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outline:

• Primordial structure

– evidence of density inhomogeneities in the very early 
universe (primordial = 1 sec after big bang)

• Fluctuations from inflation

– Vacuum fluctuations during inflation

– Primordial density perturbations after inflation

• Distinguishing models with non-Gaussianity

– Local non-Gaussianity

– Bispectrum and fNL

– Higher-order statistics and scale-dependence



how far back can we look?



COBE satellite launched by NASA in 1990

2.7 K everywhere

© NASA

+/- 3.3 mK redshift due local motion
(at 1 million miles per hour)

+/- 18 K intrinsic anisotropies

Cosmic microwave background radiation
• discovered by Penzias and Wilson 1965

• relic thermal radiation from the hot big bang



an elegant, simple, well-motivated model for 
the origin of structure in the early universe



cosmic strings
formed by spontaneous 

symmetry breaking at GUT 
scale

an elegant, simple, well-motivated model for 
the origin of structure in the early universe
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coherent oscillations in 
photon-baryon plasma 

due to existence of 
primordial density 

perturbations

Wilkinson Microwave Anisotropy Probe

passive not active seeds for structure



Wave equation in FRW cosmology:

Characteristic timescales for waves, comoving wavemode k

• small-scales , ck /a > H, under-damped oscillator

• large-scales , ck/a < H, over-damped oscillator

0)/(3 2   ackH 

Hubble length, H-1, grows with time 
during radiation or matter eras

inflation, has almost constant 
Hubble length

time



• number of “e-folds” of expansion

• slow-roll inflation driven by a scalar field, , potential V()

• N > 40 to solve the horizon problem

Duration of inflation:
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Vacuum fluctuations



V()

• small-scale/underdamped zero-point fluctuations (k>aH)

• large-scale/overdamped perturbations in growing mode (k<aH)

linear evolution   Gaussian random field

interactions = non-linearity = non-Gaussianity

suppressed during slow-roll inflation 
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fluctuations of any light scalar fields (m<3H/2) `frozen-in‟ on large scales

Hawking ‟82, Starobinsky ‟82, Guth & Pi „82

 
2

3

23

2)2(

4








 






Hk k

aHkP

 '''
4

''' kkkkkkk  



defining the primordial density perturbation

gauge-dependent density perturbation,  , and spatial expansion, N

 =0(t)+ (t,x) ds2 = a2(t) e 2N(t,x) ij xixj

gauge-invariant combination (Bardeen, 88)

Provides initial conditions for adiabatic perturbations on large scales, early times, 

e.g., Newtonian potential in matter-dominated era:  = (3/5)
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the N formalism for primordial perturbations

during inflation
field perturbations (x,ti) on 
initial spatially-flat hypersurface

in radiation-dominated era 
curvature perturbation  on 
uniform-density hypersurface
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on large scales, neglect spatial gradients, treat as “separate universes”

Starobinsky `85; Sasaki & Stewart `96
Lyth & Rodriguez ‟05 – works to any order
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Separate universes

• local expansion on very large scales ( >> Hubble length, 
negligible spatial gradients) given by local Friedmann equation

Salopek & Bond (1990)

Wands, Malik, Lyth & Liddle (2001)
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density perturbations from inflaton field

• quantum field fluctuations on unperturbed (flat) hypersurfaces 
during inflation leads to scalar metric perturbation

• produce primordial density perturbations in radiation-dominated 
era
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scale-invariant

Harrison-Zel‟dovich (n=1)

spectrum excluded by

WMAP+BAO at 3sigma
(Komatsu et al 2010)

WMAP 7 year data February 2010



Spectral tilt = slow-roll dynamics
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what next?

WMAP 7-year data (Komatsu et al 2010)

• running spectral index

-0.086 < d n / d ln k < 0.018

higher-order in slow-roll

• gravitational waves

tensor-scalar ratio

r < 0.36

• non-Gaussianity

-10 < fNL < 74



ESA Planck satellite launched!

next all-sky survey

data 2011/12?

r  0.1?

fNL < 8



theoretical non-Gaussianity

• possibilities limited

– Local-type non-Gaussianity
• super-Hubble evolution of Gaussian random field from multi-field inflation

– Equilateral-type non-Gaussianity
• sub-Hubble interactions in k-inflation/DBI inflation

– Topological defects
• cosmic strings or textures?

• templates required to develop optimal estimators

– matched filtering to extract small non-Gaussian signal



the N formalism for primordial perturbations

during inflation
field perturbations (x,ti) on 
initial spatially-flat hypersurface

in radiation-dominated era 
curvature perturbation  on 
uniform-density hypersurface
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  N( ) is local function of single Gaussian random field, 

where

• odd factors of 3/5 because (Komatsu & Spergel, 2001, used) 1 (3/5)1

simplest local form of non-Gaussianity

applies to many models inflation including curvaton, modulated reheating, etc
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evidence for local non-Gaussianity?

• T/T  -/3, so positive fNL  more cold spots in CMB

• various groups have attempted to measure this with the WMAP CMB 
data using estimators based on matched filtering (all 95% CL) :

 27 < fNL < 147 Yadav & Wandelt WMAP3 data

 -9 < fNL < 111 Komatsu et al WMAP5

 -4 < fNL < 80 Smith et al. Optimal WMAP5

 -10 < fNL < 74 Komatsu et al WMAP7

• Large scale structure observations have recently given independent 
indications due to non-local bias on large scales (Dalal et al 2007):

– -29 < fNL < 70 (95% CL) Slosar et al 2008



Liguori, Matarrese and  Moscardini (2003)



Liguori, Matarrese and  Moscardini (2003)

fNL=+3000



Liguori, Matarrese and  Moscardini (2003)

fNL=-3000



remember: fNL < 100 implies Gaussian to better than 0.1%



non-Gaussianity from inflation?

• slow-roll single inflaton field
– adiabatic perturbations => zeta constant on large scales

– can evaluate non-Gaussianity immediately after Hubble exit

– undetectable with WMAP or Planck data

• requires non-canonical or multi-field models
– self-interaction on sub-Hubble scales during inflation

• e.g., DBI inflation in string theory models

• this is of equilateral type, not the local form

– local evolution on super-Hubble scales from non-inflaton fields
• e.g., curvaton or inhomogeneous (p)reheating

• or fast-roll during ekpyrotic/pre-big-bang collapse?



curvaton scenario:
Linde & Mukhanov 1997; Enqvist & Sloth, Lyth & Wands, Moroi & Takahashi 2001

- light during inflation (m<<H) hence acquires an almost scale-
invariant, Gaussian distribution of field fluctuations on large scales

- energy density for massive field, =m22/2

- spectrum of initially isocurvature density perturbations

- transferred to radiation when curvaton decays with some 
efficiency ,decay
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new ekpyrotic scenario:
Lehners et al; Buchbinder et al;  Creminelli and Senatore 2007

- rapidly growing (diverging) Hubble rate during collapse

- tachyonic instability leads to rapidly growing isocurvature 
perturbations with scale invariant spectrum

Contracting universe driven by multiple scalar fields with steep 
strongly interacting potentials, V<0
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ekpyrotic non-Gaussianity
Koyama, Mizuno, Vernizzi & Wands 2007 
(but see also Creminelli & Senatore, Buchbinder et al, Lehners & Steinhardt 2007) 

Simplest model:

- tachyonic instability towards steepest descent (-> single field)

- converts isocurvature field perturbations to curvature/density 
perturbations (calculated via delta-N,  but confirmed by Langlois & 
Vernizzi‟s second-order equations)

- Simple model => clear predictions:

- small blue spectral tilt (for c2 >>1): 

- n – 1 = 4 / c2 > 0 

- large and negative bispectrum: 

- fNL= - (5/12) ci
2 < - (5/3) / (n-1) 

- Other authors consider corrections (e.g., ci (i)) corrections to tilt + 
and corrections to fNL 

- But generally, steep potentials and fast roll
=> large non-Gaussianity



curvaton vs ekpyrotic non-Gaussianity?

Curvaton

• fNL > -5/4 

• energy density is quadratic

• higher order statistics well described by fNL

• even for multiple curvatons (Assadullahi, Valiviita & Wands 2008)

• unless self-interactions significant (e.g., 4) (Enqvist et al 2009)

Ekpyrotic 

• fNL negative or positive?

• potentials are steep quasi-exponential

• expect large non-linearities at all orders



Beyond fNL?

• Higher-order statistics
– trispectrum  gNL (Seery & Lidsey; Byrnes, Sasaki & Wands 2006...)

– delta-N gives full probability distribution function (Sasaki, Valiviita & Wands 2007) 

• Multi-variate local non-Gaussianity
– local function of more than one independent Gaussian field

– adiabatic and entropy decomposition (Langlois, Vernizzi & Wands 2008)

• c.f. Boubekeur & Lyth; Chambers & Rajantie (2007)

– e.g., mixed inflaton-curvaton model (Bartolo & Liddle, 2002, Langlois & Vernizzi 2003, etc)

– scale-dependent fNL (Byrnes, Nurmi, Tasinato & Wands 2009)

• Non-linear isocurvature perturbations
– extend N to isocurvature modes (Kawasaki et al; Langlois, Vernizzi & Wands 2008)

– limits on isocurvature density perturbations (Hikage et al 2008)
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Scale-dependent fNL

• Local single-field mode
– scale indepednednt fNL by construction

• Quasi-local single-field model
– self-interactions lead to non-Gaussian field on super-Hubble scales

• Local multiple-field models e.g., inflaton+curvaton

Byrnes, Choi & Hall 2009

Khoury & Piazza 2009

Sefusatti, Liguori, Yadav, Jackson & Pajer 2009
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Adiabatic+entropy split

• adiabatic + entropy modes both contribute to power spectrum

• only entropy modes contribute significantly to the bispectrum

– adiabatic mode bispectrum suppressed (Maldacena 2002)
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summary:

• Inflation is simplest model for origin of structure 
compatible with current data

• Spectral index of density perturbations (n1) 
evidence for slow-roll dynamics during inflation

• Canonical single-field models (e.g. chaotic inflation) 
in good agreement with power spectra, but…

• Any non-Gaussianity and/or non-adiabaticity of 
primordial perturbations would rule out all 
canonical single-field models

• Still lots of models, but lots more data coming!


