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• Observations of SLSNe and possible 
scenarios

• Extremely bright in UV SLSN Gaia16apd 
(MUV ~  -23 mag), PTF12dam

• Radiation hydrodynamics simulations of 
SLSN-I outbursts: multicolor light curves 
(from X-rays to NIR), color evolution, 
photospheric temperature and velocity 
evolution. The influence of opacity, 
metallicity of CSM

• High-z supernovae: faint/superluminous?

Outline

(Image credit: NASA)



• SLSNe (Type I (no hydrogen), Type II) are more luminous than -21
magnitude (arbitrary cut) in any optical band at the maximum
brightness

• Rise ~ 20-70 d, decline ~ 20-500 d

Erad ~ (1-10) .1051 erg, rate/CC ~ 0.01%

~ 100 SLSNe, z ~ 0.1 – 3.9

(PTF, Pan-STARRS)

SLSN discoveries:

SN 2006gy (Smith+2007),

SN 2005ap (Quimby+2007)

Superluminous supernovae (SLSNe)

Gal-Yam 2012
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Superluminous SNe: 1999as @z=0.127



Most luminous SLSNe

Credit: The ASAS-SN team



SLSN subclasses

(Perley 2014)

SLSN I normal
Rapid light curve decay (~20-60 d)
Quimby+2011

SLSN I-R (SN 2007bi-like)

Exponential light curve decay
Gal Yam+2009

SLSN I - fast (PS1-10afx)

Very fast rise and fall (~ 10-20 d)
Chornock+2013
Probably a lensed Ia
Quimby+2013, 2014

SLSN II-n 
Narrow/intermediate H lines,
rapid rise, but very slow fall (~100 d)

SLSN IIn-peculiar (SN 2006gy)

Complicated, evolving H profile
Extremely long-lived (~300 d)

SLSN II-L (SN 2008es, CSS121025)

Broad H lines only after peak,
short-lived with fast decay

SN Ia-CSM (SN 2012ca)

IIn lines overlying Ia spectrum
e.g. Dilday+2012, Silverman+2013

• Type I (no hydrogen), Type II



• Type IIn (SN 2006gy) are attributed to CSM interaction (narrow and
intermediate width hydrogen emission lines)

• The hot blue continuum and high

peak luminosity happened early,

late interaction for some SLSN-II

Hydrogen-rich (Type II) SLSNe

Inserra+ 2016

Inserra+ 2016



Hydrogen-poor(Type I) PTF SLSN light curves 

• No obvious gap between rapidly- and slowly-declining events

• Smoothed light curves of 26 PTF SLSNe normalized at peak (De Cia+2017)



PTF SLSN-I spectroscopy

• Series of 5 lines of O II,
which may persist until
shortly after maximum light
(signature of the class?).

• After oxygen recombination
(around 15,000 K) maximum
Ca II H&K, Mg II, Si II, and
Fe II. A few weeks after
maximum, SLSNe-I start to
resemble SNe Ic at maximum
light

• Velocities are comparable to
normal Ic:
10500±3100km/s for SLSNe,
9800±2500km/s for Ic,
slower decline for SLSNe

(Nicholl+ 2015)



Fe II λ5169Å absorption velocities

• No systematic difference in velocities for SLSNe Ic between fast-declining
light curves and slow-declining light curves.

• Similarities in observations indicate that SLSNe Ic and SNe Ic-bl may have
similar explosion engines, which is consistent with a multi-D magnetar
model in Suzuki & Maeda (2017).

(Liu+ 2017)



SLSN Host Galaxies

(Leloudas+2005)

• The approximate cosmic rate is 
low, but significant
~ 1/3000 supernovae at z ~ 0, on  

average. But, ~ 1/600 in metal-
poor galaxies.

• SLSNe-I have distinct 
environments from other SNe
SLSNe-I, SLSN-II, GRBs, and 
(other) cc-SNe all have statistically 
different host populations

• SLSNe-I may prefer the most 
intensely star-forming galaxies
Partially (entirely?) a side-effect of 
metallicity preference.

(Perley 2017)

• High metallicity strongly suppresses SLSNe-I
Low (<1/2 Solar), but not very low 



Peak – magnitude and redshift distributions (PTF) 

(De Cia+ 2017)

• Higher redshift (up to z ∼ 4).
JWST is expected to be able to
detect SLSNe out to z ∼ 20
(Abbott+ 2017).

• PTF typically discovers SLSNe
below z < 1.

• Pan-STARRS1 SLSNe tend to be
at higher redshift (z > 0.5).



Doubled peak of SLSN-I 
(Nicholl+2016)

• 8 of 14 SLSN-I with early 
data 

• Shock breakout

• Postshock cooling

• Interaction with CSM

• T ~  20,000 K and rapid 
cooling, consistent with 
a shock in extended 
materia (Smith+2016)



SLSN-I PTF15esb: bumpy light curve

• Multiple-shell CSM interaction model. Late-time H (+100d). He?



X-ray observations of SLSN-I

• 26 nearby SLSN-I with Swift, 
Chandra and XMM (Margutti
2017) 

• X-ray observations of SLSNe-I 
spanning the time range 10-
2000 days (red circles for 
upper limits, black circles for 
detections) show that 
superluminous X-ray emission 
of the kind detected at the 
location of SCP06F6



Hydrogen-poor UV-bright Gaia16apd

• Extraordinarily UV-bright emission among superluminous
supernovae (Kangas et al. 2017; Yan et al. 2017; Nicholl 2017)



Gaia16apd far-UV spectrum (Yan+17)
• The complete and reliable identification of the UV absorption 

features requires future detailed modeling

• Tentative comparison with the published synthetic UV spectra (made 
available by D. Kasen) suggests that Gaia16apd may be an explosion 
of a massive C+O core with a sub-solar metal abundance



• (Yan+17) z=0.1018, L=3.1044 erg, trise=33d (uncertain up to 72d), 50%
luminosity in 1000-2500A. Spectrum is similar to PS1-11bam, 6
spectral features similar to SN1992A, SN2017fe (SNIa), ejecta
velocity 14,000 km/s, no X-rays

• (Kangas+17), spectroscopically similar to PTF12dam,
v=15,600…19,800 km/s from -16.2d to +2.8d; 12,700-12,400 from
+2.8d to +43d; v=10,000 at +150d

• Interaction? Magnetar? PISN?

SLSN-I Gaia16apd (SN 2016eay)

(Image credit: Kavli IPMU)



(Sorokina+ 2016)

Arguments for interaction model



• ONeMg core + envelope (model for SN 
1054, Tominaga+ 2013)  

• Rapidly-evolving faint transients started to 
be observed (Drout2013) 

• SN 1994W model of Chugai&Blinnikov2004

Multicolor light curves: models with mass loss



Similarity of SLSN2015bn to “Hypernovae” 
at late times (by R. Margutti)



• Optical light curves of slow-fading SLSN 
(Nicholl et al. 2013)

• Spectral evolution of PTF12dam 
(Nicholl et al. 2013), lack of 
hydrogen/helium 

SLSN I-R PTF12dam: light curves and spectra



• ”Magnetar” fits are based on oversimplified models. 

• The spin-down energy is converted into shell kinetic energy – Not into luminosity! 
(Badjin, Barkov, Blinnikov, in prep)

PTF12dam: bolometric light curves and “magnetar” fit 
(Nicholl et al. 2013)



Simulated and observed light curves (Baklanov et al. 2015)



SN 2007bi: PISN, CCSN models

• Moriya et al. 2010• Gal-Yam et al. 2009

Figure 2: Radioactive 56Ni and total ejected mass 
from the light-curve evolution of SN 2007bi are well 
fitted using PISN models.



• Bolometric light curves of 
PTF12dam in observations 
and models (Chen 2014, 
Nicholl et al 2013,     
Kozyreva 2017,        
Baklanov et al 2015)

PTF12dam: PISN, CCSN models



Interaction model: 
composition and structure of pre-SN

• MZAMS=100 M⊙ , Z = Z⊙ /200 
(Umeda&Nomoto 2008)

• PTF12dam: pre-SN C+O core 
(43M⊙), Mcut =3M⊙

• Postprocess explosive 
nucleosynthesis (used by 
Moriya et al. (2010) for       
SN 2007bi)

• 1 day hydro after explosion + 
extended CSM

• Parameters: MCSM, RCSM, TCSM,

M(56Ni), composition of CSM
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Numerical code STELLA

STELLA (STatic Eddington-factor Low-
velocity Limit Approximation)  (Blinnikov
et al. 1998)

• 1D Lagrangian Hydro + Radiation 
Moments Equations (2D), VEF closure, 
multigroup (100-300 groups, up to 
1000), implicit scheme

• Opacity includes photoionization, 
free-free absorption, lines and 
electron scattering (Blandford & Payne 
1981). Ionization – Saha’s
approximation

• STELLA  was used in modeling of many 
SN light curves:  SN 1987A, SN 1993J 
and many others (Blinnikov et al.  
2006)
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Moment equations: 

Transfer equation: 

Comoving radiative transfer equation (Mihalas 1980) 



Kavli IPMU, Tokyo Univ

Semi-analytic relativistic hydro + 
Relativistic radiation transfer 
(no closure condition) (Tolstov et al. 2015) 

Closure condition: P = fE

• Eddington approximation: f = 1/3        

• M1-closure (Levermore, 1984)

f = f(E,F) joins  “optically thin”

and “thick” cases 

• Photon Boltzmann equation

Shock tube configuration 
(Farris et al., 2008), Pr/Pg ≈ 10

30

SRRHD. Radiation-dominated mildly-relativistic shock



STELLA RADA integration (Tolstov2010)

STELLA

Hydro  

Radiation Moments

Static Eddington factors

Fluxes in comoving frame    

Output: Fluxes o(v/c) in observer 
frame

HD relativistic corrections
(Misner & Sharp, 1969)
V ->  V/[1+(V/C)2] 1/2

Doppler effect

RADA (relativistic, time-dependant)

Boltzmann transport equation

Time-dependent Eddington factors

Fluxes in comoving frame

Output: Fluxes in observer frame



Params Value

M_ej, M⊙ 40

M_CSM, M⊙ 38

T_CSM, K 2500

lg R_CSM, cm 16.5

p 2

E_51 20

M(56Ni) , M⊙ 6

AMHT, M⊙ 10

X_CSM He:C=9:1

PTF12dam R16 model. Multicolor light curves



Params Value

M_ej, M⊙ 40

M_CSM, M⊙ 38

T_CSM, K 2500

lg R_CSM, cm 16.5

p 2

E_51 20

M(56Ni) , M⊙ 6

AMHT, M⊙ 10

X_CSM He:C=9:1

Gaia16apd R16 model. Multicolor light curves



• Near the peak luminosity

• Emission heats the gas

PTF12dam R16 model. Shock wave hydro

• After the peak luminosity 

• Light curve decline 
(radioactive decay of 
56Ni to 56Co to 56Fe)



Photosperic temperature and radius



• Effective temperature evolution of 
PTF 12dam and SN 2007bi compared 
with magnetar-powered and PI 
models (Nicholl 2013)

• Tcolor - temperature of the blackbody 
whose SED most closely fits the data;  
Teff = (L/(4πσ R2))1/4

• Color and effective temperature 
evolution of PTF 12dam and SN 2007bi 
compared with interaction model

PTF12dam R16 model. Temperature evolution



• Flux measurements of the broad 
SN lines of PTF12dam in the GTC 
spectrum taken at +509d (Chen 
2014).

PTF12dam R16 model. Velocity evolution 



• STELLA run-time calculations (1000 
groups): before shock breakout, near 
the peak luminosity, +350d after 
maximum  

• TARDIS code (Kerzendorf & Sim 2014) 
post-process calculations: 
comparison with the observed 
spectrum near maximum light 

PTF12dam R16 model. Spectral synthesis (in progress)



• Gaia16apd: extremely luminous UV  emission among SLSNe (Yan+17, 
Nicholl+17, Kangas+17).

• Simulations: multicolor radiation hydrodynamics. Comparison of light curves, 
color temperature evolution and photospheric velocities.

)

Models of Gaia16apd 

• Shock interaction with CSM

Interaction models (N ~ 100) (Tolstov+2017):  Mej = 40 M⊙,  MCSM = 3…100 
M⊙,  log RCSM = 14…17 cm,     E51,kin = 5…60,     CO / He composition,   M(56Ni) 
= 0…6 M⊙.

• Magnetar pumping

Magnetar models (N ~ 30) constructed from  SN 1998bw ejecta Mej ~ 10 M⊙

with various magnetar parameters around P = 1 ms, B = 1014 G. 

• Pair-instability supernova

He130Ni55 progenitor model (Heger&Woosley 2002), R = 4 R⊙, M(56Ni) = 55 
M⊙, M = 57 M⊙,  E51,dep = 44.



• Which model best fits the UV data?

• The best-fit (chi-squared 
minimization) of UV and optical light 
curves to Gaia16apd among ~ 150 
models.

• Conclusion: interaction model is the 
most promising to explain extreme 
UV luminosity of Gaia16apd.

)

• Shock interaction with CSM       

• Magnetar pumping

• Pair-instability supernova

Ultraviolet Emission of Gaia16apd 



Gaia16apd color evolution

• The interaction model (CO) 
is in better agreement with 
observations. 

• The magnetar model has a 
slower reddening than 
observations. 

• The PISN model is in good 
agreement with the 
observed reddening rate, 
but the model evolves 
about 50 days earlier than 
the observed one. 

• g - r color evolution is more 
consistent with the 
magnetar and the PISN 
model.  



Gaia16apd color temperature evolution

• The temperature decline 
rate is a better fit to the 
observed values in 
interaction models 

• Variation of chemical 
composition of CSM.

• The interaction models do 
not produce X-ray 
emission: radiation-
dominated shock wave,  Tej

~ 20,000-30,000 K 

• Tcolor - temperature of the 
blackbody whose SED 
most closely fits the data;  
Teff = (L/(4πσ R2))1/4



High-Redshift SNe

• High Redshift SNe z = 3.9 
(Cooke+ 2012)

• Superluminous SNe?

• CSM interaction?

• CC SN 1000+0216,       
z=3.8993

• Type Ia SN UDS10Wil, 
z=1.914 

Timeline of redshift records
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The first supernova explosions

First supernovae (SNe)：

near future detections!

How do they explode? 

How to identify them?

➢ Simulations：

.     first supernovae -

explosions of first stars

(compact, zero-metal

stars)    

➢ Purpose:

Progenitor  > Supernova          > Supernova remnant    > Next generation starShock    >  
breakout

Photometric easy-to-
use indicator of first SN 
explosions for current 
and future surveys 
(HSC/Subaru, LSST, 
WFIRST, JWST).
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Metal-rich
star

Normal SN: 
bright, long, red

First SN: 
faint, 
short, 
blue

Progenitor  > Supernova          > Supernova remnant    > Next generation starShock    >  
breakout

Metal-poor
star

Zero-metal
star



Pop III stars – Pop III GRB – Pop III SNe

Heger & Woosley 2002, Joggert+11, Joggert+12, Yoon+12, Whalen+13, Whalen+14, 
Smidt+14, Chen+14, Hirano+15, Chen+16, Hartwig+17 



First stars
• 400 million years after Big Bang                   

Direct insight into the age of galaxy formation
Image credit: NASA/WMAP

• Elemental abundance ratio in EMP stars 
(Iwamoto et al., 2003, 2005)

Understanding of the earliest star 
formation and the chemical 
enrichment history of the Universe!

• 2nd generation (low mass) extremely
metal-poor (EMP, [Fe/H]<-3) stars:
abundance pattern and distribution
(mixing)

• Abundance pattern of EMP stars
provides constraints on mass, explosion
energy of first supernovae

• Light curves and spectra of first
supernovae (including shock breakout)

• Observational signature of first
supernovae (M, E, abundance)
expected from 1st stars

• Rough IMF and constraints on star
formation rate



Hyper Metal Poor (HMP) stars





■:  E51=1 (supernova) 
▲:  E51= 10 (hypernova)

Nucleosynthesis signatures. SM 0313-6708 vs. 
Pop III SN yields M=25M◎ and 40M◎

• The majority of 
the EMP stars are 
better explained 
by the Pop III star 
models with < 40 
M◎

• Jet-like SN 
explosion or week 
explosion

Tominaga 2007, Ishigaki+ 2015, 2017



Pop III presupernova composition and structure



Bolometric light curves of z0 SNe



Light curves and spectra M=25M⊙

• Light curves: M(56Ni) = 0.01 M⊙

Bumps due to zero metallicity 

• SED evolution from shock breakout 
to “plateau” phase



Zero vs solar metallicity

• Photospheric velocities zero-metallicity
and solar metallicity progenitors, 
parametrized by the explosion energy 
E51, M=25M⊙

• Color evolution light curves, z=2.  
Solar metallicity (20-25 Mʘ) and zero-
metallicity (25 M⊙, 40 M⊙, 100 M⊙) 
models. SNe -solid lines, HNs - dashed 
lines. 



Light curves at redshift z=5, 100M⊙ HN vs 25M⊙ SN

• Light curves: M(56Ni)=0.01 M⊙

JWST

JWST

WFIRST

WFIRST



Relativistic effects 



Multidimensional effects 



Opacity effects 



• We propose that some SLSNe (PTF12dam, Gaia16apd) are PPISN, where the
outer envelope of a progenitor is ejected during the pulsations. UV light
curves, color and temperature evolution fit the observations. Parameters:
E51=20…30, Mej+env=40M⊙+20…40M⊙, M(56Ni)=6…7 M⊙, R = 1016 cm.

• Open questions: CO/He composition, “dark helium”, time scale of the
formation of the envelope and its radius, density and temperature profiles,
asymmetric explosion, velocities.

• The magnetar model requires more detailed simulations of high-energy
effects: pair-productions, spectral transport of gamma-rays, inverse
Compton, coupling of wind and plasma.

• Both searches of local faint SNe and very luminous SNe at high z should be
performed.

• Pop III core-collapse SNe with MMS ≲ 40–60 M⊙ : shorter, bluer, and fainter
than ordinary SNe.

• The plateau phase is common to both BSG and RSG, but can be bumpy.

Summary 


