Anomaly and the Modular Bootstrap

Seminar at Kavli IPMU 2019/05/29

Ying-Hsuan Lin (Caltech)

based on 1904.04833
with Shu-Heng Shao (IAS)

Anomaly in CFT

- In Lagrangian field theory, the anomaly of a continuous symmetry is determined by the content of massless charged fermions.

Anomaly \leftrightarrow Massless charged fermions

- In CFT on R^{d}, all states are massless. Without a Lagrangian, the connection between anomaly and massless states is obscure.

The Quest

- What does anomaly entail in CFT?
- Is there a connection between anomaly and light local operators? Or equivalently, light states on $R^{1} \times S^{d-1}$?

The Plan

- In 2d CFT, there is a powerful way to constrain the spectrum of local operators (states on $R^{1} \times S^{1}$):

Modular bootstrap.

- Let us consider the simplest setup:

2 d bosonic CFT with Z_{2} flavor symmetry.

- We ask:

How does the anomaly affect the universal bootstrap constraints on the spectrum?

Menu

- Introduce Z_{2} anomaly using symmetry defects.
- Formulate modular bootstrap including Z_{2} symmetry lines.
- Present bounds and discuss implications.
- Consider $\mathrm{U}(1)$ and relation to AdS_{3} weak gravity conjecture.
- Bonus: Fusion category and the modular bootstrap.

Z2 symmetry lines

- 0-form symmetry \rightarrow codimension 1 symmetry defects.
- In 2d, these are lines.
- Z_{2} commutes with Virasoro ${ }^{2} \rightarrow$ the lines are topological.
- Operators are transformed by Z_{2} when a line crosses.

$$
|\cdot \phi= \pm \phi \cdot|
$$

Defect operators

- Lines can end on bosons, fermions or anyons.
- Via the cylinder map, these "defect operators" correspond to states on the cylinder quantized with "twisted" periodic boundary conditions.

Defect operators

- Defect operators are point-like, but non-local. c.f. Electron in QED must be attached to a Wilson line.
- Symmetry lines are topological \rightarrow Spectrum of defect operators organize into Virasoro² families.

$$
Z_{\mathcal{L}}(\tau, \bar{\tau})=\operatorname{Tr}_{\mathcal{H}_{\mathcal{L}}} e^{2 \pi i\left(\tau L_{0}-\bar{\tau} \bar{L}_{0}-\frac{c+\bar{c}}{12}\right)}=\sum_{h, \bar{h}} n_{h, \bar{h}} \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau}), \quad n_{h, \bar{h}} \in \mathbb{Z}_{\geq 0}
$$

- Non-locality:

Spins $h-\bar{h}$ no longer need to be integer.
We will see that the fractional part obeys a spin selection rule determined by the anomaly.

Crossing

- Consider these two local configurations of lines:

- On each side, the state on the circle is the vacuum.
- So they must be proportional to each other.

Crossing

- Crossing relation:

$$
\alpha= \pm 1
$$

Obstruction to orbifold

- Can we gauge the Z_{2} ? The "would-be" partition function:

ill-defined if $\alpha=-1 \rightarrow$ Cannot gauge.

Anomaly

- Crossing relation:

- Non-anomalous:

$$
\alpha=1
$$

- Anomalous:

$$
\alpha=-1
$$

Spin selection rule

- The spins of defect operators are constrained by considering the T transformation:

- Acting on each state, $T^{2}=e^{4 \pi i s}=\alpha$.
- The spins of defect operators in $H_{\llcorner }$must obey

$$
s \in \begin{cases}\mathbb{Z} / 2 & \alpha=1 \\ \mathbb{Z} / 2+1 / 4 & \alpha=-1\end{cases}
$$

Partition functions

Modular S transform

Positive basis

- To derive constraints by bootstrap, we need to work with objects that have positive expansions.
- Consider combinations of partition functions that count states without sign:

$$
\begin{aligned}
& Z^{+}(\tau, \bar{\tau})=\frac{1}{2}\left[Z(\tau, \bar{\tau})+Z^{\mathcal{L}}(\tau, \bar{\tau})\right]=\sum_{h, \bar{h}} n_{h, \bar{h}}^{+} \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau}) \\
& Z^{-}(\tau, \bar{\tau})=\frac{1}{2}\left[Z(\tau, \bar{\tau})-Z^{\mathcal{L}}(\tau, \bar{\tau})\right]=\sum_{h, \bar{h}} n_{h, \bar{h}}^{-} \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau}) \\
& Z_{\mathcal{L}}(\tau, \bar{\tau})=\sum_{h, \bar{h}} n_{h, \bar{h}}^{\mathcal{L}} \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau})
\end{aligned}
$$

Modular crossing

- The modular crossing equation written in the positive basis is

$$
\left(\begin{array}{l}
Z^{+}(-1 / \tau,-1 / \bar{\tau}) \\
Z^{-}(-1 / \tau,-1 / \bar{\tau}) \\
Z_{\mathcal{L}}(-1 / \tau,-1 / \bar{\tau})
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
Z^{+}(\tau, \bar{\tau}) \\
Z^{-}(\tau, \bar{\tau}) \\
Z_{\mathcal{L}}(\tau, \bar{\tau})
\end{array}\right)
$$

- Anomaly determines the spin content of H_{L}.

Modular bootstrap

- We can expand this equation in characters

$$
\begin{aligned}
& \left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\sum_{\mathcal{H}^{+}} n_{h, \bar{h}}^{+}\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \chi_{h}\left(-\frac{1}{\tau}\right) \chi_{\bar{h}}\left(-\frac{1}{\bar{\tau}}\right)-\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right) \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau})\right] \\
& \quad+\sum_{\mathcal{H}^{-}} n_{h, \overline{\bar{h}}}^{-}\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \chi_{h}\left(-\frac{1}{\tau}\right) \chi_{\bar{h}}\left(-\frac{1}{\bar{\tau}}\right)-\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-1
\end{array}\right) \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau})\right] \\
& \quad+\sum_{\mathcal{H}_{\mathcal{L}}} n_{h, \bar{h}}^{\mathcal{L}}\left[\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \chi_{h}\left(-\frac{1}{\tau}\right) \chi_{\bar{h}}\left(-\frac{1}{\bar{\tau}}\right)-\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
0
\end{array}\right) \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau})\right]
\end{aligned}
$$

Modular bootstrap

- Schematically,

$$
\overrightarrow{0}=\sum_{\mathcal{H}^{+}} n_{h, \bar{h}}^{+} \overrightarrow{\mathcal{X}}_{h, \bar{h}}^{+}(\tau, \bar{\tau})+\sum_{\mathcal{H}^{-}} n_{h, \bar{h}}^{-} \overrightarrow{\mathcal{X}}_{h, \bar{h}}^{-}(\tau, \bar{\tau})+\sum_{\mathcal{H}_{\mathcal{L}}} n_{h, \bar{h}}^{\mathcal{L}} \overrightarrow{\mathcal{X}}_{h, \bar{h}}^{\mathcal{C}}(\tau, \bar{\tau})
$$

- To proceed, make some assumption about the spectrum. e.g. Lightest odd primary has scaling dimension Δ.
- Try to disprove the assumption:
\rightarrow Act by a vector-valued linear functional \mathbb{L}.
\rightarrow If we manage to make $\mathbb{L}\left[\mathcal{X}^{*}\right]$ non-negative for all allowed h, h, then we have a contradiction.
\rightarrow Profit!

Modular bootstrap

- We make use of

Virasoro² symmetry
Positivity of degeneracies
Modular covariance
Spin selection rule for $H_{L} \leftarrow$ Anomaly dependent!

- ...to produce constraints on the spectrum:

Bound on the gap in each sector Bound on the scalar gap

Bound on Gap

Odd gap

- Bound on odd gap only exists when Z_{2} is anomalous.

Odd gap

- When Z_{2} is non-anomalous, the lightest charged operator can be arbitrarily heavy.
\rightarrow Non-anomalous symmetry can be hard to detect.
- In contrast, when Z_{2} is anomalous, there must be "light" enough charged operators.
\rightarrow Anomalous symmetry is difficult to "hide".

A Cardy-like argument

- Consider the modular S transform in the Cardy limit:

- RHS has Cardy growth determined by the effective vacuum energy $E_{0}=c / 12-\Delta_{0}$.
- Anomalous spin selection rule implies that the lightest defect operator has $\Delta_{0} \geq 1 / 4$.

A Cardy-like argument

- Anomalous:

Cardy growth of $\mathrm{n}^{+}+\mathrm{n}^{-}>$Cardy growth of $\mathrm{n}^{+}-\mathrm{n}^{-}$.

- Therefore, n^{-}has nontrivial Cardy growth.
- Lightest odd operator < Onset of Cardy regime.

Partition functions

Even gap

- Bounds on the even gap depend on the anomaly, but in a less drastic way.
- Saturated or almost saturated by several WZW models.
- We can analytically write down a cubic-derivative functional to derive a bound valid at large central charge.
\rightarrow Same slope as Simeon's bound.

Even gap

- Anomalous

Even gap

- Non-anomalous

Even scalar gap and RG

- Given a CFT with a symmetry, a natural question is whether it is reachable by symmetry-preserving RG flows.
- More precisely, can we reach it without fine-tuning?
- This requires the absence of symmetry-preserving relevant scalar primaries.
- Otherwise, close to the fixed point, the relevant deformation is generically turned on, and drives the flow further towards the IR.

Even scalar gap and RG

- For small values of the central charge, bootstrap shows that there necessarily exists a symmetry-preserving relevant scalar primary.
- No-Go:

CFT with Z_{2} symmetry cannot be obtained by RG flow that only preserves Z_{2}, and without fine-tuning, if the central charge is in the following range:

Anomalous: $1<c<7$
Non-anomalous: $1<c<7.81$

Even scalar gap

- Anomalous

Even scalar gap

- Non-anomalous

A moment of Z_{2} en

\mathcal{A} moment of Z_{2} en

- Usually, the anomaly of a discrete symmetry constrains the gapped phase of QFT:

Either there is a TQFT to match the anomaly...
Or the symmetry is spontaneously broken.

- Here, we use Z_{2} anomaly to constrain local operators in a gapless phase.

\mathcal{A} moment of Z_{2} en

- Universal bound on the odd gap exists for anomalous Z_{2}
...does not exist for non-anomalous Z_{2}.
- Universal bound on the even gap exists and differ for anomalous and non-anomalous Z_{2}
...saturated by various WZW models.
- Universal bound on the even scalar gap
...led to a No-Go result about RG flows.

\mathcal{A} moment of Z_{2} en

- Our results have direct implications on any symmetry group G that contains Z_{2} as a subgroup.
- Anomaly of $G \rightarrow$ Anomaly of subgroup.
- Universal bound on odd operators under anomalous Z_{2} \rightarrow Universal bound on charged operators under G, if the Z_{2} subgroup is anomalous.
- We will see an explicit example momentarily.

\mathcal{A} moment of Z_{2} en

- Consider $G=U(1)$.
- Wait... a bound on the lightest $U(1)$ charged operator? Smells like the weak gravity conjecture in AdS_{3}.
- Why is there only a bound when anomalous?

$\mathrm{U}(1)$ and WGC

- Modular bootstrap with holomorphic "U(1)" flavor symmetry has been studied by

Benjamin-Dyer-Fitzpatrick-Kachru [1603.09745] Montero-Shiu-Soler [1606.08438].

- They obtained bounds on the lightest charged operator.
- They claimed to prove the AdS_{3} version of the weak gravity conjecture.
- ...The interpretation of their results requires a closer examination.

$\mathrm{U}(1)$ and WGC

- Generically, a holomorphic J generates not $\mathrm{U}(1)$ but R.
- More precisely, the symmetry group generated by J and \bar{J} together may have topology T^{2}, but the compact directions are generated by combinations of J and \bar{J}.
- Holomorphic J is always anomalous.
- The existence of a bound on the lightest charged operator has more to do with anomaly.

$\mathrm{U}(1)$ and WGC

- One should consider general non-holomorphic $U(1)$, especially if making connection to WGC.
- The anomaly of $U(1)$ is characterized by integer $(\mathrm{k}-\overline{\mathrm{k}}) / 2$.
- The anomaly of the Z_{2} subgroup is $a=(-1)^{(k-\bar{k}) / 2}$.
- Our Z_{2} odd bound $\rightarrow \mathrm{AdS}_{3} \mathrm{WGC}$ for $\mathrm{U}(1)$, odd $(\mathrm{k}-\overline{\mathrm{k}}) / 2$. c.f. Montero-Shiu-Soler for holomorphic $U(1), \bar{k}=0$.
- We believe that a bootstrap bound on charged operators can be derived for general anomalous $\mathrm{U}(1), \mathrm{k}-\overline{\mathrm{k}} \neq 0$.

$\mathrm{U}(1)$ and WGC

- But there is no bound for non-anomalous $\mathrm{U}(1), \mathrm{k}-\overline{\mathrm{k}}=0$.
- Counter-example at $\mathrm{c}=1$:

Free compact boson with radius R.

- Momentum $\mathrm{U}(1)$ and winding $\mathrm{U}(1)$, both non-anomalous.
- Charged operators become arbitrarily heavy for arbitrarily small or large radius R.
- Tensor with CFTs \rightarrow Counter-examples for other c values.

Outlook

- Generalize to other discrete groups.
\rightarrow Connection to condensed matter physics.
- Generalize to non-symmetry lines.
\rightarrow Fusion categories (sneak preview next).
- Relation between anomaly and bounds on charged operators in higher dimensions?
\rightarrow Cannot work for discrete symmetry, since any unitary bosonic anomaly can be carried by TQFT with identity being the unique local operator.
\rightarrow What about continuous symmetries?

Fusion categories

- Topological lines can form a fusion algebra that is not a group, but a ring.
- This generalizes:

Symmetry group \rightarrow Grothendieck ring Anomaly \rightarrow Fusion category

- A fusion category includes information about the crossing relations of lines.

$$
=\alpha
$$

Fibonacci

- Fusion algebra (Grothendieck ring):

$$
W^{2}=I+W .
$$

- Operators have charges

$$
\langle W\rangle=\frac{1 \pm \sqrt{5}}{2}
$$

- There is one fusion category compatible with unitarity. \rightarrow Realized in tricritical Ising, etc.
- There is one that is necessarily non-unitary.
\rightarrow Realized in Lee-Yang CFT.

Fibonacci

- Similar to Z_{2}, the two fusion categories for Fibonacci have different spin selection rules.
- Fusion category compatible with CFT unitarity:

$$
s \in \mathbb{Z} \pm\left\{0, \frac{2}{5}\right\}
$$

- Fusion category incompatible with CFT unitarity:

$$
s \in \mathbb{Z} \pm\left\{0, \frac{1}{5}\right\}
$$

Fibonacci (unitary)

Thank you！

ありがとうございました！

