

30 years of Relativistic Reflection and Reverberation around Luminous Accreting Black Holes

Andy Fabian

Institute of Astronomy, University of Cambridge

European Research Council Established by the European Commission

1H0707-495

Gallo+04

Accretion disc

H Moseley

Reflection from cold matter of cosmic abundance

C Reynolds

Tanaka+95 Nature

Soft excess – broad iron line – Compton hump

Soft excess – broad iron line – Compton hump

Reflection in AGN with NuSTAR

Parker, Matt+

Sometimes most emission from 1-2r_g

Mkn 335 Parker+14

and Galactic sources too

Parker, Tomsick+, JMiller+13,15

Walton+16, Parker+15

V404 Cyg Flare NuSTAR

Walton+16

Probing Black Hole Spin

black hole

ISCO

Reynolds19

Miller+Miller15

Tomsick16

Vasudevan+16

X-ray Background Spectrum

Accretion disc

Path difference leads to Reverberation Observations of Reverberation complicated since see both Direct and Reflection components together

Separate spectrally (contributions vary with energy)

Need Spectral Timing

X-ray Reverberation

Kara+16

Microlensing confirms that Corona is compact

Source

Microlensing Star

View from Chandra

Galaxy

Chandra

в

Coronal Size from Microlensing: Coronae are Compact

Chartas15

IRAS13224-3809 – MOST VARIABLE AGN IN X-RAYS XMM + NuSTAR PROGRAMME 1.5Ms

NuSTAR spectrum from 2016

HIGH Density Reflection Models appropriate

Garcia+16

High Density Fit to low state

Jiang+19

Jiang+19

NICER lightcurve J Homan

hole

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

EVOLUTION OF A Black Hole

The driving force behind changes in emitted energy

• NATURE.COM 10 January 2019 £10 Vol. 565, No. 7738

QPO

Buisson+19 in prep

Emissivity Profile (D. Wilkins)

Coronal properties

- 15<kT<150 keV, most 50-100 keV
- R<10 r_g for much of the power
- Some could be outflowing (Beloborodov99, Malzac+01, Wilkins+14)
- Probably not static!
- Lowest part of corona dominates reflection, outflowing upper part dominates observed powerlaw

WHAT DETERMINES CORONAL TEMPERATURE?

CORONA IS RADIATIVELY COMPACT

Dimensionless compactness parameter, GuilbertFabianRees83

$$\ell = \frac{L}{R} \frac{\sigma_T}{m_e c^3}.$$

$$l = \left(\frac{m_{\rm p}}{m_{\rm e}}\right) \left(\frac{R}{R_{\rm S}}\right)^{-1} \left(\frac{L}{L_{\rm Edd}}\right)$$

For AGN, *l* typically 10-1000 Compton cooling time < light crossing time PAIR PRODUCTION: electron-positron pairs form when photons and/or particles

collide at energies $> m_e c^2 = 511 keV$

photon-photon collisions: $\gamma + \gamma \rightarrow e^{\pm}$ requires $\frac{c_1}{m_e c^2} \frac{c_2}{m_e c^2} > 2$

Svensson, 82,84, Zdziarski 85, many other papers and workers 80s + 90s

PAIR PRODUCTION: electron-positron pairs form when photons and/or particles

collide at energies $> m_e c^2 = 511 keV$

photon-photon collisions: $\gamma + \gamma \rightarrow e^{\pm}$ requires $\frac{c_1}{m_e c^2} \frac{c_2}{m_e c^2} > 2$

Svensson, 82,84, Zdziarski 85, many other papers and workers 80s + 90s

JAXA/NASA/ESA XRISM launch 2022

Summary

 We're now doing Relativistic Astrophysics of the immediate region around rapidly spinning accreting Kerr black holes – the central engine of quasars – using X-ray spectral timing, including relativistic reflection and reverberation.