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Whatare gravitational waves?

General Theory of Relativity: Gravity is a manifestation of

matter curving space-time geometry 1 8 G
R,uz/ - Eg[LVR = 7 T///'
Changes in matter distribution appear to distant Curvature Matter

observers as a time dependent change in their local
Space-time geometry
Local expansion and contraction of space

The changes propagate away from the source as a wave
travelling at the speed of light
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Dynamics during and after inflation
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J. Garcia-Bellido, Phil. Trans. R. Soc. Lond. A 357 (1999) 3237.
J. Garcia-Bellido. astro-ph/0502139



Parametric resonance:
example 1. two field inflation

Let us assume that inflation is driven by a single field, but is coupled to a
subdominant field,

1 1 1
V(g X) = 5mgd” + 5max” + 59°¢°X
(x) =0

In this case the linearized equations of motion for the fluctuations are
5(5k —+ (k2 + mi)&bk — ()  asimple harmonic oscillator 5¢k ~ ei\/k’2+m§5t
0¥ + (K +m2 + g*0*)dxx = 0

wl% (t) = k? + mi T 92902 () a time-dependent frequency

1

O+ Ve =0 o(t) =sin(mgt)



Parametric resonance:
example 1: two field inflation

Equations of motion for the fluctuation
OXk + (k2 — mi — 92902)5Xk — ()  periodic frequency: Hill’s equation

Typically written in the form

dQQk
dz?

+ [Ar + ¢F(2)]yx(2) = 0
z = mgt q=g>®*/(2m])
Ay = (K +m2 + 16207 /m?
yk(2) = €7 g1(2) + e 2 ga(2)
Wavenumbers k with R|[jx] > 0 dXk grow exponentially, parametric resonance

[tk pure imaginary, modes are stable and no parametric resonance



Example 2. single field inflation

Sic + [k + Vgo()] 96k = 0

A
V(o)
l >
¢(ﬁnal) ¢(initial) ¢
Tachyonic preheating k2 /a2 + 02V /0% < 0

Tachyonic oscillations

Parametric resonance periodic frequency: Hill’s equation



Perturbation amplification and oscillon formation

Oscillons:

* spatially localised oscillating scalar field
configurations with large amplitude

* extremely long-lived

* radiate energy

e often tend to be spherical

Formation conditions:

* growth of perturbations is strong,
non-liner interactions is important

e potential opens up away from it
minimum

Possible consequences:
« affect expansion history
* production of gravitational waves

Figure credit: M. A. Amin, R. Easther, H. Finkel, R. Flauger and M. P. Hertzberg,
Phys. Rev. Lett. 108, 241302 (2012)



Gravitational wave background from preheating

General characteristics:
* Peak frequency: f < V174
 Amplitude: independentof energy scale of inflation

» Shape: detailed function of physics



Gravitational wave background from preheating

Example: Vg, x) = %qubz 4+ %gquz)(z
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FIG. 1. We plot the spectrum of gravitational radiation produced during resonance with u = 1078 (left) through to 107 (right) in
units where mp; = 10" GeV = 1, where each spectrum has a value of w10 times larger than the one immediately to the left. The
corresponding initial energy densities run from (4.5 X 10° GeV)* to (4.5 X 10'> GeV)* for our choice of ¢,. The plots are made on
1283 grids, and the ““feature” at high frequency is a numerical artifact.

R. Easther, J. T. Giblin, Jr.and E. A. Lim, Phys. Rev. Lett. 99, 221301 (2007)



Lattice simulation: Equations & Methods
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¢+3H¢—§V¢+3_¢—0
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H? = (V+ 2+—v )
307 ~¢ Vo

Time evolution

Spatial gradient & Laplace

Staggered Leapfrog Method

RK4 Method

Finite difference Method

pseudo-spectral method

LATTICEEASY

Gary Felder, Igor Tkachev

PSpectRe

Richard Easther, Hal Finkel, Nathaniel Roth



Lattice simulation: Methods

Time evolution

f(t)
f(t+dt/2)
f(t+ dt)

LATTICEEASY PSpectRe
Staggered Leapfrog Method RK4 Method
(Second order integration) (Fourth order Runge-Kutta
integration)

= f(t—dt)+dtf(t—dt/2)
= f(t—dt/2) + dtf[f (1)
= f(t) +dtf(t+dt)2)

ki =nhf(xn, yn)
ko = hf(xn + 5h, yn + 3k1)
ks = hf(xn + 5h, yn + 3k2)
ka = hf(xn +h, yn +k3)
Yn+1 = Yn + é]ﬁ + %kz + %k3 + ék4 + O0(h°)



Lattice simulation: Methods

LATTICEEASY PSpectRe
Spatial gradient | Finite difference Method pseudo-spectral method
& Laplace
® ® ® 2 7
. . & :
i —1 I i +1 V k-k
2
d’y ~ Vit — 2y, +Viy free of differencing noise

dx’ (Ax)*



Lattice simulation: Gravitational wave

Gravitational waves are described by transverse and traceless (TT) part of
the metric perturbation in the synchronous gauge

ds* = —dt* + a*(t)(6;; + hyj)dx'dx’

Gravitational waves are sourced by TT-part of the anisotropic stress of the
scalar field

I, = [0,60;¢) " "

The TT-part of the anisotropic stress can be extracted by multiplied by
projection tensor

Po(R) Py () — 5 Pyg(R) Pr (R

where A o
Pij (k) — 52']' — kzk]



Lattice simulation: Gravitational wave

The evolution of the GW is given by
2

hij + 3thj o a—zvzhij = M21a2H

The initial conditions for the metric perturbations are
hij(0) = hij(0) =0
The energy density of the GW is
M3,

paw(t) = =7 (hijx )hiy(x.0)

The spectrum of GW per logarithmic momentum interval is

d paw
Qe (k) = &
aw (k) oe  dk



Lattice simulation: Gravitational wave

Take into account the expansion history of the Universe between the
emission of the GWs and today, the observable spectrum today is

g\ ~1/3
ng,Oh% — ng(ae) X (g_t:)l) Qr,Oh(z)

The observed frequency corresponding to a wave vector kis

f=~27x10" Hz
H



Lattice simulation: Gravitational wave

y . 1 oV

+3H¢p — —=V?¢p + — = 0
6+ 3HO — 5V +

LATTICEEASY or PSpectRe
1

H? = 42+ — |V
hij + 3Hh R Ve 2

ij ij ij = ij GW evolution extension

J J CL2 Af§1a2

LATTICEEASY-GW

PSpectRe-GW



Single field slow-roll infaltion model
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Gravitational Waves from Oscillons with Cuspy Potentials

Jing Liu,"*" Zong-Kuan Guo,"*" Rong-Gen Cai,"*" and Gary Shiu™**
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P.O. Box 2735, Beijing 100190, China
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SDepartment of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
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® (Received 2 August 2017; revised manuscript received 24 November 2017; published 19 January 2018)

We study the production of gravitational waves during oscillations of the inflaton around the minimum
of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon
formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The
discovery of such a double-peak spectrum could test the underlying inflationary physics.
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Axion monodromy inflation with asymptoticlinear
potential

(0¢)? 5 o ¢? 1/2 L. McAllister, E. Silverstein and A. Westphal,
L(¢) = = M1+ - Phys. Rev. D 82, 046003 (2010)
V()
Cuspy potential

V(¢) = MM




Axion monodromy inflation with asymptotic ¢p?/3
potential

) 2 /0.7\2 / 2 . .
, L% (()’Q'»’) 4 (5 E. Silverstein and A. Westphal,
L(y) = ‘\/1 + (_) 5~ — AMp (\/1 + (_> - 1) Phys. Rev. D 78, 106003 (2008)

U':’ c Ye
N2 1/4
dp = |1+ (:%) ] di. V()
I 4\2
£@) =~ %X v
Cuspy potential 1
V() = AMy(36/20.)*

V(g) = A My ?|g[2/3

™~

V() = AM0* /247



Lattice simulation

PSpectRe-GW
pseudo-spectral algorithms

fourth-order-in-time Runge-Kutta
integration

2563 lattice

initial conditions

. .1 . A%
3Hp — —V~ — =0
¢+ 3H¢ — V7o + %
2 _ 1 2 _
H® = 3M§1 (V + qﬁ + \ng[ )
; . ) 2
hij + 3Hhi; — —V?hy; = MZIQZH y

I, = [0:60,6] "

paw (t) = % <ilz'j(xa t)hij(xv t)>v

dpGW
Qe (k 1
aw (k) = oo dk



GW from axion monodromy inflation with asymptotic
linear and ¢?/3 potential
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Summary

* Parametric resonance as a mechanism for GW production

 Two lattice simulation methods:
based on LATTICEEASY and PSpectRe

* GW from axion monodromy inflation during Preheating
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