IPMU APEC Seminar July 22nd 2019

THE GRAMS PROJECT

DUAL MEV GAMMA-RAY AND DARK MATTER
OBSERVATORY

TSUGUO ARAMAKI, SLAC

OUTLINE

Dark Matter Search with Antimatter

Current status and recent results of indirect dark matter search Why is antimatter survey important?

Antimatter-based dark matter search with GAPS and GRAMS

MeV Gamma-Ray Observations

Current status of MeV gamma-ray observations Why are MeV gamma-ray observations important? MeV gamma-ray observations with GRAMS

GRAMS Current Status and Future Prospects

R&D Program
Application to other fields

<u>Summary</u>

GRAMS First Paper: <u>arXiv:1901.03430</u>
Accepted in Astroparticle Physics
Aramaki et al., 2019

DARK MATTER SEARCH

EVIDENCE FOR DARK MATTER

GALAXY CLUSTERS

ZWICKY IN 1930S COMA CLUSTER

GALAXIES MOVING TOO FAST!

INVISIBLE/MISSING MASS FOR HIGH VELOCITY

GRAVITATIONAL LENSING

INVISIBLE/MISSING MASS = DARK MATTER

27% OF OUR UNIVERSE IS DARK MATTER (DM)

Large scale structure and galaxy clusters were created by dark matter density fluctuation in early universe

ASTROPHYSICAL PHENOMENA INDICATE THAT DM SHOULD BE:

1) LONG LIFETIME

Stable particle on galactic time scale
Otherwise DM wouldn't be seen in Astrophysical phenomena

2) VERY SMALL INTERACTION WITH NORMAL MATTER

Or else DM would have been easily detected long time ago

3) NON RELATIVISTIC (SLOW)

Otherwise there would be lower density fluctuation in the early universe and less large scale structures in the present

VARIOUS DM MODELS ARE PROPOSED TO EXPLAIN ASTROPHYSICAL PHENOMENA

WEAKLY INTERACTING MASSIVE PARTICLE = WIMP (> 10 GeV)

WIMP weak-scale interaction cross-section coincidentally gives right dark matter relic abundance seen in astrophysical phenomena

NO SIGNS OF DETECTION IN DM SEARCH → MORE FOCUS ON LOW-MASS DM

OTHER DARK MATTER CANDIDATES

US COSMIC VISIONS 2017 (arXiv:1707.04591)

Dark Sector Candidates, Anomalies, and Search Techniques

DIRECT DM SEARCH

- DM interaction inside the detector

LZ/LUX, XENON, DarkSide

SuperCDMS

- Measure scintillation, charge, phonon
- Underground lab to minimize cosmic-rays

COLLIDER SEARCH

- Artificially produce DM particles
- Measure missing energy/momentum
- Mono-X search to trigger events

INDIRECT DM SEARCH

- Measure DM annihilation/decay products

MEASURE DM ANNIHILATION/DECAY PRODUCTS

q, h, W, e+, γ , \vee , \overline{p} , \overline{d} , \overline{n} ...

POSITRON:

AMS-02, PAMELA, DAMPE...

GAMMA RAY:

FERMI-LAT, VERITAS, CTA, GRAMS...

NEUTRINO:

ICECUBE, ANTARES...

ANTIPROTON:

AMS-02, PAMELA, BESS, GAPS, GRAMS

ANTIDEUTERON:

AMS-02, BESS, GAPS, GRAMS

ANTIHELIUM:

AMS-02, GRAMS

COMPLEMENTARY SEARCHES WITH DIFFERENT DETECTION METHODS AND BACKGROUND MODELS ARE CRUCIAL TO VALIDATE DM SIGNATURES

RECENT RESULTS FROM FERMI-LAT

Launched in June 2008, targeting 20MeV - 300GeV gamma-rays

Possible DM signatures from Galactic Center Region (GCE) Inconsistent with dwarf spheroidal galaxy (dSph) observations

DIFFICULT TO VERIFY DM SIGNATURES DUE TO MIMIC SIGNAL FROM BACKGROUND NEED A NEW APPROACH/EXPERIMENT TO VALIDATE THE RESULTS

Launched in May 2011, targeting cosmic-rays including antiparticles

Possible DM detection in antiproton measurements Possible detection of antiheliums and antideutrons

- ► Antiproton excess: ~50GeV DM (consistent with Fermi GCE) or cosmic-ray interaction?
- Antiheluim detection:
 - ▶ If from DM, a large excess should be seen in the antiproton/antideuteron fluxes?
 - ▶ antimatter clouds in our galaxy?

NEED A NEW APPROACH, EXPERIMENT TO VALIDATE THE RESULTS

WHY ANTIDEUTERONS?

BACKGROUND-FREE DM SEARCH AT LOW-ENERGY

GAPS FIRST SCIENCE FLIGHT IS SCHEDULED FROM ANTARCTIC IN 2021 GRAMS: NEXT GENERATION EXPERIMENT

GAPS/GRAMS DETECTION CONCEPT

MEASURE ATOMIC X-RAYS AND ANNIHILATION PRODUCTS

GAPS/GRAMS ANTIDEUTERON IDENTIFICATION TECHNIQUE

15

CR p, e * REJECTION: ANTIPROTON AND ANTIDEUTERON SELECTION

Select slow particles with TOF

Simultaneous detection of secondary/annihilation products (pions/protons)

▶ Slow CR p and e + may not be able to produce secondary particles

ANTIDEUTERON IDENTIFICATION FROM ANTIPROTONS

atomic X-rays from exotic atom

different energy

pion/proton multiplicity

more for antideuterons

stopping range (depth sensing)

antideuterons go deeper

dE/dX energy deposit in layers

more for antideuterons

EXPECTED BACKGROUND/MIMIC EVENTS ~0.01

GAPS DETECTOR

Si(Li) DETECTOR: 4 inch, 2.5mm thick wafer

- 10 layers, about 140 Si(Li) detectors/layer
- Segmented into 8 strips>3D particle tracking
- Energy/timing resolution: 4 keV, ~100 ns
- Operation temperature: -40C
 cooled with oscillating heat pipe (OHP)
- ► Dual channel electronics

20-80 keV: X-rays

0.1-50MeV: charged particles

TOF PLASTIC SCINTILLATORS: 18cm x 1.6m x 5mm

- ► Identify incoming charged particles
- ► 1m separation between inner/outer TOF
- ► Timing resolution: 0.5ns, SiPMs on each end

WELL-STUDIED, WIDELY-USED SI(LI) AND PLASTIC SCINTILLATORS SUCCESSFULLY DEMONSTRATED THE PERFORMANCE IN THE ENGINEERING FLIGHT

GRAMS DETECTOR

LARTPC DETECTOR SURROUNDED BY PLASTIC SCINTILLATORS LARTPC MEASURES SCINTILLATION LIGHT AND IONIZATION ELECTRONS

Plastic Scintillators: TOF - measure velocity and incoming angle

LArTPC: Calorimeter and particle tracker

- Scintillation light at SiPMs to trigger events
- Wires/pads on anode plane (X, Y), drift time (Z) to provide a 3D image/track
- ► Well-studied, widely-used in large-scale DM/neutrino experiments

Scintillation light localized by segmentation to reduce coincident background

GRAMS SENSITIVITY IN DM PARAMETER SPACE

GRAMS COULD FULLY INVESTIGATE FERMI GCE AND AMS-02 ANTIPROTON EXCESS CURRENTLY EVALUATING GRAMS ANTIHELIUM SENSITIVITY

MEV GAMMA-RAY OBSERVATION

CURRENT STATUS OF MEV GAMMA-RAY OBSERVATIONS

ASTROPHYSICAL OBJECTS

- Neutron stars: high matter density
- Magnetars: strong magnetic field
- ► AGNs/Blazars: powerful jets
- Cosmic MeV gamma-ray background Inoue et al., 2019

GAMMA-RAY LINE STUDY

- Positron annihilation: 511 keV
- Nuclear lies are typically in ~MeV
- Radioactive isotopes provide physical condition during nucleosynthesis
 - Core-collapse SNe: ²⁶Al (1809keV), ⁶⁰Fe (1173keV, 1333keV), ⁴⁴Ti (1157keV)
 - ► Thermonuclear SNe: ⁵⁶Co (847keV)
 - ► Neutron capture: ²H (2223keV)
 - Cosmic-ray interactions: ¹²C* (4438keV)

MULTI-MESSENGER ASTRONOMY

- ► EM counterparts of NS-NS mergers
- ► r-process in neutron star mergers/remnants Wu et al., 2019

DARK MATTER SEARCH

MeV gamma rays from DM annihilation

WHY IS IT DIFFICULT TO MEASURE MEV GAMMA-RAYS?

- Compton scattering dominates in the MeV energy region
- ► Both energy & position resolutions need to be good for event reconstruction
 - ► Challenging to have a large-scale detector

COMPTEL (The Imaging Compton Telescope)

- ► launched into space in 1991
- ► installed on Compton Gamma-Ray Observatory
- energy range: 0.75 30 MeV
- ▶ spacial resolution: ~ 40cm³
- ► Detected ~30 sources

COSI (The Compton Spectrometer and Imager)

- ▶ 12 HPGe crystals (2x2x3), double-sided stripped
- energy range: 0.2 5 MeV
- spacial resolution: ~ 2mm³
- 1st balloon flight from Antarctica in 2014
- 2nd flight from New Zealand in 2016

LARTPC DETECTORS HAVE BEEN WELL-STUDIED AND WIDELY-USED FOR LARGE-SCALE NEUTRINO/DARK MATTER SEARCH EXPERIMENTS

LARTPC DETECTOR SURROUNDED BY PLASTIC SCINTILLATORS LARTPC MEASURES SCINTILLATION LIGHT AND IONIZATION ELECTRONS

Plastic Scintillators: Veto incoming charged particles

LArTPC: Compton camera and calorimeter (for pair-production)

- Scintillation light at SiPMs to trigger events
- Wires/pads on anode plane (X, Y), drift time (Z) to provide a 3D image/track

Signal localized by segmentation to reduce coincident background Neutron events can be separated based on the pulse shape

EVENT RECONSTRUCTION FOR COMPTON SCATTERING

$$E = E_1 + E_2 + E_3$$

$$\cos\theta = 1 - m_e c^2 \left(\frac{1}{E_2 + E_3} - \frac{1}{E_1 + E_2 + E_3} \right)$$

$$\cos\theta' = 1 - m_e c^2 \left(\frac{1}{E_3} - \frac{1}{E_2 + E_3} \right)$$

$$E = E_1 + E_2 + E_3$$

$$\cos\theta = 1 - m_e c^2 \left(\frac{1}{E_2 + E_3} - \frac{1}{E_1 + E_2 + E_3} \right)$$

$$\cos\theta = 1 - m_e c^2 \left(\frac{1}{E_2 + E_3} - \frac{1}{E_1 + E_2 + E_3} \right)$$

$$\cos\theta' = 1 - m_e c^2 \left(\frac{1}{E_3} - \frac{1}{E_2 + E_3} \right)$$

$$E'_3 = -\frac{E_2}{2} + \sqrt{\frac{E_2^2}{4} + \frac{E_2 m_e c^2}{1 - \cos\theta'}}$$

LARTPC VS. SEMICONDUCTOR DETECTOR

LARTPC IS COST-EFFECTIVE AND EASILY EXPANDABLE TO A LARGER-SCALE, MUCH LESS CHANNELS/ELECTRONICS REQUIRED, ALMOST NO DEAD VOLUME

GRAMS EFFECTIVE AREA

- ► Compton scattering: interaction points should be separated by > 10cm
- ▶ Pair production: both e+ and e- should stop within detector, leave tracks > 2cm

GRAMS MEV GAMMA-RAY CONTINUUM SENSITIVITY

SINGLE BALLOON FLIGHT: AN ORDER OF MAGNITUDE IMPROVED SATELLITE MISSION: COMPARABLE (BETTER) TO FUTURE MISSIONS

CURRENT STATUS AND FUTURE PROSPECTS

GRAMS COLLABORATION

Tsuguo Aramaki, SLAC

GAPS, SuperCDMS
GRAMS antimatter search

Georgia Karagiorgi, Columbia U

MicroBoone, SBND, DUNE GRAMS LATTPC design

Hirokazu Odaka, U of Tokyo

Astro-H, Suzaku
GRAMS event reconstruction

Yoshiyuki Inoue, RIKEN

Astrophysics theorist (AGN etc.) GRAMS MeV gamma-ray science

Charles Hailey: professor at Columbia U, GAPS PI, NuSTAR Co-I Pelle Hansson: former SLAC physicist/engineer, ATLAS, SuperCDMS, DUNE

First collaboration meeting in July 2019 at Columbia University, Nevis Lab

Possible Future Collaborations

SLAC DUNE, LZ, Stanford nEXO, MIT/UCLA/UCSD/Hawaii GAPS, Columbia theory group ...

R&D FOR PROOF OF CONCEPT — IN A FEW YEARS

- Validate detection concept
- ► Develop event reconstruction technique

Submitted proposals to NASA APRA, SLAC LDRD programs

FIRST BALLOON FLIGHT (STARTING WITH AN ENGINEERING FLIGHT) - IN 5-10 YEARS

- MeV gamma-ray observations
 - Focusing on bright objects, Nuclear lines
- ► Antimatter-based indirect DM search
 - Possibly detect antideuterons from DM in the first flight
 - ► Investigate Fermi/AMS-02 results

TPC DESIGN UPGRADE/DEVELOPMENT - IN 10 YEARS

► Improve energy/position resolutions, event reconstruction

"Event Circle" becomes "Event Arc"

- ► Finer pitch of anode wires/pads to track Compton scattered electrons
- Add calorimeters to improve the performance of Energy measurement

SATELLITE MISSION - IN > 10 YEARS

- All sky survey in the MeV energy domain
- Antimatter-based (including antihelium) DM search

- ► GRAMS is the first experiment to target both **gamma-ray observations** in the poorly explored MeV energy band and **antimatter-based dark matter search**.
- With a cost-effective, large-scale LArTPC detector, the sensitivity to MeV gamma rays can be more than an order of magnitude improved compared to previous experiments.
- ► GRAMS antideutron measurements can provide **essentially background-free dark matter signatures** while deeply investigating and validating the possible dark matter detection indicated in **Fermi GCE** and **AMS-02 antiproton** excess.
- ► The project is currently in the **R&D phase** and will demonstrate the detection concept using a small-scale prototype detector, **MiniGRAMS**.
- ► Project will then become a balloon experiment, as a step forward to a satellite mission with detector upgrades.
- ► GRAMS detector technology can also be **applicable to** other fields, such as **nuclear medicine** and **homeland security**.