states are suppressed by $e^{-\beta E} \ll 1$ At high temperature, $e^{-\beta E} \to 1$.

• High temperature asymptotics of the partition function becomes a good estimate for the number of microstates in a given CFT.

$$Z(\beta) \xrightarrow{\beta \to 0} \exp\left(\frac{\pi^2 c}{3\beta}\right)$$
 for 2d CFT with central charge c. known as Cardy's formula. [Cardy'86]

Cardy Formula

• We are interested in the similar, high 'temperature' asymptotics of the superconformal index, in 4d CFTs with N=1 supersymmetry.

This observable enumerates all BPS microstates preserving some chosen supercharges. It is the Witten index, counting (# of bosonic states) - (# of fermionic states).

The corresponding Cardy-like formula:

[Di Pietro, Komargodski '14]

$$\mathcal{I}(\omega) \xrightarrow{\omega \to 0} \exp\left(\frac{16\pi^2}{3\omega}(c-a) + \cdots\right)$$
 [Ardehali '15] [Di Pietro, Honda '16]

 Notice that the asymptotic free energy captures much smaller d.o.f. than the d.o.f. counted by conformal anomalies, a and c.

For example, in N=4 SYM theory, $a=c\sim |G|$ for any choice of gauge group G.

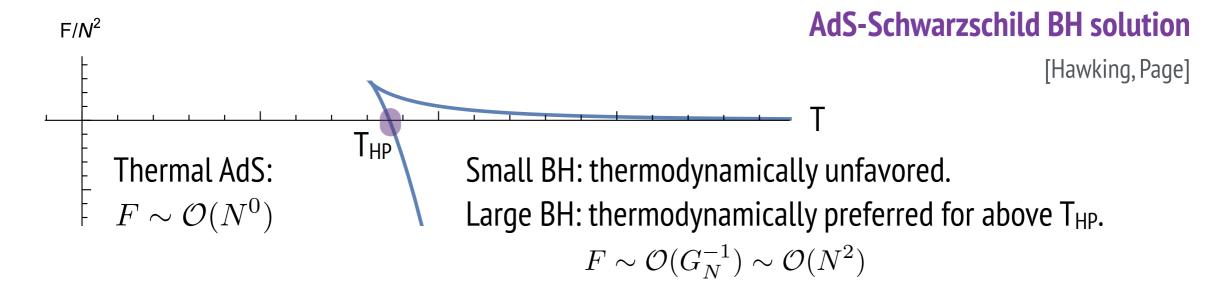
Deconfinement Phase Transition

• The high 'temperature' asymptotics seems boring, in contrast to the expected thermodynamic behavior of the large N gauge theory.

Low-temperature phase can be thought as a gas of glueballs and mesons. $F \sim \mathcal{O}(N^0)$ High-temperature phase is a plasma of gluons and quarks. $F \sim \mathcal{O}(N^0)$

 Two phases are connected by the deconfinement phase transition, dual to the Hawking-Page transition of AdS black holes.

[Witten '98] [Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk]



Complex Fugacity

- Apparently, the deconfining (or black hole) phase seems invisible to the superconformal index, due to the boson/fermion cancelation.
 Witten index = (# of bosonic states) - (# of fermionic states).
- But the index still counts big enough degeneracy of microstates!

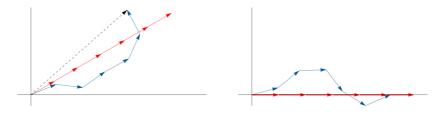
$$1 + 3x^{2} - 2x^{3} + 9x^{4} - 6x^{5} + 11x^{6} - 6x^{7} + 9x^{8} + 14x^{9} - 21x^{10} + 36x^{11} - 17x^{12} - 18x^{13} + 114x^{14} - 194x^{15}$$

$$+ 258x^{16} - 168x^{17} - 112x^{18} + 630x^{19} - 1089x^{20} + 1130x^{21} - 273x^{22} - 1632x^{23} + 4104x^{24} - 5364x^{25} + 3426x^{2}$$

$$+ 3152x^{27} - 13233x^{28} + 21336x^{29} - 18319x^{30} - 2994x^{31} + 40752x^{32} - 76884x^{33} + 78012x^{34} - 11808x^{35} + \cdots$$

for N=4 U(2) SYM

- When we naively study the asymptotic behavior of the index, those degeneracies add up with rapidly alternating signs.
- Such B/F cancelation might be avoided by introducing the relative phase factors.



Plan

Introduction

• N=4 Superconformal Index Revisited

Cardy Formula of 4d N=1 Superconformal Index

Asymptotic Entropy and AdS₅ Black Hole

Superconformal Index

- Enumerates all BPS states preserving supercharges: Q_{--}^{+++} , S_{++}^{---}
- Chemical potentials for SO(4) isometry and SO(6) R-symmetry.

$$\operatorname{Tr}\left[e^{-\beta \mathcal{E}} \prod_{I=1}^{3} e^{-\Delta_{I} Q_{I}} \prod_{i=1}^{2} e^{-\omega_{i} J_{i}}\right] \quad \text{with} \quad \mathcal{E} = \left\{\mathcal{Q}_{--}^{+++}, \mathcal{S}_{++}^{---}\right\}$$

• Become a Witten index after imposing $\sum_{I=1}^{3} \Delta_I = \sum_{i=1}^{2} \omega_i + 2\pi i$.

$$\left\{ e^{-\Delta_I Q_I - \omega_i J_i}, \mathcal{Q}_{--}^{++++} \right\} = 0$$

 $\left\{ e^{-\Delta_I Q_I - \omega_i J_i}, \mathcal{S}_{++}^{----} \right\} = 0$

- Independent of the regulator β , so we formally take the limit $\beta \rightarrow 0$.
- Can be evaluated from the free QFT calculus.

$$Z = \oint [d\alpha] \cdot \exp\left[\sum_{a,b=1}^{N} \sum_{n=1}^{\infty} \frac{1}{n} \left(1 + \sum_{s_1, s_2, s_3 = \pm 1} \frac{s_1 s_2 s_3 (-1)^{n-1} e^{\frac{n s_1 \Delta_I}{2}}}{2 \sinh \frac{n \omega_1}{2} \cdot 2 \sinh \frac{n \omega_2}{2}}\right) e^{in\alpha_{ab}}\right]$$

Saddle Point Analysis

- Introduce the large N eigenvalue distribution. $\rho(x) = \frac{1}{N} \sum_{a=1}^{N} \delta(x \alpha_a)$
- The index can be expressed as:

$$Z = \int \prod_{n \neq 0} d\rho_n \, \exp\left(-\sum_{n=1}^{\infty} \frac{N^2}{n} \frac{\prod_I (1 - e^{-n\Delta_I})}{\prod_i (1 - e^{-n\omega_i})} \rho_n \rho_{-n}\right)$$

Polyakov loop: an order parameter for (de)confinement.

$$\rho_n = \rho_{-n}^* = \frac{1}{2\pi N} \sum_{a=1}^N e^{-in\alpha_a}$$

Apply the saddle point approximation.

- [Kinney, Maldacena, Minwalla, Raju]
- At real-valued chemical potentials, $\rho_n = 0$ is most dominant.
- Gaussian integral \rightarrow the super-graviton spectrum on AdS₅ X S⁵.

Saddle Point Analysis

That saddle point can be unstable with complex chemical potentials.

$$\operatorname{Re}\left[\frac{\prod_{I}(1-e^{-\Delta_{I}})}{\prod_{i}(1-e^{-\omega_{i}})}\right] < 0$$

• Let's inspect the above function at $\Delta_1 = \Delta_2 = \Delta_3$ and $\omega_1 = \omega_2$

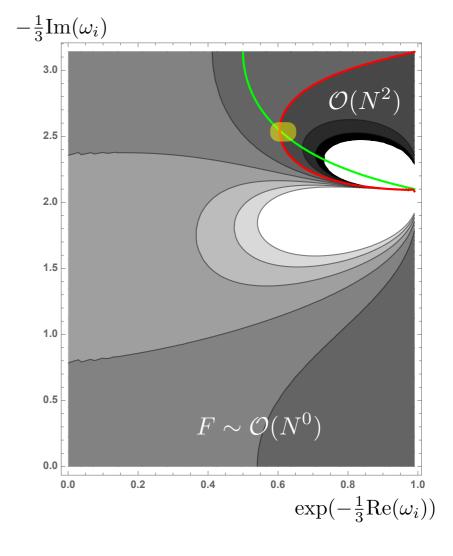
Red line: where the function value becomes negative.

The instability arises only when imaginary value of chemical potentials is non-zero, within a certain range.

[Choi, JK, Seok Kim, Nahmgoong '18]

Lesson learned:

The Cardy formula can be improved by complexifying the chemical potentials.



Plan

Introduction

• N=4 Superconformal Index Revisited

Cardy Formula of 4d N=1 Superconformal Index

Asymptotic Entropy and AdS₅ Black Hole

Superconformal Index

Consider the superconformal index for an arbitrary 4d N=1 SCFT.

$$\operatorname{Tr}_{\mathcal{H}}\left[e^{-\beta\mathcal{E}}e^{-\omega_{1}J_{1}}e^{-\omega_{2}J_{2}}e^{-\Delta R}\right]$$
 with $\mathcal{E}=\{\mathcal{Q}_{-},\mathcal{Q}^{\dagger-}\}$

The relevant R-symmetry group is now only U(1).

There can be an extra flavor symmetry, for which we may introduce the chemical potentials.

- Become a Witten index only after imposing $\omega_1 + \omega_2 2\Delta = 2\pi i$.
- Independent of the regulator β , so we formally take the limit $\beta \to 0$.
- After all, the index can be written in a slightly modified form:

$$\mathcal{I} = \operatorname{Tr}_{\mathcal{H}} \left[e^{\pi i R} e^{-\omega_1 (J_1 + R/2)} e^{-\omega_2 (J_2 + R/2)} \right]$$

The usual (-1)^F is replaced with (-1)^R. Still qualifies as a Witten index since $[R, Q_-] = Q_-$

Superconformal Index

- Each multiplet's contribution is dressed by the phase factor $e^{i\pi r_{\chi}}$.
 - $r_{\mathcal{X}}$: R-charge of the top component in a given SUSY multiplet.
 - This improves the high 'temperature' asymptotics of the superconformal index.
- For models with a flavor symmetry, (-1)^R amounts to using (-1)^F and shifting a flavor chemical potential by a suitable imaginary value.

The index can be evaluated from the free QFT calculus.

$$\mathcal{Z}_{V} = \exp\left[\sum_{n\geq 1} \frac{1}{n} \left(1 + \frac{(-1)^{n} 2 \sinh(n\Delta)}{2 \sinh(n\omega_{1}/2) 2 \sinh(n\omega_{2}/2)}\right) \cdot \chi_{\mathbf{adj}}(n\alpha)\right] \\
\mathcal{Z}_{\mathcal{X}} = \exp\left[\sum_{n} \frac{(-1)^{n-1}}{n} \sum_{w \in \mathbf{R}} \left(\frac{t^{n(r_{\mathcal{X}}-1)} e^{inw(\alpha)} - t^{n(-r_{\mathcal{X}}+1)} e^{-inw(\alpha)}}{2 \sinh(n\omega_{1}/2) 2 \sinh(n\omega_{2}/2)}\right)\right] \qquad \longrightarrow \mathcal{I} = \int [d\vec{\alpha}] \cdot \mathcal{Z}_{V} \prod_{\mathcal{X}} \mathcal{Z}_{\mathcal{X}}$$

Asymptotic Free Energy

- We study the asymptotics of the superconformal index in $|\omega_{1,2}| \ll 1$ in which microstates with *large angular momentum* are dominant. Abuse of terminology: I will loosely call it the high 'temperature' limit, or the Cardy limit. Here the 'temperature' means the inverse of the chemical potential $\sim |\omega^{-1}|$
- In the Cardy limit, the contribution from short multiplets becomes

$$\mathcal{Z}_{V} \to \exp\left(+\sum_{s=\pm} \frac{s}{\omega_{1}\omega_{2}} \sum_{\rho \in \Delta_{G}} \operatorname{Li}_{3}(-e^{s(\Delta+i\rho \cdot \alpha)})\right)$$
$$\mathcal{Z}_{\mathcal{X}} \to \exp\left(-\sum_{s=\pm} \frac{s}{\omega_{1}\omega_{2}} \sum_{w \in \mathbf{R}} \operatorname{Li}_{3}(-e^{s(1-r_{\mathcal{X}})\Delta+isw(\alpha)})\right)$$

• Quite different from the asymptotics without the phase factor $e^{i\pi r_x}$!

$$\mathcal{Z}_V \to \exp\left(\mathcal{O}(\omega^0)\right), \quad \mathcal{Z}_{\mathcal{X}} \to \exp\left(\frac{\pi^2}{6} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} \cdot (1 - r_{\mathcal{X}}) |\mathbf{R}_{\mathcal{X}}| + \mathcal{O}(\omega^0)\right)$$

Saddle Point Analysis

We apply the saddle point approximation to the holonomy integral.

$$\mathcal{I} = \int [d\alpha] \exp \left[\sum_{s=\pm} \frac{s}{\omega_1 \omega_2} \left(\sum_{\rho \in \Delta_G} \text{Li}_3(-e^{s(\Delta + i\rho \cdot \alpha)}) - \sum_{w \in \mathbf{R}} \text{Li}_3(-e^{s(1 - r_{\mathcal{X}})\Delta + isw(\alpha)}) \right) \right]$$

Looking for the most dominant saddle points, especially for the high temperature regime!

See also [Benini, Milan '18] [Cabo-Bizet, Cassani, Martelli, Murthy '19]

Intuitively, the most dominant saddle point should be at the origin.

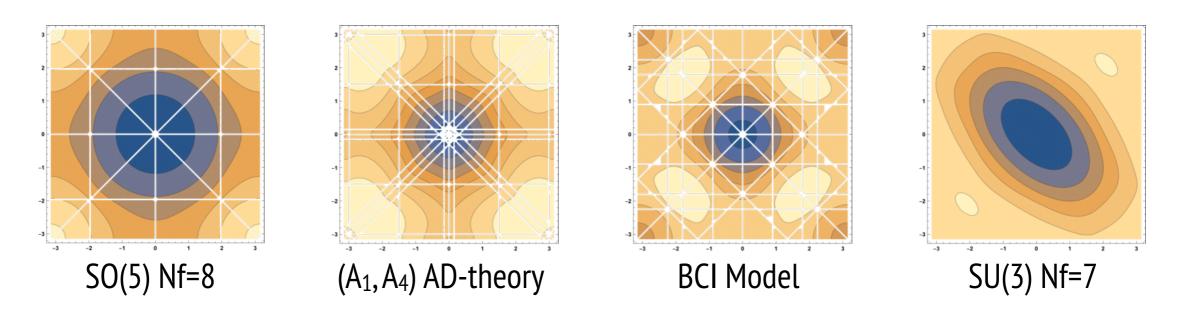
$$\alpha_1 = \alpha_2 = \dots = \alpha_{|G|} = 0$$

When the holonomy variable gets a non-zero value, gauge symmetry is partially broken.

 High temperature behavior of an asymptotic-free gauge theory is deconfining (e.g., quark, gluon), rather than confining or Higgsed.
 We expect the (modified) superconformal index to see the deconfining phase.

Saddle Point Analysis

We numerically test our conjecture across various N=1 examples.
 SQCDs, N=4 SYM, N=1 with 2 adj., Argyres-Douglas theories, ISS, BCI, SU(2)³ with trifund.



For all tested examples, the dominant saddle point is at the origin.

$$\alpha_1 = \alpha_2 = \dots = \alpha_{|G|} = 0$$

We assume this will be true also for other N=1 theories.

Asymptotic Free Energy

Inserting the saddle point value back to the integral, we find

$$\log(\mathcal{I}) = \sum_{s=\pm} \frac{s}{\omega_1 \omega_2} \left(|G| \operatorname{Li}_3(-e^{s\Delta}) - \sum_{\mathcal{X}} |\mathbf{R}_{\mathcal{X}}| \operatorname{Li}_3(-e^{s(1-r_{\mathcal{X}})\Delta}) \right)$$

$$\operatorname{Li}_3(-e^x) - \operatorname{Li}_3(-e^{-x}) = -\frac{x^3}{6} - \frac{\pi^2 x}{6}$$

$$\operatorname{Tr} R^3 = |G| + \sum_{\mathcal{X}} (r_{\mathcal{X}} - 1)^3 |\mathbf{R}_{\mathcal{X}}| = \frac{16}{9} (5a - 3c) ,$$

$$\operatorname{Tr} R^1 = |G| + \sum_{\mathcal{X}} (r_{\mathcal{X}} - 1) |\mathbf{R}_{\mathcal{X}}| = 16(a - c) ,$$

$$\log(\mathcal{I}) = \operatorname{Tr} R^3 \frac{\Delta^3}{6\omega_1\omega_2} + \operatorname{Tr} R \frac{\pi^2 \Delta}{6\omega_1\omega_2} = \frac{8(5a - 3c)}{27\omega_1\omega_2} \Delta^3 + \frac{8\pi^2(a - c)}{3\omega_1\omega_2} \Delta.$$

[JK, Seok Kim, Song '19] [Cabo-Bizet, Cassani, Martelli, Murthy '19]

Alternative approach to the Cardy free energy is the background field method on S³. The anomaly coefficient naturally appears here due to the 't Hooft anomaly matching.

[Banerjee et al.'12] [Jensen et al.'13] [Di Pietro, Komargodski '14] ... [Choi, JK, Seok Kim, Nahmgoong '18]

Plan

Introduction

N=4 Superconformal Index Revisited

Cardy Formula of 4d N=1 Superconformal Index

Asymptotic Entropy and AdS₅ Black Hole

Asymptotic Entropy

 Given the superconformal index, the microstate degeneracy is extracted by taking an inverse Laplace transformation.

$$\Omega(R, J_i) = \int d\Delta \, d\omega_i \, \mathcal{I}(\Delta, \omega_i) \, \exp\left(\Delta R + \sum_i \omega_i J_i\right)$$

- In particular, the asymptotic entropy (degeneracy) at large charges comes from the saddle point approximation of the above integral.
- This is the Legendre transformation of the Cardy free energy:

[Hosseini, Hristov, Zaffaroni '17]

$$S(R, J_i) = \frac{8(5a - 3c)}{27\omega_1\omega_2} \Delta^3 + \frac{8\pi^2(a - c)}{3\omega_1\omega_2} \Delta + R\Delta + J_1\omega_1 + J_2\omega_2 \bigg|_{\Delta^*, \omega^*}$$
(with $\omega_1 + \omega_2 - 2\Delta = 2\pi i$)

Asymptotic Entropy

For a 4d N=1 SCFT, the asymptotic entropy is given by

$$\operatorname{Re}(S) = +2^{1/3} 3^{1/2} (3c - 2a)^{1/3} \pi \cdot J^{2/3} + \mathcal{O}(J^{1/3}) > 0$$

Notice that an interacting N=1 SCFT satisfies the Hofman-Maldacena bound: $\frac{1}{2} < a/c < \frac{3}{2}$

Does this asymptotic entropy saturate the upper bound,
 i.e., the true entropy that counts the BPS states without (-1)^F? No.

Compute the true BPS degeneracy for free chiral/vector theories, from their BPS partition function (as opposed to the Witten index).

$$S^{\text{true}}(J_1, J_2) = \frac{7\zeta(3)}{4\omega_1\omega_2} + J_1\omega_1 + J_2\omega_2 \Big|_{\omega_i = \omega_i^*} \simeq 4.467 (J_1J_2)^{1/3}.$$

Compare with the asymptotic entropy from the index:

$$\operatorname{Re}(S) = 2.995 \, J^{2/3}$$
 (a free chiral multiplet)
 $\operatorname{Re}(S) = 0$ (a free vector multiplet)

AdS₅ Black Hole

• Consider the asymptotic free energy of holographic SCFTs. Example: N=1 quiver theory engineered from N D3-branes on C^3 / Z_{2p} orbifold.

• Restoring flavor chemical potentials, the entropy function becomes N=4 SYM [Hosseini, Hristov, Zaffaroni '17] / N=2 quiver [Honda '19] / N=1 quiver [JK, Seok Kim, Song '19] [Amariti et al. '19]

$$S = pN^{2} \cdot \frac{\Delta_{1}\Delta_{2}\Delta_{3}}{\omega_{1}\omega_{2}} + (R - F)\Delta_{1} + (R - \tilde{B})\Delta_{2} + (R + F + \tilde{B})\Delta_{3} + \sum_{i=1}^{2} J_{i}\omega_{i}$$

• Imposing the charge relation Im(S) = 0 of known black holes:

$$S = 2\pi\sqrt{3R^2 - F^2 - \tilde{B}^2 - \tilde{B}F - pN^2(J_1 + J_2)} \sim \mathcal{O}(N^2)$$

This agrees with the Bekenstein-Hawking entropy of large black hole in AdS₅ X Y^{p,p}.

[Hosseini, Hristov, Zaffaroni '17]. See also [Cabo-Bizet et al. '18] [Choi, JK, Seok Kim, Nahmgoong '18] [Benini, Milan '18], ...

Conclusion

We studied the Cardy-like asymptotics of the (modified) index.

$$\mathcal{I} \to \exp\left(\frac{8(5a - 3c)}{27\omega_1\omega_2}\Delta^3 + \frac{8\pi^2(a - c)}{3\omega_1\omega_2}\Delta\right) \quad \text{with} \quad \omega_1 + \omega_2 - 2\Delta = 2\pi i$$

- Imaginary chemical potentials obstructs the B/F cancelation, improving the high 'temperature' asymptotics of the index.
- Sometimes the asymptotic entropy can saturate the upper bound, accounting for the macroscopic entropy of AdS₅ black holes.

- Future problems:
 - Saddle point analysis beyond the Cardy limit.
 - Generalization to other dimensions.

[Benini, Milan '18] [Cabo-Bizet et al. '19]