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Anomaly in CFT

e In Lagrangian field theory, the anomaly of a continuous
symmetry is determined by the content of massless
charged fermions.

Anomaly < Massless charged fermions

e In CFT on R4, all states are massless. Without a
Lagrangian, the connection between anomaly and
massless states is obscure.



The Quest

e \What does anomaly entail in CFT?

* |s there a connection between anomaly and light local
operators? Or equivalently, light states on R1 x S9-17



The Plan

e |In 2d CFT, there is a powerful way to constrain the
spectrum of local operators (states on R! x S):
Modular bootstrap.

e | et us consider the simplest setup:
2d bosonic CFT with Z> flavor symmetry.

e We ask:
How does the anomaly affect the universal bootstrap

constraints on the spectrum?



Menu

Introduce Z> anomaly using symmetry defects.
Formulate modular bootstrap including Z> symmetry lines.
Present bounds and discuss implications.

Consider U(1) and relation to AdSs weak gravity
conjecture.

Bonus: Fusion category and the modular bootstrap.



Z2 symmetry lines

O-form symmetry = codimension 1 symmetry defects.
In 2d, these are lines.
Z> commutes with Virasoro? — the lines are topological.

Operators are transformed by Z> when a line crosses.
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Defect operators

e Lines can end on bosons, fermions or anyons.

e Via the cylinder map, these “defect operators”
correspond to states on the cylinder quantized with
“twisted” periodic boundary conditions.
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Defect operators

 Defect operators are point-like, but non-local.
c.f. Electron in QED must be attached to a Wilson line.

e Symmetry lines are topological = Spectrum of defect
operators organize into Virasoro? families.

Ze(7,7T) = Try e Z N Xh(T)XR(T), g € Zixo

* Non-locality:
Spins h — h no longer need to be integer.
We will see that the fractional part obeys a spin

selection rule determined by the anomaly.



Crossing

 Consider these two local configurations of lines:
e On each side, the state on the circle is the vacuum.

e So they must be proportional to each other.



Crossing

e Crossing relation:
= Q

a = +1




Obstruction to orbifold

e Can we gauge the Z2? The “would-be” partition function:

Zorbifold = = ( + + T )

S e

ill-defined if a = —1 — Cannot gauge.




Anomaly

e Crossing relation:
> < N
e Non-anomalous: a =1

e Anomalous: o= —1



Spin selection rule

e The spins of defect operators are constrained by
considering the T transformation:
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e Acting on each state, 7% = ¢*™ = o .

e The spins of defect operators in H. must obey

Z./2 a =1
CHS
7Z/2+1/4 a=-1



Partition functions

Z(1,7) = 3 _(mi 4 p)xa(7)Xa(7)




Modular S transform




Positive basis

* Jo derive constraints by bootstrap, we need to work with
objects that have positive expansions.

* Consider combinations of partition functions that count
states without sign:

ZH(7,7) = 512(r,7) + Z5(7. 7)) = 2o 5 X (T) XA (T)



Modular crossing

e The modular crossing equation written in the positive
basis is

ZH(=1/1,—1/7)
7 (=1/7,—1/7) | =
ZL(—:_/T, —:_/7_')

e Anomaly determines the spin content of H..




Modular bootstrap

e \We can expand this equation in characters
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Modular bootstrap

e Schematically,
Z ”thzjh T+ X n (T T) + > np X (7,7

e o proceed, make some assumption about the spectrum.
e.g. Lightest odd primary has scaling dimension A.

e [ry to disprove the assumption:
— Act by a vector-valued linear functional L .
— If we manage to make LL|X™*| non-negative for all
allowed h, h, then we have a contradiction.
— Profit!



Modular bootstrap

e \We make use of
Virasoro? symmetry
Positivity of degeneracies
Modular covariance
Spin selection rule for HL. <« Anomaly dependent!

e ...to produce constraints on the spectrum:
Bound on the gap in each sector
Bound on the scalar gap



Bound on Gap

Non-anomalous Anomalous

Twisted




Odd gap

e Bound on odd gap only exists when Z> is anomalous.
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Odd gap

e When Z2 is non-anomalous, the lightest charged operator
can be arbitrarily heavy.

— Non-anomalous symmetry can be hard to detect.

* |n contrast, when Z> iIs anomalous, there must be “light”
enough charged operators.

— Anomalous symmetry is difficult to “hide”.



A Cardy-like argument

e Consider the modular S transform in the Cardy limit:

S

Low T High T

e RHS has Cardy growth determined by the effective
vacuum energy Eo = ¢/12 - Do.

e Anomalous spin selection rule implies that the lightest
defect operator has Ao = 1/4.



A Cardy-like argument

e Anomalous:

Cardy growth of nt + n- > Cardy growth of n+ - n-.
e Therefore, n- has nontrivial Cardy growth.

e Lightest odd operator < Onset of Cardy regime.



Partition functions

Z(1,7) = 3 _(mi 4 p)xa(7)Xa(7)




Even gap

e Bounds on the even gap depend on the anomaly, but in a
less drastic way.

e Saturated or almost saturated by several WZW models.

e We can analytically write down a cubic-derivative
functional to derive a bound valid at large central charge.
— Same slope as Simeon’s bound.



Even gap

e Anomalous
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Even gap

¢ Non-anomalous
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Even scalar gap and RG

e GivenaC

with a symmetry, a natural question is

whether it is reachable by symmetry-preserving RG flows.

More precisely, can we reach it without fine-tuning?

This requires the absence of symmetry-preserving

relevant scalar primaries.

Otherwise, close to the fixed point, the relevant

deformation is generically turned on, and drives the flow
further towards the IR.



Even scalar gap and RG

 For small values of the central charge, bootstrap shows
that there necessarily exists a symmetry-preserving
relevant scalar primary.

* No-Go:
CFT with Z2 symmetry cannot be obtained by RG flow
that only preserves Zo, and without fine-tuning, if the
central charge is in the following range:

Anomalous: 1 <c<7
Non-anomalous: 1 <c¢c < 7.81



Even scalar gap

e Anomalous




Even scalar gap

¢ Non-anomalous




‘A moment @C Z,en




‘A moment cf Z,en

e Usually, the anomaly of a discrete symmetry constrains
the gapped phase of QFT:

Either there is a TQFT to match the anomaly...

Or the symmetry is spontaneously broken.

e Here, we use Z2 anomaly to constrain local operators in a
gapless phase.



‘A moment cf Z,en

e Universal bound on the odd gap exists for anomalous Z>

...does not exist for non-anomalous Zo.

e Universal bound on the even gap exists and differ for
anomalous and non-anomalous Z»

...saturated by various WZW models.

e Universal bound on the even scalar gap

...led to a No-Go result about RG flows.



‘A moment cf Z,en

Our results have direct implications on any symmetry
group G that contains Z2 as a subgroup.

Anomaly of G = Anomaly of subgroup.

Universal bound on odd operators under anomalous Z>
— Universal bound on charged operators under G, if the
Z> subgroup is anomalous.

We will see an explicit example momentarily.



‘A moment cf Z,en

e Consider G = U(1).

e Wait...a bound on the lightest U(1) charged operator?
Smells like the weak gravity conjecture in AdSs.

e \Why is there only a bound when anomalous?



U(1) and WGC

Modular bootstrap with holomorphic “U(1)” flavor

symmetry has been studied by
Benjamin-Dyer-Fitzpatrick-Kachru [1603.09745]
Montero-Shiu-Soler [1606.08438].

They obtained bounds on the lightest charged operator.

They claimed to prove the AdSs version of the weak
gravity conjecture.

... The interpretation of their results requires a closer
examination.



U(1) and WGC

Generically, a holomorphic J generates not U(1) but R.

More precisely, the symmetry group generated by J and J
together may have topology T2, but the compact
directions are generated by combinations of J and J.

Holomorphic J is always anomalous.

The existence of a bound on the lightest charged operator
has more to do with anomaly.



U(1) and WGC

One should consider general non-holomorphic U(1),
especially if making connection to WGC.

The anomaly of U(1) is characterized by integer (k - k)/2.
The anomaly of the Z2 subgroup is a = (-1)k-k72,

R)/z

Our Z2 odd bound — AdS3s WGC for U(1), odd (K -
) K =

c.f. Montero-Shiu-Soler for holomorphic U(1

We believe that a bootstrap bound on charged operators
can be derived for general anomalous U(1), k - k # 0.



U(1) and WGC

But there is no bound for non-anomalous U(1), k - k = 0.

Counter-example at c=1:
Free compact boson with radius R.

Momentum U(1) and winding U(1), both non-anomalous.

Charged operators become arbitrarily heavy for arbitrarily
small or large radius R.

Tensor with CFTs = Counter-examples for other c values.



Outlook

e (Generalize to other discrete groups.
— Connection to condensed matter physics.

* (Generalize to non-symmetry lines.
— Fusion categories (sneak preview next).

* Relation between anomaly and bounds on charged
operators in higher dimensions?

— Cannot work for discrete symmetry, since any
unitary bosonic anomaly can be carried by TQFT with
identity being the unigue local operator.

— What about continuous symmetries?




Fusion categories

e Topological lines can form a fusion algebra that is not a
group, but a ring.

e This generalizes:

Symmetry group — Grothendieck ring
Anomaly — Fusion category

* A fusion category includes information about the crossing
relations of lines.
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Fibonacci

Fusion algebra (Grothendieck ring):
W2 =1]+W.

Operators have charges

1++/5
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There is one fusion category compatible with unitarity.
— Realized in tricritical Ising, etc.

There is one that is necessarily non-unitary.
— Realized in Lee-Yang CFT.



Fibonacci

e Similar to Z2, the two fusion categories for Fibonacci have
different spin selection rules.

e Fusion category compatible with CFT unitarity:

2
c/Z+<0, -
ez (o)

e Fusion category incompatible with CFT unitarity:

1
c / 0, =
S ]E{ 5}
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Fibonacci (unitary)



Thank you!
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