25th February 2010

Primordial perturbations from cosmological inflation

David Wands Institute of Cosmology and Gravitation University of Portsmouth and Visiting Professor, YITP, Kyoto University

outline:

Primordial structure

 evidence of density inhomogeneities in the very early universe (primordial = 1 sec after big bang)

Fluctuations from inflation

- Vacuum fluctuations during inflation
- Primordial density perturbations after inflation
- Distinguishing models with non-Gaussianity
 - Local non-Gaussianity
 - Bispectrum and f_{NL}
 - Higher-order statistics and scale-dependence

how far back can we look?

The cosmic microwave background Radiation's "surface of last scatter" is analogous to the light coming through the clouds to our eye on a cloudy day. We can only see the surface of the cloud where light was last scattered

Cosmic microwave background radiation

- discovered by Penzias and Wilson 1965
- relic thermal radiation from the hot big bang

2.7 K everywhere

+/- 3.3 mK redshift due local motion (at 1 million miles per hour)

+/- 18 μK intrinsic anisotropies

an elegant, simple, well-motivated model for the origin of structure in the early universe

an elegant, simple, well-motivated model for the origin of structure in the early universe

cosmic strings formed by spontaneous symmetry breaking at GUT scale

coherent oscillations in photon-baryon plasma due to existence of primordial density perturbations

passive not active seeds for structure

Wave equation in FRW cosmology: $\delta\ddot{\rho} + 3H\delta\dot{\rho} + (ck/a)^2\delta\rho = 0$

Characteristic timescales for waves, comoving wavemode k

- small-scales , ck /a > H, under-damped oscillator
 - large-scales , ck/a < H, over-damped oscillator

inflation, has almost constant Hubble length

time

Duration of inflation:

number of "e-folds" of expansion

$$N = \ln(a) = \int H \, dt$$

• slow-roll inflation driven by a scalar field, ϕ , potential V(ϕ)

 $V(\phi)$

$$N = \int \frac{H}{\dot{\phi}} d\phi = \int \frac{1}{\sqrt{\varepsilon}} \frac{d\phi}{M_{Pl}}$$

where slow - roll parameter : $\varepsilon \equiv -\frac{\dot{H}}{H^2} \approx \frac{1}{2M_{Pl}^2} \left(\frac{V'}{V}\right)^2$

• N > 40 to solve the horizon problem Lyth bound : $\Delta \phi > (40\sqrt{\varepsilon})M_{Pl}$

Vacuum fluctuations

- small-scale/underdamped zero-point fluctuations (k>aH) $\left\langle \delta\phi_k \delta\dot{\phi}_{k'}^* \right\rangle = i\hbar\delta(k-k')$
- large-scale/overdamped perturbations in growing mode (k<aH) linear evolution \Rightarrow Gaussian random field $\Rightarrow \mathcal{P}(\delta\phi)_{k=aH} \approx \frac{4\pi k^3 \left| \delta\phi_k^2 \right|}{(2\pi)^3} = \left(\frac{H}{2\pi}\right)^2$

fluctuations of any light scalar fields (m<3H/2) `frozen-in' on large scales

interactions = non-linearity = non-Gaussianity suppressed during slow-roll inflation $\langle \delta \phi_k \delta \phi_{k'} \delta \phi_{k''} \rangle \approx \varepsilon \left| \delta \phi_k^4 \right| \delta(k+k'+k'')$

defining the primordial density perturbation

gauge-dependent density perturbation, $\delta\rho$, and spatial expansion, δN

gauge-invariant combination (Bardeen, 88)

$$\zeta = \delta N - \frac{H}{\dot{\rho}} \delta \rho$$

Provides initial conditions for adiabatic perturbations on large scales, early times, e.g., Newtonian potential in matter-dominated era: $\Phi = (3/5)\zeta$

the δN formalism for primordial perturbations

on large scales, neglect spatial gradients, treat as "separate universes"

$$\zeta = N(\phi_{initial}) - \overline{N} \approx \sum_{I} \frac{\partial N}{\partial \phi_{I}} \delta \phi_{I}$$

Starobinsky `85; Sasaki & Stewart `96 Lyth & Rodriguez '05 – works to any order

Separate universes

Salopek & Bond (1990) Wands, Malik, Lyth & Liddle (2001)

 local expansion on very large scales (>> Hubble length, negligible spatial gradients) given by local Friedmann equation

$$N(x) = \int H(x) dt$$
$$H^{2}(x) = \frac{8\pi G_{N}}{3} \rho(x)$$

density perturbations from inflaton field

• *quantum field fluctuations on unperturbed (flat) hypersurfaces during inflation leads to scalar metric perturbation*

$$\zeta = \frac{dN}{d\phi} \,\delta\phi = \left(-\frac{H}{\dot{\phi}} \,\delta\phi\right)_{k=aH}$$

• produce primordial density perturbations in radiation-dominated era $\left| ST^{2} \right\rangle = 1 = 1 \left(TT^{2} \right)^{2}$

$$\Rightarrow \left\langle \frac{\delta T^2}{T^2} \right\rangle_{SW} \approx \frac{1}{25} \left\langle \zeta^2 \right\rangle \approx \frac{1}{25} \left(\frac{H^2}{2\pi \dot{\phi}} \right)_{k=aH}$$

WMAP 7 year data February 2010

scale-invariant *Harrison-Zel'dovich (n=1)* spectrum **excluded** by WMAP+BAO at 3sigma (Komatsu et al 2010)

Spectral tilt = slow-roll dynamics

slow time-dependence during inflation \Rightarrow weak scale-dependence

tilt :
$$n-1 \equiv \frac{d \ln \langle \zeta^2 \rangle}{d \ln k} \approx -6\varepsilon + 2\eta_{\sigma}$$

slow roll parameters $\varepsilon = -\frac{\dot{H}}{H^2}$, $\eta_{\sigma} = \frac{m_{\sigma}^2}{3H^2}$

 $\left\{ \varepsilon, |\eta| \right\} \ll 1$

what next?

WMAP 7-year data (Komatsu et al 2010)

running spectral index -0.086 < d n / d ln k < 0.018 higher-order in slow-roll

gravitational waves tensor-scalar ratio r < 0.36

non-Gaussianity -10 < f_{NL} < 74

ESA Planck satellite launched!

next all-sky survey

data 2011/12?

 $r \approx 0.1?$

 $f_{NL} < 8$

theoretical non-Gaussianity

possibilities limited

- Local-type non-Gaussianity
 - super-Hubble evolution of Gaussian random field from multi-field inflation
- Equilateral-type non-Gaussianity
 - sub-Hubble interactions in k-inflation/DBI inflation
- Topological defects
 - cosmic strings or textures?

templates required to develop optimal estimators

- matched filtering to extract small non-Gaussian signal

the δN formalism for primordial perturbations

on large scales, neglect spatial gradients, treat as "separate universes"

$$\zeta = N(\phi_{initial}) - \overline{N} \approx \sum_{I} \frac{\partial N}{\partial \phi_{I}} \delta \phi_{I}$$

Starobinsky `85; Sasaki & Stewart `96 Lyth & Rodriguez '05 – works to any order

simplest local form of non-Gaussianity

applies to many models inflation including curvaton, modulated reheating, etc

$$\begin{aligned} \zeta &= \delta N(\phi) \text{ is local function of single Gaussian random field, } \phi \\ \zeta &= N' \delta \phi + \frac{1}{2} N'' \delta \phi^2 + \frac{1}{6} N''' \delta \phi^3 + \dots \\ \Rightarrow & \langle \zeta(x_1) \zeta(x_2) \rangle = N'^2 \langle \delta \phi(x_1) \delta \phi(x_2) \rangle + \dots \\ & \langle \zeta(x_1) \zeta(x_2) \zeta(x_3) \rangle = \frac{1}{2} N'^2 N'' \langle \delta \phi(x_1) \delta \phi(x_2) \delta \phi^2(x_3) \rangle + \dots \\ &= \frac{3}{5} f_{NL} \langle \zeta(x_2) \zeta(x_3) \rangle \langle \zeta(x_1) \zeta(x_3) \rangle + \dots \\ \end{aligned}$$
where
$$f_{NL} = \frac{5}{6} \frac{N''}{(N')^2}$$

• odd factors of 3/5 because (Komatsu & Spergel, 2001, used) $\varPhi_{l}=(3/5)\zeta_{l}$

evidence for local non-Gaussianity?

- $\Delta T/T \approx -\Phi/3$, so positive $f_{NL} \Rightarrow$ more cold spots in CMB
- various groups have attempted to measure this with the WMAP CMB data using estimators based on matched filtering (all 95% CL) :

•	27 < f _{NL} < 147	Yadav & Wandelt	WMAP3 data
•	$-9 < f_{NL} < 111$	Komatsu et al	WMAP5
•	-4 < f _{NL} < 80	Smith et al.	Optimal WMAP5

Komatsu et al

• Large scale structure observations have recently given independent indications due to non-local bias on large scales (Dalal et al 2007):

WMAP7

- -29 < f_{NL} < 70 (95% CL) Slosar et al 2008

 $-10 < f_{NI} < 74$

Liguori, Matarrese and Moscardini (2003

Liguori, Matarrese and Moscardini (2003

Liguori, Matarrese and Moscardini (2003

remember: $f_{NL} < 100$ implies Gaussian to better than 0.1%

non-Gaussianity from inflation?

- slow-roll single inflaton field
 - adiabatic perturbations => zeta constant on large scales
 - can evaluate non-Gaussianity immediately after Hubble exit

$$f_{NL} = \frac{5}{6} \frac{N''}{(N')^2} = \frac{5}{6} (\eta - 2\epsilon)$$

- undetectable with WMAP or Planck data

• requires non-canonical or multi-field models

- self-interaction on sub-Hubble scales during inflation
 - e.g., DBI inflation in string theory models
 - this is of equilateral type, not the local form
- local evolution on super-Hubble scales from non-inflaton fields
 - e.g., curvaton or inhomogeneous (p)reheating
 - or fast-roll during ekpyrotic/pre-big-bang collapse?

curvaton scenario:

Linde & Mukhanov 1997; Enqvist & Sloth, Lyth & Wands, Moroi & Takahashi 2001

curvaton χ = a weakly-coupled, late-decaying scalar field

 $V(\chi)$

χ

- light during inflation (m<<H) hence acquires an almost scaleinvariant, *Gaussian distribution of field fluctuations* on large scales
- energy density for massive field, $ho_{\chi} = m^2 \chi^2/2$
- spectrum of initially isocurvature density perturbations

$$\zeta_{\chi} \approx \frac{1}{3} \frac{\delta \rho_{\chi}}{\rho_{\chi}} \approx \frac{1}{3} \left(\frac{2\chi \delta \chi + \delta \chi^2}{\chi^2} \right)$$

- transferred to radiation when curvaton decays with some efficiency $\approx \Omega_{\chi,decay}$

$$\xi = \Omega_{\chi,decay} \zeta_{\chi}$$
$$= \zeta_G + \frac{3}{4\Omega_{\chi,decay}} \zeta_G^2 \implies f_{NL} = \frac{5}{4\Omega_{\chi,decay}}$$

new ekpyrotic scenario:

Lehners et al; Buchbinder et al; Creminelli and Senatore 2007

Contracting universe driven by multiple scalar fields with steep strongly interacting potentials, V<0

- rapidly growing (diverging) Hubble rate during collapse
- tachyonic instability leads to rapidly growing isocurvature perturbations with scale invariant spectrum

ekpyrotic non-Gaussianity

Koyama, Mizuno, Vernizzi & Wands 2007

(but see also Creminelli & Senatore, Buchbinder et al, Lehners & Steinhardt 2007)

Simplest model:

- tachyonic instability towards steepest descent (-> single field)
- converts isocurvature field perturbations to curvature/density perturbations (calculated via delta-N, but confirmed by Langlois & Vernizzi's second-order equations)
- Simple model => clear predictions:
 - small blue spectral tilt (for $c^2 >> 1$):

 $- n - 1 = 4 / c^2 > 0$

- large and *negative* bispectrum:

- $f_{NL} = -(5/12) c_i^2 < -(5/3)/(n-1)$

- Other authors consider corrections (e.g., $c_i(\varphi_i)$) and corrections to f_{NL}
 - But generally, steep potentials and fast roll
 => large non-Gaussianity

curvaton vs ekpyrotic non-Gaussianity?

Curvaton

- $f_{NL} > -5/4$
- energy density is quadratic
 - higher order statistics well described by fNL
 - even for multiple curvatons (Assadullahi, Valiviita & Wands 2008)
- unless self-interactions significant (e.g., $\lambda \phi^4$) (Enqvist et al 2009) Ekpyrotic
 - f_{NL} negative or positive?
 - potentials are steep quasi-exponential
 - expect large non-linearities at all orders

Beyond f_{NL}?

Higher-order statistics

- **trispectrum** \Rightarrow g_{NL} (Seery & Lidsey; Byrnes, Sasaki & Wands 2006...)
- delta-N gives full probability distribution function (Sasaki, Valiviita & Wands 2007)
- Multi-variate local non-Gaussianity
 - local function of more than one independent Gaussian field
 - adiabatic and entropy decomposition (Langlois, Vernizzi & Wands 2008)

$$\zeta = \frac{\partial N}{\partial \sigma} \delta \sigma + \frac{\partial N}{\partial s} \delta s + \frac{1}{2} \frac{\partial^2 N}{\partial s^2} \delta s^2 + \dots$$

• c.f. Boubekeur & Lyth; Chambers & Rajantie (2007)

- e.g., mixed inflaton-curvaton model (Bartolo & Liddle, 2002, Langlois & Vernizzi 2003, etc)
- scale-dependent fNL (Byrnes, Nurmi, Tasinato & Wands 2009)

Non-linear isocurvature perturbations

- extend δN to isocurvature modes (Kawasaki et al; Langlois, Vernizzi & Wands 2008)
- limits on isocurvature density perturbations (Hikage et al 2008)

Adiabatic+entropy split

Gordon, Wands, Bassett & Maartens 2001 Langlois, Vernizzi & Wands 2008

adiabatic + entropy modes both contribute to power spectrum

 $P(k) = P_{\sigma}(k) + P_{s}(k)$ spectral tilts: $n-1 = \frac{d \ln P}{d \ln k} - 3, \quad n_{s} - 1 = \frac{d \ln P_{s}}{d \ln k} - 3$

only entropy modes contribute significantly to the bispectrum

 $B(k_{1},k_{2},k_{3}) = B_{s}(k_{1},k_{2},k_{3}) = f_{NL}^{(s)} \left(P_{s}(k_{1}) P_{s}(k_{2}) + perms \right)$ $\Rightarrow f_{NL} = f_{NL}^{(s)} \frac{\left(P_{s}(k_{1}) P_{s}(k_{2}) + perms \right)}{\left(P(k_{1}) P(k_{2}) + perms \right)}$ $\Rightarrow n_{f_{NL}} = \frac{d \ln |f_{NL}|}{d \ln k} = 2(n_{s} - n)$

adiabatic mode bispectrum suppressed (Maldacena 2002)

summary:

- **Inflation** is simplest model for origin of structure compatible with current data
- **Spectral index** of density perturbations (n≠1) evidence for slow-roll dynamics during inflation
- Canonical single-field models (e.g. chaotic inflation) in good agreement with power spectra, but...
- Any non-Gaussianity and/or non-adiabaticity of primordial perturbations would rule out all canonical single-field models
- Still lots of models, but lots more data coming!