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History of BPHZ and R*

1956

On the Multiplication of the causal function in the quantum theory of fields

http://inspirehep.net/record/9188
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●     is a set of disjoint UV divergent 1PI subgraphs

●             is obtained by contracting each                  into a point in     

●             Is the (local) UV counterterm associated to the 1PI graph 

● The     -symbol indicates insertion

Bogoliubov's Recursion
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The UV counterterm

● The sum does not include 
●         is defined recursively
●         is a homogeneous polynomial in the external momenta of    
●     projects out the singular part and is renormalisation scheme 

dependent:
– It projects onto poles in    in MS
– It Taylor expands around external momentum in MOM
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Example at 1-loop 

R produces the renormalised result:
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Example at 1-loop: MOM scheme

In Momentum subtraction the UV counterterm evaluates to:

Such that the renormalised Feynman graph is:



UV Divergences at 2 loops in MOM

   UV divergent (sub) graphs:       
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And substituting the expressions in MOM we obtain:

UV Divergences at 2 loops in MOM



The Forest Formula
Bogoliubov’s recursion can be solved as 
the forest formula [Zimmermann]:

A forest     is a set of subgraphs              which 
are either nested             or disjoint                  .
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Extensions of BPHZ
● The Connes-Kreimer Hopf Algebra

● The R-operation gives rise to a Hopf Algebra
● R-operation becomes a twisted antipode acting on a coproduct

● R* [Chetyrkin, Tkachov, Smirnov]
● Generalises BPHZ to infra-red divergences in euclidean Feynman Graphs
● Initially only developed for       theory
● A global version can be formulated using the Hard Mass expansion 

[Chetyrkin]
● Recently extended local R* formalism to arbitrary tensor/numerator 

Feynman[FH, Ben Rujil]

● Motic Hopf Algebra [Brown]
● Extended the Connes-Kreimer Hopf Algebra to motic graphs (includes both IR 

and UV subgraphs) in Schwinger’s representation
● Write down R* in Hopf algebra language [Beekveldt, Borinsky, FH in 

preperation]

● Collinear Divergences [van Neerven]
● BPHZ formulation of collinear divergences
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http://www.wallpapermania.eu/

What happens in the massless limit?
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[Chetyrkin, Tkachov 1982]
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Why are scaleless dimensionless integrals 
zero in dimension regularisation?

To see this just insert
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Extracting IR poles from UV poles

UV counterterm IR counterterm

Infrared Rearrangement [Vladimirov 1980]
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UV and IR Divergences at 2 loops

UV divergences:

IR divergences:
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IR Factorisation

The remaining graph           is constructed by deleting vertices and 
edges of     in    
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“UV Rearrangement”

Subtraction of IR and UV at 2 loops



Subtraction of IR and UV at L loops
(for massive external legs)

● UV counterterm:

● IR counterterm:



19

IR subgraph search
● Wield external lines into point:

● Remaining graphs of UV Spinneys are IR spinneys:



20

Evaluating IR counterterms
IR counterterms can be extracted from UV 
counterterms from the relation:

where       is an arbitrary scaleless logarithmically 
divergent vacuum graph
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What is R* good for?
The idea of R* is not to somehow “renormalise away” IR 
divergences, but to construct an efficient algorithm for extracting 
UV anomalous dimensions from maximally simple 1-scale Feynman 
graphs via Infrared rearrangment (IRR).

Theorem [Chetyrkin, Tkachov 1982]

IRR allows one to extract the renormalisation constants 
of arbitrary L-loop Feynman graphs or amplitudes from products of 
1-scale propagator Feynman graphs of lower loops.
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Infrared Rearrangement

Choosing an IRR which has the incoming lines connected by a 
single propagator always allows to play the following trick:

L=3 L=2 L=1 (with non integer power)



Results
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[pdg2016]
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History of the QCD beta function
●      :

– 1965 [Vanyashin, Terentev]; 1970 [Khriplovich];1972 [T'Hooft];
– 1973 [Gross, Wilczek; Politzer]

●     :
– 1974 [Caswell; Jones]
– 1979 [Egorian, Tarasov]

●     :
– 1980 [Tarasov, Vladimirov, Zharkov]
– 1993 [Larin, Vermaseren]

●     :
– 1997 [van Ritbergen, Vermaseren, Larin]
– 2005 [Czakon]

●     :
– 2016 [Baikov, Chetyrkin, Kühn]
– 2016 partial results [Luthe, Maier, Marquard, Schroeder]
– 2017 [FH, Ruijl, Ueda, Vermaseren, Vogt]

    



26

History of the QCD beta function
●      :

– 1965 [Vanyashin, Terentev]; 1970 [Khriplovich];1972 [T'Hooft];
– 1973 [Gross, Wilczek; Politzer]

●      :
– 1974 [Caswell; Jones]
– 1979 [Egorian, Tarasov]

●     :
– 1980 [Tarasov, Vladimirov, Zharkov]
– 1993 [Larin, Vermaseren]

●     :
– 1997 [van Ritbergen, Vermaseren, Larin]
– 2005 [Czakon]

●     :
– 2016 [Baikov, Chetyrkin, Kühn]
– 2016 partial results [Luthe, Maier, Marquard, Schroeder]
– 2017 [FH, Ruijl, Ueda, Vermaseren, Vogt]

    



27

History of the QCD beta function
●      :

– 1965 [Vanyashin, Terentev]; 1970 [Khriplovich];1972 [T'Hooft];
– 1973 [Gross, Wilczek; Politzer]

●      :
– 1974 [Caswell; Jones]
– 1979 [Egorian, Tarasov]

●      :
– 1980 [Tarasov, Vladimirov, Zharkov]
– 1993 [Larin, Vermaseren]

●     :
– 1997 [van Ritbergen, Vermaseren, Larin]
– 2005 [Czakon]

●     :
– 2016 [Baikov, Chetyrkin, Kühn]
– 2016 partial results [Luthe, Maier, Marquard, Schroeder]
– 2017 [FH, Ruijl, Ueda, Vermaseren, Vogt]

    



28

History of the QCD beta function
    ●      :
– 1965 [Vanyashin, Terentev]; 1970 [Khriplovich];1972 [T'Hooft];
– 1973 [Gross, Wilczek; Politzer]

●      :
– 1974 [Caswell; Jones]
– 1979 [Egorian, Tarasov]

●      :
– 1980 [Tarasov, Vladimirov, Zharkov]
– 1993 [Larin, Vermaseren]

●     :
– 1997 [van Ritbergen, Vermaseren, Larin]
– 2005 [Czakon]

●     :
– 2016 [Baikov, Chetyrkin, Kühn]
– 2016 partial results [Luthe, Maier, Marquard, Schroeder]
– 2017 [FH, Ruijl, Ueda, Vermaseren, Vogt]



29

History of the QCD beta function
    ●      :
– 1965 [Vanyashin, Terentev]; 1970 [Khriplovich];1972 [T'Hooft];
– 1973 [Gross, Wilczek; Politzer]

●      :
– 1974 [Caswell; Jones]
– 1979 [Egorian, Tarasov]

●      :
– 1980 [Tarasov, Vladimirov, Zharkov]
– 1993 [Larin, Vermaseren]

●     :
– 1997 [van Ritbergen, Vermaseren, Larin]
– 2005 [Czakon]

●     :
– 2016 [Baikov, Chetyrkin, Kühn]
– 2016 partial results [Luthe, Maier, Marquard, Schroeder]
– 2017 [FH, Ruijl, Ueda, Vermaseren, Vogt]



30

Calculation
● Forcer

– Parameteric solution of IBPs for up to 4-loop 
massless self energy graphs

● Automated R* 
– for arbitrary tensor Feynman graphs

● Background field gauge:
– Extract beta from background field self energy [Abbot 81]

arXiv:1704.06650

 arXiv:1703.03776

http://arxiv.org/abs/arXiv:1704.06650
https://arxiv.org/abs/1703.03776
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General gauge group
Besides              we only need the symmetric group 
invariant tensors                

are the generators of the fermionic representation.

are the generators of the adoint representation.
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Old Results
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Old Results
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Old Results
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Old Results
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5-loop result
[confirmed by Luthe, Maier, Marquard and Schroeder; Chetyrkin, Falcioni, FH, Vermaseren]

Result of computing ~150.000 
five-loop Feynman diagrams
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QCD
 [agrees with result of Baikov, Chetyrkin and Kühn]
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QED
[agrees with result of Baikov, Chetyrkin, Kühn and Rittinger]
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 -dependence

Convergence enhanced for larger 
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Scale Evolution at low scales

Let us hypothetically fix
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Same computational method applies to decay rates too!

● H → bb at N4LO

● Hadronic R-ratio at N4LO

● H → gg at N4LO

First independent confirmation of results 
by Baikov, Chetyrkin and Kuehn
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Unitarity
Unitarity allows to obtain the decay rate from the imaginary part of the 
corresponding self energy

Analytic continuation leads to a prefactor proportional to

Upshot: The decay rate can be extracted from the UV poles of the 
self energy, making it possible to use the R*-method.
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Analytic result
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Analytic result at 5 loops

In contrast to the beta 
function here also weight 6,7    
     -terms are present
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Scale and scheme dependence of 



First moments of N4LO 
Splitting functions

● Splitting functions are the (non-local) anomalous dimensions of the parton 
distribution functions:

● R* is applicable for 
Mellin moments via 
the OPE

● Used R* to compute N=2,3 moments of the N4LO non-singlet splitting 
functions [arxiv:1812.11818] and first approximation for the five-loop cusp 
anomalous dimension in QCD

● With enough Mellin-moments one can approximate (or even “bootstrap”) the 
complete splitting functions
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Outlook



Automating      for general QFTs

● Input: Lagrangian, 1PI correlator
● Output: UV counterterm 

local



Renormalising the SM EFT at 
two loops (D=6)  

● Many operators and they mix! 
already 84(59) operators at D=6, 993 at D=8,… 
[Henning, Lu, Melia, Murayama]

● Full AD mixing matrix so far only known at 1-loop 
[Jenkins, Manohar, Trott; … ]

● 2-loop corrections to ADs:
– Improve accuracy of SM EFT predictions
– Allow to run Wilson coefficients up to higher scales to 

address impact on: Vacuum stability, Inflation, ..
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SMEFT constraints from EDMs

● loop QCD effects are important for 
extracting Wilson coefficients from 
low energy experiments, such as 
Neutron EDM measurements

● The dominant operator relevant 
for Neutron EDMs is the operator

[Weinberg 1989]
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Calculation of 2-loop AD of 
Weinberg’s operator

Method: Use R*-method with background field 
method

Pros:
– Operator does not mix!

Cons:
– Need to compute at least 3-pt 

function with 3 derivatives 
(2pt function vanishes)

–         not well defined in dimreg. We used both `T 
Hooft-Veltman and Larin scheme check.

Status:
– Have a result, now checking the 4-pt function.
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Summary
● Presented the R* method -  a powerful tool for extracting anomalous 

dimensions of arbitrary QFTs as well as decay rates in massless QCD
● Presented a new result for the five-loop beta function of Yang Mills 

Theory with fermions valid for arbitrary simple compact gauge group
● Briefly presented results for decay rates at N4LO; in particular a new 

result for the decay rate H gg→

● Future Plans with R*:
– Build fully automated tools for extracting anomalous dimensions for arbitrary 

(potentially non-renormalisable) QFTs, e.g. operators in the OPE of splitting 
functions, SM EFT, (Super-) Gravities, .. 
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Backup



● Computationally more efficient than local 
approach

● Conceptually demanding and case specific (!)
● Used this method to compute all the Yang-

Mills renormalisation constants for arbitrary 
gauge parameter dependence 
at 5 loops [arxiv:1709.08541]

● Method paper in progress

Global   
 [Chetyrkin; Chetyrkin, Falcioini, FH, Vermaseren ]



Global   
● Procedure

– Insert a mass into propagators next to a particular vertex v:

– Derive the global UV counterterm
– Expand around large M
– Derive the global IR counterterm
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Convergence study
5-loop effects only visible for very 
high values of coupling, but even 
then perturbativity seems under 
great control.
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-convergence Study

This represents the value for        for which 
nth order is a quarter of the previous order.  
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-convergence study

With this parameterisation the series 
converges for 
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H gg     dependence →
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Analytic continuation     -terms

● Underlined contributions stem from analytic continuation and can be predicted 
from lower orders.

● Cancellations are observed between the genuine and analytic continuation terms 
– but the precise cancellation pattern changes at different loop orders.


