

Star-forming Galaxies at High Redshift

The feedback impact of energetic cosmic rays

Ellis Owen

Mullard Space Science Laboratory Dept. Space & Climate Physics University College London

ellis.owen.12@ucl.ac.uk

Collaborators Kinwah Wu (MSSL), Xiangyu Jin (McGill), Pooja Surajbali (MPIK), Noriko Kataoka (Kyoto SU), Idunn Jacobsen (MSSL), Suetyi Chan (Nanjing), Brian Yu (MSSL)

HST and ALMA image of MACS1149-JD1 (z=9.11) - NASA/ESA, Hashimoto+ 2018

IPMU, Tokyo – July 2019

Outline

- Star-forming galaxies in the Universe
- Cosmic rays in star-forming galaxies
- Particle propagation
- Energy deposition and heating by particles and radiation
- Implications for star-formation and feedback
- Summary

Star-forming Galaxies in the Universe

Image of simulated Lyman-alpha emission around a high redshift group of protogalaxies – credit: Geach et al.

Local Starbursts

NGC 253

NASA/ESA 2008

Arp 220

ESO 2010

 $\mathcal{R}_{\rm SF} \sim 10 \ {\rm M}_{\odot} \ {\rm yr}^{-1}$ $\sim 220 \ \mathrm{M_{\odot} \ yr^{-1}}$ 4 yr^{-1} $\mathcal{R}_{
m SN}$ $0.1 \ {\rm yr}^{-1}$

 $\sim 10 \ {\rm M}_{\odot} \ {\rm yr}^{-1}$

 $0.1 \ {\rm yr}^{-1}$

High-redshift starbursts (z~6+)

- Low mass, high SF rates
 - $10^8 M_{\odot}$
 - $10s 100s M_{\odot} yr^{-1}$
 - SF efficiencies ~ tens of %
- Some known to host Lyman-α haloes
 - Multi-phase CGM...
- Simulation work suggests possibility of filamentary inflows of gas (cf. works by Keres, Dekel, Birnboim...)

MACS1149-JD1 (HST/ALMA) – NASA/ESA, Hashimoto+ 2018 EGSY8p7 (Hubble/Spitzer) – NASA, Labbe+ 2015 GN-z11 (HST) – NASA, Oesch+ 2015 EGSY-zs8-1(Hubble/Spitzer) – NASA/ESA, Oesch & Momcheva 2015

The high-redshift CGM environment

Cosmic rays in star-forming galaxies

Image credit: Crab Nebula, NASA, ESA 2005

Cosmic rays in the Milky Way

Starbursts as cosmic ray factories

Hillas criterion

 $E_{\max} \le qBR$

- Cosmic rays sources
 - Galactic (internal) in orange

Fig. adapted from Owen 2019 (PhD thesis) See also Kotera & Olinto 2011; Hillas 1984

Cosmic ray acceleration

- Shocks, e.g. SNR
 - First order Fermi acceleration
- Each pass through the shock increases the energy
- After *n* crossings, energy is $E = E_0 \langle \xi \rangle^n$

Cosmic ray acceleration

- Some particles will escape after a crossing – take P as probability of remain, so number remaining after each crossing
- Eliminate *n* and rearrange
- Result is CRs accelerated to high energies, ~GeV and above, following a power-law

 $\Gamma \approx 2.1$

 $N = N_0 P^n$

$$\frac{N}{N_0} = \left(\frac{E}{E_0}\right)^{\frac{\log P}{\log\langle\xi\rangle}} = \left(\frac{E}{E_0}\right)^{-\Gamma}$$

Cosmic ray interactions

with radiation fields $(p\gamma)$

Interaction by particles scattering off ambient photons (starlight, CMB...)

Photopion Interaction

$$p + \gamma \to \Delta^{+} \to \begin{cases} p + \pi^{0} \to p + 2\gamma & \text{+ pion multiplicities at} \\ n + \pi^{+} \to n + \mu^{+} + \nu_{\mu} & \text{higher energies} \end{cases}$$

$$p + e^{+} + \nu_{e} + \bar{\nu}_{\mu} + \nu_{\mu}$$
Photomain Interaction

Cosmic ray interactions

with matter (pp)

Cosmic ray interactions

14

Particle propagation

Image credit: M25 Motorway, Carillon UK Transport

The transport equation (hadrons)

• The transport equation for protons (cooling/momentum diffusion assumed negligible)

$$\frac{\partial n}{\partial t} = \nabla \cdot [D(E, \mathbf{x})\nabla n] + \frac{\partial}{\partial E} [b(E, r)n] - \nabla \cdot [\mathbf{v}n] + Q(E, \mathbf{x}) - S(E, \mathbf{x})$$

$$- \text{ Diffusion dominated, i.e. } \mathbf{v} = 0$$

$$- \text{ Advection dominated, i.e. } D(E, \mathbf{x}) = 0$$

The diffusion zone ('stationary' ISM)

$\frac{\partial n}{\partial t} = \nabla \cdot \left[D(E, \mathbf{x}) \nabla n \right] + \frac{\partial}{\partial E} \left[b(E, r) n \right] - \nabla \cdot \left[\mathbf{x} n \right] + Q(E, \mathbf{x}) - S(E, \mathbf{x})$

M82 in H α (WIYN) and optical (HST) Smith+ 2005

[•]UCL

The diffusion zone ('stationary' ISM)

$$\frac{\partial n}{\partial t} = \nabla \cdot \left[D(E, \mathbf{x}) \nabla n \right] + \frac{\partial}{\partial E} \left[b(E, r) n \right] - \nabla \cdot \left[\mathbf{x} n \right] + Q(E, \mathbf{x}) - S(E, \mathbf{x})$$

- Approximate ISM as a sphere
- Absorption depends on
 - density of CRs
 - density of ISM gas
 - interaction cross section (dominated by pp process)
- CR injection as a BC (for now)
 - restate problem as individual linearly independent events (t' since inj. event)

$$n = \frac{n_0}{\left[4\pi D(E, r')t'\right]^{3/2}} \exp\left\{-\int_0^{t'} c \, dt \,\hat{\sigma}_{p\pi} \, n_{\rm ISM}\right\} \exp\left\{-\frac{r'^2}{4 \, D(E, r')t'}\right\}$$

The diffusion zone ('stationary' ISM)

- Solution for steady-state from continuous injection from single source (time integral)
- Numerically convolve with a source ensemble (MC distribution)
 - Follows ISM gas profile

The diffusion zone ('stationary' ISM)

- Solution for steady-state from continuous injection from single source (time integral)
- Numerically convolve with a source ensemble (MC distribution)
 - Follows ISM gas profile

Secondary electrons

• Injection by the pp attenuation process

- Negligible advection
- No absorption

۲

- Diffusion coefficient same as for protons (depends on charge)

Cosmic ray distribution in 'stationary' ISM

- Electrons calculated for each proton injection diffusion profile (MC distribution)
- Then convolved across **proton** source distribution (i.e. the SN events)

The advection zone (outflows)

$\frac{\partial n}{\partial t} = \nabla \cdot \left[D(E, \mathbf{x}) \nabla n \right] + \frac{\partial}{\partial E} \left[b(E, r) n \right] - \nabla \cdot \left[\mathbf{v} n \right] + Q(E, \mathbf{x}) - S(E, \mathbf{x})$

M82 in H α (WIYN) and optical (HST) Smith+ 2005

The advection zone (outflows)

Hydrodynamical outflow model

Owen+ 2019a; Samui+ 2010

The advection zone (outflows) Particle propagation

• Steady state solutions to transport equation, i.e. $\frac{\partial n}{\partial t} = 0$

Energy deposition and heating

Image credit: National Bunsen Burner Day (March 31st), McGill University 2016

Heating mechanisms & global impacts

• Direct Coulomb (DC)

"quenching"

Also operates in magnetized CGM via CR streaming instability + Alfvén wave dissipation (similar rate)

Indirect Inverse Compton X-rays (IX)

"strangulation"

Also advected CRs may also slow inflows, or heat filaments in CGM by DC, Alfvén dissipation...

Figure based on Tumlinson+ 2017

UCL

Direct Coulomb heating

Zone comparisons

Adapted from Owen+ 2019a (1901.01411)

Indirect heating

ISM reference case

CGM minimum shown here: value in inflow filaments would be higher (proportional to density)

Owen+ 2019b (1905.00338)

CGM structure and implications

Strangulation vs. quenching

Timescales

Estimate by considering condition for them ٠ to no longer be gravitationally bound upper-limit

 $\tau_{\rm Q} = \tau_{\rm mag} + \tau_{\rm DC}$ $\tau_{\rm S} = \tau_{\rm mag} + \tau_{\rm IX}$

 $au_{
m mag}$

Time for ISM to exceed $T_{\rm vir}$ due to DC heating

Magnetic containment time; required for CR effects to develop $au_{\rm mag} \propto {
m SFR}^{-1}$

Time for filament region to exceed $T_{
m vir}$ due to IX heating

Application to real galaxies...

Feedback and star-formation

Image credit: HST image of N90 Star forming region in SMC, NASA/ESA 2007

Inferred behavior of MACS1149-JD1

- Spectroscopic z=9.11 (t = 550 Myr) $\mathcal{R}_{\rm SF} \approx 4.2^{+0.8}_{-1.1} \ {\rm M}_{\odot} \ {\rm yr}^{-1}$
- Two populations of stars
 - One from observed SF activity
 - Other from activity ~100 Myr earlier
- Earlier burst of Star-formation at z=15.4; t=260 Myr (Hashimoto+2018)
- Quenched fairly quickly
 - distinct inferred age of older stellar population – SED, size of Balmer break

HST and ALMA image of MACS1149-JD1 (z=9.11) – NASA/ESA, Hashimoto+ 2018

Can CRs account for the rapid 100 Myr quenching after initial burst?

Can CRs do the job?

- Hashimoto+ 2018 star-formation burst models (intense, medium, slow).
- Schober+ 2013 magnetic field growth, traces cosmic ray containment.
- Consistent with CR strangulation + quenching working together.
 - Radiative heating timescales not consistent with rapid 'quenching'

Why not other mechanisms?

Intrinsic parameters

Owen+ 2019b (1905.00338)

No clear correlation

- 11 more systems selected from literature, post-SB with relatively high stellar mass, but low SFR (plus availability of measured quantities...)
 - Indicative of being in a quiescent stage of their evolution
- Dependence on only intrinsic (internal) parameters
 - Internal feedback not external trigger

Why not other mechanisms?

Extrinsic parameters

Owen+ 2019b (1905.00338)

- Clear trend, not predominantly sudden/stochastic (i.e. mechanical hypernovae, etc)
 - Progressive heating (e.g. by CRs) consistent here too

Summary and outlook

- Cosmic rays are presumably abundant in high redshift starbursts
- Can deposit energy into ISM and multi-component CGM with implications for star-formation quenching/strangulation
- Able to account for the "bursty" star-formation histories in high-z starburst/post-starbursts
- Next steps: sub-galactic and super-galactic scales
 - Detail of internal feedback in molecular clouds/observable signatures
 - Impacts on CGM and flows of matter/energy
 - Impacts on external environment (e.g. cosmic reionisation, gamma-ray background)
- Selected publications:
 - Owen+ 2018 MNRAS 481 666 (arXiv:1808.07837)
 - Owen+ 2019a MNRAS 484 1645 (arXiv:1901.01411)
 - Owen+ 2019b A&A 626 A85 (arXiv:1905.00338)