

Modelling thermonuclear supernovae

<u>explosion simulations</u> <u>nucleosynthesis</u> <u>observables</u> <u>Ivo Seitenzahl</u> UNSW Canberra @ ADFA

IPMU, Japan 9 May 2019

University of New South Wales Canberra at the Australian Defence Force Academy

1111

overview

8

simulations

SNe la gave use the accelerating Universe What else besides Cosmology?

→ Nobel Prize for the discovery of the accelerated expansion of the Universe

- SNe la used by SN Cosmoloav Proiect
- High-red Univers expans

(Perlmu In spite of the Nobel Prize, progenitor system(s) and explosion mechanism(s) of SNe la are unknown.

Brian Schmidt Adam Riess Saul Perlmutter

Image:

SNe la gave use the accelerating Universe What else besides Cosmology?

terstellarpeadinan

Heavy element

ESO/ALMA

Dissipation of kinetic energy / galaxy feedback / star formation Supernova remnant

Positron production

Cosmic-ray energy spectrum From supernova remnants Possibly from another galactic source? From extragalactic sources 0² 10¹⁵ 10¹⁸ Energy (electron volts)

> Cosmic rays / high energy photons

progenitor WD structure

2 major categories near-M_{Ch} vs sub-M_{Ch}

e.g., delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- explode expanded/-ing profile
- burning includes high density
 - ★ low entropy freeze-out
 - ★ electron captures

e.g., violent mergers He double-detonations

- M_{primary} ≈ 0.8[™]—1.1 solar masses
- ignition occurs as
 - violent accretion stream triggers detonation
 - ★ He-layer detonates
- detonate hydrostatic profile
- burning at relatively low density

Spectral comparison inconclusive

Other distinguishing observables?

⁵⁶Ni and ⁵⁶Co γ-rays detected for SN 2014J by INTEGRAL

nucleosynthesis considerations

Regimes of explosive carbon/oxygen burning

Stable Fe and ⁵⁷Ni Flörs et al., 2018, A&A 620, 200

NSE freeze-out

Manganese - Mn

- > 1: low entropy NSE most ⁵⁵Co is produced here
- > 2: high entropy NSE ⁵⁵Co(p,g)⁵⁶Ni destroys ⁵⁵Co
- 3: incomplete Si-burning some ⁵⁵Co is produced here
 - Densities in merger model too low to enter [1]
 - Merger model produces less
 ⁵⁵Co for same ⁵⁶Ni
 - ⁵⁵Co → ⁵⁵Fe → ⁵⁵Mn - ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe

-3 10^{9} violent merger (Pakmor+ 2012) og(peak density) [g cm⁻³] 10^{8} 10^{7} 10^{6} 10^{5} 7 8 9 10 3 5 2 4 6 peak Temperature [10⁹ K]

log(⁵⁵Co) mass fraction

Manganese - Mn

$[Mn/Fe] \coloneqq \log(N(Mn) / N(Fe))_{\bullet} - \log(N(Mn) / N(Fe))_{\odot}$

model name	SN type	masses	[Mn/Fe]	
To explain the Mn to Fe ratio in the Sun, SNe la				
from near-M _{ch} primaries must exist!				
NIJUUEI	1a	mear-mich	0.42	
W7	Ia	near-M _{Ch}	0.15	
W7	ไล	near-M _{Cb}	0.02	
GCE simulations give best match to solar				
neighbourhood for mix of near-Mch and sub-Mch				
WW95B ^{b}	II	$11 < M/M_{\odot} < 40$	-0.15 ^c	
$LC03D^d$	II	$13 < M/M_{\odot} < 35$	-0.27^{c}	
N06	II+HN	$13 < M/M_{\odot} < 40$	-0.31 ^c	

Seitenzahl et al. (2013), A&A, 559, L5

late phases & radioactivity

positron emission

	deca	ay chains	
⁵⁶ Ni $\xrightarrow{t_{1/2}= 6.08d}$	56 Co $- \frac{t_{1/2}}{-}$ 77.2d	$\rightarrow {}^{56}\mathrm{Fe}$ 5/2–85	.51 % 10.71 %
⁵⁷ Ni $\xrightarrow{t_{1/2}=35.60h}$	57 Co $-\frac{t_{1/2}=271.79}{-}$	\xrightarrow{d} ⁵⁷ Fe 122.06 keV	136.47 keV
55 Co $\xrightarrow{t_{1/2}=17.53h}$	$- {}^{55}\mathrm{Fe} - {}^{t_{1/2}=999.67}$	\xrightarrow{d} ⁵⁵ Mn	
Table 1. Radioactive	e decay energies (ke V	(decay^{-1})	
Nucleus Auger e^{-}	- IC $e^ e^+$	X-ray	
⁵⁷ Co 7.594	10.22 0.000	3.598	
56 Co 3.355	0.374 115.7	1.588	
55 Fe 3.973	0.000 0.000	1.635	
Seitenzahl, Taubenberge	er & Sim (2009), MNRAS,	400, 531 3/2–	9.15 %
		1/2-	↓ 14.41 keV
At late times, i	nternal conv	ersion	

electrons, Auger electrons, and

X-rays matter/become dominant

sources for energy injection.

Figure 1: Ground state and first two exited levels of 57 Fe showing γ -ray energies and intensities for the decay of 57 Co.

Seitenzahl (2011), PrPNP, 66, 329

distinguishing models at late-time

CANBERRA

Seitenzahl+ (2009), MNRAS, 400, 531 ; Röpke+ (2012), ApJL, 750, L19

distinguishing models at late-time

Dimitriadis+ 2017, MNRAS, 468, 3798

supernova remnant tomography with coronal lines in the shocked ejecta

Coronal lines

Voulgaris et al. 2012, Solar Physics, 278, 187

MUSE on UT4 "Yepun"

SNR 0519-69.0 R: X-ray, G: Fe XIV, B:Ha

SNR 0509-67.5 R: X-ray, G: Fe XIV, B:Ha

Constraining the models with SNR evolution Leahy & Williams, ascl:1703.006

Values at specified time:

Blast-wave shock electron temperature: 7.266e+07 K Reverse shock electron temperature: 5.061e+08 K Blast-wave shock radius: 3.436 pc Reverse shock radius: 2.684 pc Blast-wave shock velocity: 6193 km/s

Reverse shock velocity: 4469 km/s

Phase transition times: ED to ST: 431.2 yr ST to PDS: 2.516e+04 yr PDS to merger: 2.055e+06 yr

Also [Fe XV] 7062.1

Dec (J2000)

[S XII] 7613.1 (red) [Fe IX] 8236.8 (blue)

BLASPHEMER models

BLASt Propagation in Highly EMitting EnviRonment by Martin Laming

Shock velocities time-dependent Leahy & Williams, ascl:1703.006

SNR tomography has the potential to probe the timeevolution history of the RS

- Broad coronal lines in ejecta behind RS in three young
 Type Ia SNRs in the LMC: NEW DIAGNOSTIC
- Gives first direct measurement of reverse shock speed
- If ages are known, then we can constrain allowed explosion parameters via SNR evolution models
 - → (mass, ambient density, explosion energy)
- Further coronal lines allow for supernova tomography of the nucleosynthesis products in the ejecta

Ferrand, Warren, Ono, Nagataki, Röpke, Seitenzahl, 2019, ApJ (accepted)

NBERRA

CA

- Broad coronal lines in ejecta behind RS in three young
 Type Ia SNRs in the LMC: NEW DIAGNOSTIC
- Gives first direct measurement of reverse shock speed
- If ages are known, then we can constrain allowed explosion parameters via SNR evolution models
 - → (mass, ambient density, explosion energy)
- Further coronal lines allow for supernova tomography of the nucleosynthesis products in the ejecta

ESO PR image [O III] green, Ne I red, X-ray blue

Fig. 1. Energy distribution of the X-ray point source p1 in E 0102 (black curve), compared with that of a Cas A-like CCO observed at the same distance (blue curve, top), and our best-fit, absorbed, single blackbody component model with $kT_{BB} = 0.19 \text{ keV}$ (red curve, bottom). Given its brightness and spectral signature, p1 is consistent with being a CCO ~0.2 keV cooler than that of Cas A (Pavlov & Luna 2009).

NS cooling curves for light elem. env.

Fitted red- and blue-shifted H-alpha

1E0102.2-7219 with MUSE

Our *Mappings* shock model calculations indicate enhancements relative to hydrogen in region 1:

235,000 times SMC for O 100,000 times SMC for S 160,000 times SMC for CI 195,000 times SMC for Ar

Ferrand, Warren, Ono, Nagataki, Röpke, Seitenzahl, 2019, ApJ (accepted)

Vogt, Seitenzahl et al, A&A, 602, L4

Ν

BERRA

Vogt, Seitenzahl et al, A&A, 602, L4

SN la energetics

~10⁵¹ erg released during ~1 sec of explosive burning transformed into E_{kin} and work against gravity.

distinguishing models at late-time

We find evidence for ⁵⁷Co dominated phase Best fit to model: 2 x solar ⁵⁷Ni/⁵⁶Ni

