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Anomaly in CFT
• In Lagrangian field theory, the anomaly of a continuous 

symmetry is determined by the content of massless 
charged fermions. 
 
     Anomaly ↔ Massless charged fermions


• In CFT on Rd, all states are massless. Without a 
Lagrangian, the connection between anomaly and 
massless states is obscure.



The Quest
• What does anomaly entail in CFT?


• Is there a connection between anomaly and light local 
operators? Or equivalently, light states on R1 x Sd-1?



The Plan
• In 2d CFT, there is a powerful way to constrain the 

spectrum of local operators (states on R1 x S1): 
     Modular bootstrap.


• Let us consider the simplest setup: 
     2d bosonic CFT with Z2 flavor symmetry.


• We ask: 
     How does the anomaly affect the universal bootstrap 
constraints on the spectrum?



Menu
• Introduce Z2 anomaly using symmetry defects.


• Formulate modular bootstrap including Z2 symmetry lines.


• Present bounds and discuss implications.


• Consider U(1) and relation to AdS3 weak gravity 
conjecture.


• Bonus: Fusion category and the modular bootstrap.



Z2 symmetry lines
• 0-form symmetry → codimension 1 symmetry defects.


• In 2d, these are lines.


• Z2 commutes with Virasoro2 → the lines are topological.


• Operators are transformed by Z2 when a line crosses. 
 
 

ϕ = ± ϕ



Defect operators
• Lines can end on bosons, fermions or anyons. 


• Via the cylinder map, these “defect operators” 
correspond to states on the cylinder quantized with 
“twisted” periodic boundary conditions. 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Defect operators
• Defect operators are point-like, but non-local. 

     c.f. Electron in QED must be attached to a Wilson line.


• Symmetry lines are topological → Spectrum of defect 
operators organize into Virasoro2 families. 
 

• Non-locality: 
     Spins            no longer need to be integer. 
     We will see that the fractional part obeys a spin 
selection rule determined by the anomaly.

ZL(τ, τ̄) = TrHL
e2πi(τL0−τ̄ L̄0−

c+c̄

12
) =

∑

h,h̄

nh,h̄χh(τ)χh̄(τ̄), nh,h̄ ∈ Z≥0

h− h̄



Crossing
• Consider these two local configurations of lines: 

 
 
 
 
 

• On each side, the state on the circle is the vacuum.


• So they must be proportional to each other.

= α



Crossing
• Crossing relation: 

 
 
 
 
 

= α= α

α = ±1



Obstruction to orbifold
• Can we gauge the Z2?  The “would-be” partition function: 

 
 
 
 

•                                                      if            . 
 

•                 ill-defined if                → Cannot gauge.

Zorbifold =
1

2
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Anomaly
• Crossing relation: 

 
 
 
 

• Non-anomalous:


• Anomalous:

= α

α = 1

α = −1

= α



Spin selection rule
• The spins of defect operators are constrained by 

considering the T transformation: 
 
 
 

• Acting on each state,                         .


• The spins of defect operators in HL must obey 

T
→

T
→

T
2
= e

4πis
= α

s ∈

{

Z/2 α = 1

Z/2 + 1/4 α = −1



Partition functions
•  

 
 

•  
 
 

•
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∑

h,h̄

(n+

h,h̄
+ n−

h,h̄
)χh(τ)χh̄(τ̄)

ZL(τ, τ̄) =
∑

h,h̄

(n+

h,h̄
− n−

h,h̄
)χh(τ)χh̄(τ̄)

ZL(τ, τ̄) =
∑

h,h̄

nL

h,h̄χh(τ)χh̄(τ̄)



Modular S transform
→


→


→



Positive basis
• To derive constraints by bootstrap, we need to work with 

objects that have positive expansions.


• Consider combinations of partition functions that count 
states without sign: 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Modular crossing
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• The modular crossing equation written in the positive 
basis is 
 
 
 

• Anomaly determines the spin content of HL. 



Modular bootstrap
• We can expand this equation in characters 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Modular bootstrap
• Schematically, 

 

• To proceed, make some assumption about the spectrum. 
e.g. Lightest odd primary has scaling dimension Δ.


• Try to disprove the assumption: 
→ Act by a vector-valued linear functional     . 
→ If we manage to make            non-negative for all 
allowed        , then we have a contradiction. 
→ Profit!

0⃗ =
∑

H+

n+

h,h̄
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Modular bootstrap
• We make use of 

     Virasoro2 symmetry 
     Positivity of degeneracies 
     Modular covariance 
     Spin selection rule for HL ← Anomaly dependent!      

• …to produce constraints on the spectrum: 
     Bound on the gap in each sector 
     Bound on the scalar gap



Bound on Gap
Non-anomalous Anomalous

Even ✓ ✓

Odd ✓

Twisted



Odd gap
• Bound on odd gap only exists when Z2 is anomalous. 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Odd gap
• When Z2 is non-anomalous, the lightest charged operator 

can be arbitrarily heavy. 
 
→ Non-anomalous symmetry can be hard to detect.


• In contrast, when Z2 is anomalous, there must be “light” 
enough charged operators. 
 
→ Anomalous symmetry is difficult to “hide”.



A Cardy-like argument
• Consider the modular S transform in the Cardy limit: 

 
 
 
 
                     Low T                            High T


• RHS has Cardy growth determined by the effective 
vacuum energy E0 = c/12 - Δ0.


• Anomalous spin selection rule implies that the lightest 
defect operator has Δ0 ≥ 1/4.

→



A Cardy-like argument
• Anomalous: 

 
 
 
 
 
     Cardy growth of n+ + n-  >  Cardy growth of n+ - n-.


• Therefore, n- has nontrivial Cardy growth.


• Lightest odd operator < Onset of Cardy regime.



Partition functions
•  

 
 

•  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Even gap
• Bounds on the even gap depend on the anomaly, but in a 

less drastic way.


• Saturated or almost saturated by several WZW models.


• We can analytically write down a cubic-derivative 
functional to derive a bound valid at large central charge. 
     → Same slope as Simeon’s bound.



Even gap
• Anomalous 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Even gap
• Non-anomalous 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Even scalar gap and RG
• Given a CFT with a symmetry, a natural question is 

whether it is reachable by symmetry-preserving RG flows.


• More precisely, can we reach it without fine-tuning?


• This requires the absence of symmetry-preserving 
relevant scalar primaries.


• Otherwise, close to the fixed point, the relevant 
deformation is generically turned on, and drives the flow 
further towards the IR.



Even scalar gap and RG
• For small values of the central charge, bootstrap shows 

that there necessarily exists a symmetry-preserving 
relevant scalar primary.


• No-Go: 
     CFT with Z2 symmetry cannot be obtained by RG flow 
that only preserves Z2, and without fine-tuning, if the 
central charge is in the following range: 
 
Anomalous:  1 < c < 7 
Non-anomalous:  1 < c < 7.81



Even scalar gap
• Anomalous 

 
 
 
 
 
 
 
 
 
  (E7)1

5 10 15 20 25
c0

2

4

6

8

10
Δgap
+



Even scalar gap
• Non-anomalous 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A moment of Z2en



A moment of Z2en
• Usually, the anomaly of a discrete symmetry constrains 

the gapped phase of QFT: 
 
     Either there is a TQFT to match the anomaly… 
 
     Or the symmetry is spontaneously broken.


• Here, we use Z2 anomaly to constrain local operators in a 
gapless phase.



A moment of Z2en
• Universal bound on the odd gap exists for anomalous Z2 

 
     …does not exist for non-anomalous Z2.


• Universal bound on the even gap exists and differ for 
anomalous and non-anomalous Z2 
 
     …saturated by various WZW models.


• Universal bound on the even scalar gap 
 
     …led to a No-Go result about RG flows.



A moment of Z2en
• Our results have direct implications on any symmetry 

group G that contains Z2 as a subgroup.


• Anomaly of G → Anomaly of subgroup.


• Universal bound on odd operators under anomalous Z2 
→ Universal bound on charged operators under G, if the 
Z2 subgroup is anomalous.


• We will see an explicit example momentarily.



A moment of Z2en
• Consider G = U(1).


• Wait…a bound on the lightest U(1) charged operator? 
Smells like the weak gravity conjecture in AdS3.


• Why is there only a bound when anomalous?



U(1) and WGC
• Modular bootstrap with holomorphic “U(1)” flavor 

symmetry has been studied by  
     Benjamin-Dyer-Fitzpatrick-Kachru [1603.09745]  
     Montero-Shiu-Soler [1606.08438].


• They obtained bounds on the lightest charged operator.


• They claimed to prove the AdS3 version of the weak 
gravity conjecture.


• …The interpretation of their results requires a closer 
examination.



U(1) and WGC
• Generically, a holomorphic J generates not U(1) but R.


• More precisely, the symmetry group generated by J and J ̅
together may have topology T2, but the compact 
directions are generated by combinations of J and J.̅


• Holomorphic J is always anomalous.


• The existence of a bound on the lightest charged operator 
has more to do with anomaly.



U(1) and WGC
• One should consider general non-holomorphic U(1), 

especially if making connection to WGC.


• The anomaly of U(1) is characterized by integer (k - k)̅/2.


• The anomaly of the Z2 subgroup is α = (-1)(k-k)̅/2.


• Our Z2 odd bound → AdS3 WGC for U(1), odd (k - k)̅/2. 
     c.f. Montero-Shiu-Soler for holomorphic U(1), k ̅= 0.


• We believe that a bootstrap bound on charged operators 
can be derived for general anomalous U(1), k - k ̅≠ 0.



U(1) and WGC
• But there is no bound for non-anomalous U(1), k - k ̅= 0. 


• Counter-example at c=1: 
     Free compact boson with radius R.


• Momentum U(1) and winding U(1), both non-anomalous.


• Charged operators become arbitrarily heavy for arbitrarily 
small or large radius R.


• Tensor with CFTs → Counter-examples for other c values.



Outlook
• Generalize to other discrete groups. 

     → Connection to condensed matter physics.


• Generalize to non-symmetry lines. 
     → Fusion categories (sneak preview next).


• Relation between anomaly and bounds on charged 
operators in higher dimensions? 
     → Cannot work for discrete symmetry, since any 
unitary bosonic anomaly can be carried by TQFT with 
identity being the unique local operator. 
     → What about continuous symmetries?



Fusion categories
• Topological lines can form a fusion algebra that is not a 

group, but a ring.


• This generalizes: 
     Symmetry group → Grothendieck ring 
     Anomaly → Fusion category


• A fusion category includes information about the crossing 
relations of lines.

= α + β



Fibonacci
• Fusion algebra (Grothendieck ring): 

     W2 = I + W.


• Operators have charges 
 
                                                         .


• There is one fusion category compatible with unitarity. 
     → Realized in tricritical Ising, etc.


• There is one that is necessarily non-unitary. 
     → Realized in Lee-Yang CFT.

⟨W ⟩ =
1±

√
5

2



Fibonacci
• Similar to Z2, the two fusion categories for Fibonacci have 

different spin selection rules.


• Fusion category compatible with CFT unitarity:


• Fusion category incompatible with CFT unitarity:

s ∈ Z±

{

0,
2

5

}

s ∈ Z±

{

0,
1

5

}



Fibonacci (unitary)

(g2)1 (f4)1

2 4 6 8
c

0.5

1.0

1.5

2.0

Δgap

<W> = 1+ 5
2

<W> = 1- 5
2



Thank you! 

ありがとうございました！


