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Table 1: The particle content of the extended model
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Results in the neutrino Sector Some interesting results in the neutrino sector
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The detailed discussion on neutrino mass generation will be given in the next

section.

The current experiments with the solar, atmospheric, reactor and accelerator
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neutrino generations as N⇥ = 2.980 ± 0.0082 ⇥ 3 [27, 28]. Using the flavor basis

we can write the Charged Current (CC) interaction in the lepton sector in the

flavor basis as

LCC =
g⇤
2
��=e,µ,⇤�L⇥

µ⇤�LW
�
µ +H.c. (1.44)

The particles propagate as their mass eigenstates. The SM neutrinos are trans-

formed from the flavor basis (⇤�L) into the mass basis (⇤̃iL) as

⇤�L = U ⇤̃ıL (1.45)

where U is 3� 3 unitarity matrix. Commonly known as the neutrino mixing ma-

trix as described by UPMNS where PMNS stands for Pontecorvo-Maki-Nakagawa-

sakata [29, 30]. UPMNS is parameterized by three Euler angles and a phase along

13

+'H.'c.'

where sij = sin ⇥ij, cij = cos ⇥ij, � is the Dirac CP- violating phase. The experi-

mental value of the VCKM is well measured and given as

VCKM =

�

⇧⇧⇧⇧⇧⇧⇧⇤

0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016
�0.00012

0.2252± 0.0007 0.97345+0.00015
�0.00016 0.0410+0.0011

�0.0007

0.00862+0.00026
�0.00020 0.0403+0.0011

�0.0007 0.999152+0.000030
�0.000045

⇥

⌃⌃⌃⌃⌃⌃⌃⌅

(1.40)

at the 95% C. L [21]. The quarks masses obtained experimentally are given as

mu = 2.3 MeV,

md = 4.8 MeV,

ms = 95 MeV,

mc = 1.275 GeV,

mb = 4.18 GeV,

mt = 173.21 GeV.

(1.41)

This kind of mixing can not take place in the lepton sector because the SM

neutrinos are considered to be massless.

1.2 Neutrino mass and oscillation

Since neutrino mass generation will be discussed in detail in the following

section, we may simply consider the neutrino mass term here

Lmass = m�⇤R⇤L (Dirac mass) (1.42)
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• The light neutrino Majorana mass matrix
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−1)T (1)

•If µ is very small, O (mν), the mixing mDM
−1 ∼ O(1)

→Large mixing between light and heavy neutrinos
→Heavy neutrino can be produced at high energy colliders

•It will be discussed later that due to the phenomenological constraints
mDM

−1 ≪ 1, but not so small .
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The detailed discussion on neutrino mass generation will be given in the next

section.

The current experiments with the solar, atmospheric, reactor and accelerator

neutrinos give very strong evidences of the neutrino flavor oscillations [22], [23],

[24], [25], [26]. This tells us about the existence of the neutrino mass and the

flavor mixing. The LEP analysis provides a very strong bound on the number of

neutrino generations as N⇥ = 2.980 ± 0.0082 ⇥ 3 [27, 28]. Using the flavor basis

we can write the Charged Current (CC) interaction in the lepton sector in the

flavor basis as

LCC =
g⇤
2
��=e,µ,⇤�L⇥

µ⇤�LW
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µ +H.c. (1.44)

The particles propagate as their mass eigenstates. The SM neutrinos are trans-

formed from the flavor basis (⇤�L) into the mass basis (⇤̃iL) as

⇤�L = U ⇤̃ıL (1.45)

where U is 3� 3 unitarity matrix. Commonly known as the neutrino mixing ma-

trix as described by UPMNS where PMNS stands for Pontecorvo-Maki-Nakagawa-

sakata [29, 30]. UPMNS is parameterized by three Euler angles and a phase along
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where sij = sin ⇥ij, cij = cos ⇥ij, � is the Dirac CP- violating phase. The experi-

mental value of the VCKM is well measured and given as

VCKM =
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⇧⇧⇧⇧⇧⇧⇧⇤

0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016
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(1.40)

at the 95% C. L [21]. The quarks masses obtained experimentally are given as

mu = 2.3 MeV,

md = 4.8 MeV,

ms = 95 MeV,

mc = 1.275 GeV,

mb = 4.18 GeV,

mt = 173.21 GeV.

(1.41)

This kind of mixing can not take place in the lepton sector because the SM

neutrinos are considered to be massless.

1.2 Neutrino mass and oscillation

Since neutrino mass generation will be discussed in detail in the following

section, we may simply consider the neutrino mass term here

Lmass = m�⇤R⇤L (Dirac mass) (1.42)
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flavor mixing. The LEP analysis provides a very strong bound on the number of

neutrino generations as N⇥ = 2.980 ± 0.0082 ⇥ 3 [27, 28]. Using the flavor basis

we can write the Charged Current (CC) interaction in the lepton sector in the

flavor basis as
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The particles propagate as their mass eigenstates. The SM neutrinos are trans-

formed from the flavor basis (⇤�L) into the mass basis (⇤̃iL) as

⇤�L = U ⇤̃ıL (1.45)

where U is 3� 3 unitarity matrix. Commonly known as the neutrino mixing ma-

trix as described by UPMNS where PMNS stands for Pontecorvo-Maki-Nakagawa-

sakata [29, 30]. UPMNS is parameterized by three Euler angles and a phase along
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where sij = sin ⇥ij, cij = cos ⇥ij, � is the Dirac CP- violating phase. The experi-

mental value of the VCKM is well measured and given as

VCKM =
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0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016
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(1.40)

at the 95% C. L [21]. The quarks masses obtained experimentally are given as

mu = 2.3 MeV,

md = 4.8 MeV,

ms = 95 MeV,

mc = 1.275 GeV,

mb = 4.18 GeV,

mt = 173.21 GeV.

(1.41)

This kind of mixing can not take place in the lepton sector because the SM

neutrinos are considered to be massless.

1.2 Neutrino mass and oscillation

Since neutrino mass generation will be discussed in detail in the following

section, we may simply consider the neutrino mass term here

Lmass = m�⇤R⇤L (Dirac mass) (1.42)
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The detailed discussion on neutrino mass generation will be given in the next

section.

The current experiments with the solar, atmospheric, reactor and accelerator

neutrinos give very strong evidences of the neutrino flavor oscillations [22], [23],

[24], [25], [26]. This tells us about the existence of the neutrino mass and the

flavor mixing. The LEP analysis provides a very strong bound on the number of

neutrino generations as N⇥ = 2.980 ± 0.0082 ⇥ 3 [27, 28]. Using the flavor basis

we can write the Charged Current (CC) interaction in the lepton sector in the

flavor basis as

LCC =
g⇤
2
��=e,µ,⇤�L⇥

µ⇤�LW
�
µ +H.c. (1.44)

The particles propagate as their mass eigenstates. The SM neutrinos are trans-

formed from the flavor basis (⇤�L) into the mass basis (⇤̃iL) as

⇤�L = U ⇤̃ıL (1.45)

where U is 3� 3 unitarity matrix. Commonly known as the neutrino mixing ma-

trix as described by UPMNS where PMNS stands for Pontecorvo-Maki-Nakagawa-

sakata [29, 30]. UPMNS is parameterized by three Euler angles and a phase along
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where sij = sin ⇥ij, cij = cos ⇥ij, � is the Dirac CP- violating phase. The experi-

mental value of the VCKM is well measured and given as

VCKM =

�

⇧⇧⇧⇧⇧⇧⇧⇤

0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016
�0.00012

0.2252± 0.0007 0.97345+0.00015
�0.00016 0.0410+0.0011
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�0.00020 0.0403+0.0011

�0.0007 0.999152+0.000030
�0.000045

⇥
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(1.40)

at the 95% C. L [21]. The quarks masses obtained experimentally are given as

mu = 2.3 MeV,

md = 4.8 MeV,

ms = 95 MeV,

mc = 1.275 GeV,

mb = 4.18 GeV,

mt = 173.21 GeV.

(1.41)

This kind of mixing can not take place in the lepton sector because the SM

neutrinos are considered to be massless.

1.2 Neutrino mass and oscillation

Since neutrino mass generation will be discussed in detail in the following

section, we may simply consider the neutrino mass term here

Lmass = m�⇤R⇤L (Dirac mass) (1.42)
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⇤�L = U ⇤̃ıL (1.45)
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trix as described by UPMNS where PMNS stands for Pontecorvo-Maki-Nakagawa-
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where sij = sin ⇥ij, cij = cos ⇥ij, � is the Dirac CP- violating phase. The experi-

mental value of the VCKM is well measured and given as

VCKM =
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at the 95% C. L [21]. The quarks masses obtained experimentally are given as

mu = 2.3 MeV,

md = 4.8 MeV,

ms = 95 MeV,

mc = 1.275 GeV,

mb = 4.18 GeV,

mt = 173.21 GeV.

(1.41)

This kind of mixing can not take place in the lepton sector because the SM

neutrinos are considered to be massless.

1.2 Neutrino mass and oscillation

Since neutrino mass generation will be discussed in detail in the following

section, we may simply consider the neutrino mass term here

Lmass = m�⇤R⇤L (Dirac mass) (1.42)
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'Fermion'Number'Conserving'

Can'be'tested'in'neutrinoless'double'beta'decay'and'
collider'experiments'

�1

A variety of generation mechanisms including 
seesaw, inverse seesaw, a t d i f fe rent 
frameworks at tree and loop levels

Neutrino mass 
ordering 

Normal m3 > m2 > m1

Inverted m2 > m1 > m3

Nature of mixing 
between the flavor 

and  mass  
eigenstates

UPMNS : Unitary or Non − unitary

δ = −
π
2

± π
2

(T2K)
Some 
future 

experiments will answer 

these 
questions.



Some of the Recent results and future 

Standard Model (SM)

can not explain such observation

Extension of the SM is necessary through 
an SM singlet Right Handed Neutrino

Seesaw mechanism 

Invisible decay

Discovery  
of Higgs 

Beyond the SM 
signature 

Neutrino oscillations experiments 
confirm the existence of the tiny neutrinos 

mass and flavor mixing

Can relate

Can be tested @Collider/s in future

Explains the tiny  
neutrino mass



!The Standard Model is
not a complete one

The long − standing question of the
neutrino mass and flavor mixing

are yet − to − be fixed

origin of the

Higgs vacuum stability
Stable/ metastable/ unstable :

needs to be fixed

can not explain the exsitance
of the Dark Matter relic abandance

and the nature of the Dark Matter

Invisible decay of the Higgs boson

nature of the neutrino mass

discovery potential of
the heavy SM − singlet

neutrinos

Several other beyond the Standard Model scenarios
e . g . Flavor physics

Prompt/ Long lived particle

In a nutshell we need a scenario which can efficiently include



Particle content of the model

3 generations of 
SM singlet right handed  
neutrinos (anomaly free)

Yukawa interaction

SU(3)c SU(2)L U(1)Y U(1)X

q
i

L
3 2 +1/6 xq = 1

6xH + 1
3x�

u
i

R
3 1 +2/3 xu = 2

3xH + 1
3x�

d
i

R
3 1 �1/3 xd = �1

3xH + 1
3x�

`
i

L
1 2 �1/2 x` = �1

2xH � x�

e
i

R
1 1 �1 xe = �xH � x�

H 1 2 +1/2 x
0
H

= 1
2xH

N
i

R
1 1 0 x⌫ = �x�

� 1 1 0 x
0
� = 2x�

Table 1. The particle content of the model including the three generations of the right-handed
neutrinos (N i

R, i = 1, 2, 3) and a new scalar field (�).

The Yukawa sector of the model can be written in a gauge invariant way as
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where H̃ ⌘ i⌧
2
H

⇤ and C is the charge conjugate. Due to the gauge invariance the Yukawa

interactions impose

x
0
H = �xq + xu = xq � xd = �x` + x⌫ = x` � xe,

x
0
� = �2x⌫ . (2.3)

Further more using Eq. 2.1 the solutions to these conditions are listed in Table 1. Finally

we obtain that the charges of the particles are controlled by the two parameters, xH

and x� only. Hence we conclude that the U(1)X gauge group can be defined as a linear

combination of the SM U(1)Y and the U(1)B�L. Putting xH = 0 and x� = 1 we can

be reduced to the B�L scenario. Therefore without the loss of generality we fix x� = 1

in our analysis through out the paper. The fourth and the fifth terms in Eq. 2.2 are the

Dirac and Majorana Yukawa terms. Without the loss of generality we use a diagonal basis

for the Majorana Yukawa coupling. After the breaking of theU(1)X and the electroweak

symmetries, the U(1)X gauge boson (Z 0) mass, Majorana masses of the RHNs and neutrino

Dirac masses are generated:

MZ0 = g
0
r
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4
x
2
H
v2 ' 2g0v�,

MN↵ =
Y

↵

Np
2
v�,

M
↵�

D
=

Y
↵�

Dp
2
vSM, (2.4)

– 3 –

Charges before  
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SU(3)c SU(2)L U(1)Y U(1)′

qiL 3 2 +1/6 xq = 1
3xH + 1

6xΦ

ui
R 3 1 +2/3 xu = 4

3xH + 1
6xΦ

diR 3 1 −1/3 xd = −2
3xH + 1

6xΦ

ℓiL 1 2 −1/2 xℓ = −xH − 1
2xΦ

νi
R 1 1 0 xν = −1

2xΦ

eiR 1 1 −1 xe = −2xH − 1
2xΦ

H 1 2 +1/2 xH = xH

Φ 1 1 0 xΦ = xΦ

Table 1: Particle contents. In addition to the SM particle contents, the right-handed neutrino
νi
R (i = 1, 2, 3 denotes the generation index) and a complex scalar Φ are introduced.

covariant derivatives relevant to U(1)Y× U(1)′ are defined as

Dµ ≡ ∂µ − i
(

Y1 YX

)

(

g1 g1X
gX1 gX

)(

Bµ

B′
µ

)

, (2.1)

where Y1 (YX) are U(1)Y (U(1)′) charge of a particle, and the gauge couplings gX1 and g1X are
introduced associated with a kinetic mixing between the two U(1) gauge bosons.

For generation-independent charge assignments, the U(1)′ charges of the fermions are defined
to satisfy the gauge and gravitational anomaly-free conditions:

U(1)′ × [SU(3)C ]
2 : 2xq − xu − xd = 0,

U(1)′ × [SU(2)L]
2 : 3xq + xℓ = 0,

U(1)′ × [U(1)Y ]
2 : xq − 8xu − 2xd + 3xℓ − 6xe = 0,

[U(1)′]2 ×U(1)Y : x2
q − 2x2

u + x2
d − x2

ℓ + x2
e = 0,

[U(1)′]3 : 6x3
q − 3x3

u − 3x3
d + 2x3

ℓ − x3
ν − x3

e = 0,

U(1)′ × [grav.]2 : 6xq − 3xu − 3xd + 2xℓ − xν − xe = 0. (2.2)

In order to reproduce observed fermion masses and flavor mixings, we introduce the following
Yukawa interactions:

LYukawa = −Y ij
u qiLH̃uj

R − Y ij
d qiLHdjR − Y ij

ν ℓiLH̃νj
R − Y ij

e ℓiLHejR − Y i
MΦνic

Rν
i
R + h.c., (2.3)

where H̃ ≡ iτ 2H∗, and the third and fifth terms on the right-hand side are for the seesaw
mechanism to generate neutrino masses. These Yukawa interaction terms impose

xH = −xq + xu = xq − xd = −xℓ + xν = xℓ − xe,

xΦ = −2xν . (2.4)

Solutions to these conditions are listed in Table 1 and are controlled by only two parameters,
xH and xΦ. The two parameters reflect the fact that the U(1)′ gauge group can be defined as

3



three-generations of right-handed (or sterile) heavy neutrinosN , enabling the see-saw mech-

anism of light neutrino mass generation. In such models, N can be produced from a Higgs

boson, or pair produced at colliders via a Z
0. It can further decay with a displaced vertex

depending on its mass. Dedicated experimental searches for a Z 0 decaying to lepton pairs at

CMS place bounds on the Z 0 mass to be mZ0 > 4.5 TeV [9] (for a SM-like gauge coupling).

Recently the ATLAS collaboration analyzed the full Run 2 dataset [10], excluding a Z
0 just

below 5 TeV. For a broad review on models and early LHC strategies, see Ref. [11] and

references therein. To date, no public LHC searches exists yet that target displaced heavy

neutrinos as benchmark, making projections of current and proposed displaced strategies

in several models an attractive focus of research in recent years [12–33].

Current work on displaced neutrinos in U(1)B�L models have focused on displaced

signatures coming from Higgs bosons due to a higher production cross-section [22, 29].

For this reason, production via a Z
0 has had less attention. Early displaced strategies

for a simplified model were recasted in Ref. [27], with focus on a benchmark scenario

with relatively unboosted N . It was shown in Ref. [34] that an enhancement on the Z
0

production is possible, providing enhanced sensitivity to more complete scenarios in the

search for displaced heavy neutrinos when they come from a Z
0. Recently, LHC constrains

on the minimal B � L model were addressed in a global fit in [35] for several choices of

model parameters, but signatures involving displaced heavy neutrinos were not considered.

In this work, we propose to look for a pair of displaced heavy neutrinos in Z
0 decays from

two well-motivated models: the minimal U(1)B�L and the U(1)X version that provides

the cross-section enhancement described in [34]. We show that displaced vertex search

strategies CONCLUDE AFTER OUR FINAL FINDINGS, also if we are sensitive to higher

masses highlight that w.r.t Brian’s work .....

2 The Model

We consider a simple extension of the SM under the gauge group SU(3)c⇥SU(2)L⇥U(1)Y ⇥
U(1)X where U(1)X is realized as the linear combination of the SM U(1)Y and U(1)B�L

symmetry. The non-exotic U(1)X extension has been studied in [36]. The particle content

of the model is given in Teb. 1. In this model three generations of right-hand neutrinos

(RHNs) N i

R
are introduced to obtain an anomaly free scenario. A new scalar field � is also

introduced in the model. The charge assignment of the model does not depend upon the

generations of the fermions as a result the following gauge and gravitational anomalies will

be satisfied:

U(1)X ⇥ [SU(3)C ]
2 : 2xq � xu � xd = 0,

U(1)X ⇥ [SU(2)L]
2 : 3xq + x` = 0,

U(1)X ⇥ [U(1)Y ]
2 : xq � 8xu � 2xd + 3x` � 6xe = 0,

[U(1)X ]2 ⇥U(1)Y : x
2
q � 2x2u + x

2
d
� x

2
`
+ x

2
e = 0,

[U(1)X ]3 : 6x3q � 3x3u � 3x3
d
+ 2x3

`
� x

3
⌫ � x

3
e = 0,
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Gauge and gravitational anomaly-free conditions

Yukawa interactions

SU(3)c SU(2)L U(1)Y U(1)′

qiL 3 2 +1/6 xq = 1
3xH + 1

6xΦ

ui
R 3 1 +2/3 xu = 4

3xH + 1
6xΦ

diR 3 1 −1/3 xd = −2
3xH + 1

6xΦ

ℓiL 1 2 −1/2 xℓ = −xH − 1
2xΦ

νi
R 1 1 0 xν = −1

2xΦ

eiR 1 1 −1 xe = −2xH − 1
2xΦ

H 1 2 +1/2 xH = xH

Φ 1 1 0 xΦ = xΦ

Table 1: Particle contents. In addition to the SM particle contents, the right-handed neutrino
νi
R (i = 1, 2, 3 denotes the generation index) and a complex scalar Φ are introduced.

covariant derivatives relevant to U(1)Y× U(1)′ are defined as

Dµ ≡ ∂µ − i
(

Y1 YX

)

(

g1 g1X
gX1 gX

)(

Bµ

B′
µ

)

, (2.1)

where Y1 (YX) are U(1)Y (U(1)′) charge of a particle, and the gauge couplings gX1 and g1X are
introduced associated with a kinetic mixing between the two U(1) gauge bosons.

For generation-independent charge assignments, the U(1)′ charges of the fermions are defined
to satisfy the gauge and gravitational anomaly-free conditions:
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u − 3x3
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e = 0,

U(1)′ × [grav.]2 : 6xq − 3xu − 3xd + 2xℓ − xν − xe = 0. (2.2)

In order to reproduce observed fermion masses and flavor mixings, we introduce the following
Yukawa interactions:

LYukawa = −Y ij
u qiLH̃uj

R − Y ij
d qiLHdjR − Y ij

ν ℓiLH̃νj
R − Y ij

e ℓiLHejR − Y i
MΦνic

Rν
i
R + h.c., (2.3)

where H̃ ≡ iτ 2H∗, and the third and fifth terms on the right-hand side are for the seesaw
mechanism to generate neutrino masses. These Yukawa interaction terms impose

xH = −xq + xu = xq − xd = −xℓ + xν = xℓ − xe,

xΦ = −2xν . (2.4)

Solutions to these conditions are listed in Table 1 and are controlled by only two parameters,
xH and xΦ. The two parameters reflect the fact that the U(1)′ gauge group can be defined as
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Table 1. The particle content of the model including the three generations of the right-handed
neutrinos (N i

R, i = 1, 2, 3) and a new scalar field (�).

The Yukawa sector of the model can be written in a gauge invariant way as
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Y
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↵
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where H̃ ⌘ i⌧
2
H

⇤ and C is the charge conjugate. Due to the gauge invariance the Yukawa

interactions impose

x
0
H = �xq + xu = xq � xd = �x` + x⌫ = x` � xe,

x
0
� = �2x⌫ . (2.3)

Further more using Eq. 2.1 the solutions to these conditions are listed in Table 1. Finally

we obtain that the charges of the particles are controlled by the two parameters, xH

and x� only. Hence we conclude that the U(1)X gauge group can be defined as a linear

combination of the SM U(1)Y and the U(1)B�L. Putting xH = 0 and x� = 1 we can

be reduced to the B�L scenario. Therefore without the loss of generality we fix x� = 1

in our analysis through out the paper. The fourth and the fifth terms in Eq. 2.2 are the

Dirac and Majorana Yukawa terms. Without the loss of generality we use a diagonal basis

for the Majorana Yukawa coupling. After the breaking of theU(1)X and the electroweak

symmetries, the U(1)X gauge boson (Z 0) mass, Majorana masses of the RHNs and neutrino

Dirac masses are generated:

MZ0 = g
0
r
4v2� +

1

4
x
2
H
v2 ' 2g0v�,

MN↵ =
Y

↵

Np
2
v�,

M
↵�

D
=

Y
↵�

Dp
2
vSM, (2.4)
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Using the above equations, x′�H =
1
2

xH and x′�Φ = 2xΦ we find the charges of the U(1)X

sector is the linear combination of the U(1)Y and U(1)B−L charges .



Another important aspect of these model is  the existence of a  
heavy neutral gauge boson     which interacts with the particles of the 
model

Z′�

SU(3)c⇥SU(2)L⇥U(1)Y⇥U(1)X . The particle content of this model is listed in Table I.

In addition to the SM particle content, three right-handed neutrinos are introduced to can-

cel the gauge and the mixed-gravitational anomalies. A new Higgs field (�), which is singlet

under the SM gauge group, is also introduced to break the U(1)X gauge symmetry by its

vacuum expectation value (VEV). This model is a generalization of the minimal B�L model

[? ? ? ? ? ] and the particle content is the same as the one of the B � L model except

for the U(1)X charge assignment [? ]: U(1)X charge of a particle is a linear combination

of its U(1)Y and U(1)B�L charges with real parameters xH and x�. Since the U(1)X gauge

coupling is a free parameter of the model, we fix x� = 1 throughout this letter, without loss

of generality. Note that in the limit of xH ! 0 the minimal U(1)X model is identical to the

minimal B � L model.

The Yukawa sector of the SM is extended to include

LY � �
3X

↵,�=1

Y
↵�

D
`
↵

L
HN

�

R
� 1

2

3X

↵=1

Y
↵

N
�N↵C

R
N

↵

R
+H.c., (1)

where C denotes taking charge-conjugation, and the first and second terms in the right hand

side are the Dirac and Majorana Yukawa couplings, respectively. Here, we have worked in

the basis where YN is diagonalized without loss of generality. We assume a suitable Higgs
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where gX is the U(1)X gauge coupling, and we have used the LEP constraint [? ? ] v2� � v
2.

With the generation of the Dirac and Majorana masses, type-I seesaw mechanism work to

account for tiny Majorana masse for the light neutrino mass eigenstates. The detail of the

seesaw mechanism and the heavy neutrino decay processes will be discussed later.
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FIG. 2: Production mechanism of the SM Higgs boson in association with a Z boson at the LHC

(left panel) and ILC (right panel) through the Z
0 boson.
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FIG. 1: Bound on the maximum U(1)X gauge coupling (gmax
x ) for MZ

0 = 7.5 TeV.
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FIG. 2: Production mechanism of the SM Higgs boson in association with a Z boson at the LHC

(left panel) and ILC (right panel) through the Z
0 boson.
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FIG. 3: Production mechanism of the SM Higgs boson in association with a Z boson at the LHC

(left panel) and ILC (right panel) through the Z
0 boson.
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and ATLAS (139/fb) 
searches at the LHC 

Run-1 and Run-2 
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background arising from W+jets and multijet events in which one or more jets satisfy the
electron selection criteria is not included in the study.

The SSM signal Z0 ! ee was generated at leading-order (LO) in QCD using PYTHIA 8.186 [59]
with the NNPDF23LO PDF set [70] and the ATLAS A14 set of tuned parameters [71] for
event generation, parton showering and hadronization. The Z0

SSM boson is assumed not
to couple to the SM W and Z bosons and interference between the Z0 boson and the SM Z
boson production amplitudes is neglected. Higher-order QCD corrections were computed
with the same methodology and applied as for the DY background.

The event selection is similar to the one developed for Run 2 [66]. The events have to be
accepted by the single electron trigger which requires at least one electron with transverse
momentum pT > 22 GeV in |h| < 2.5. Events are required to contain exactly two electrons
fulfilling the medium identification working point and have pT > 25 GeV in |h| < 2.47
excluding 1.37 < |h| < 1.52. The electrons are reconstructed and identified as detailed in
Section 4.2.
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Figure 4.20: (a) Invariant mass distribution for events satisfying all selection criteria in the dielectron
channel. The expected background is shown together with a SSM Z0 boson with a mass of 5 TeV.
(b) Observed (solid black line) and expected (dashed black line) upper limits on cross section times
branching ratio (s ⇥ BR) as a function of the SSM Z0 boson mass in the dielectron channel. The
1s (green) and 2s (yellow) expected limit bands are also shown. The predicted s ⇥ BR for SSM Z0

production is shown as a black line. The vertical dashed line indicates the observed mass limit of the
ATLAS Run 2 results using 36.1 fb�1 of

p
s = 13 TeV data [66].

The resulting dielectron invariant mass spectrum (mee) is shown in Figure 4.20(a) for the DY
background as well as for an example Z0 boson with a mass of 5 TeV.

The statistical analysis is performed for the search for a Z0

SSM boson using the mee distribution.
The same methodology is used as in the Run 2 analysis which uses a Bayesian analysis [72].
Upper limits on the cross section for producing a Z0

SSM boson times its branching ratio
(s ⇥ BR) are computed at the 95% CL as a function of the Z0

SSM boson mass. The 95% CL
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FIG. 5: The deviation of the Zh production cross section in the U(1)X model section from the SM

for at the ILC for di↵erent center of mass energies but fixed xH(left panel) and di↵erent xH but

center of mass energy is fixed at 1 TeV. In all these cases we considered MZ
0 has been fixed at 7.5

TeV.

panel) for a variety of the ILC center of mass energy from 250 GeV to 3 TeV. The deviation

for xH = �1.2 (solid) is greater than the deviation for xH = �0.8 (dashed). The deviation

reaches about 8% for xH = �1.2 at the
p
s = 1 TeV ILC. A complementary plot for the

deviation at the
p
s = 1 TeV ILC using MZ0 = 7.5 TeV has been shown in Fig. 4 (right

panel) varying the value of xH . It can be seen that the deviation reaches at the maximum

value of 8% at xH = �1.2.
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gN
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R [gx, xH]2(1 − 4
M2

Ni

M2
Z′ �

)3
2

Z′� → 2N

Right handed neutrino pair production
MZ′� > 2MN (at least)

where C denotes taking charge-conjugation, and the first and second terms on the right-

hand side are the Dirac and Majorana Yukawa couplings, respectively. In order to break the

electroweak and the U(1)X gauge symmetries, we assume a suitable Higgs potential for H

and � to develop their VEVs

hHi =
1
p
2

0

@v

0

1

A , and h�i =
v�
p
2
, (2)

respectively at the potential minimum (with v ' 246 GeV and v� hitherto a free parameter).

After the symmetry breaking, the mass of the U(1)X gauge boson (Z 0 boson), the Majorana

masses for the RHNs and the neutrino Dirac masses are generated as follows:

mZ0 = gX

r
4v2

�
+

1

4
x2

H
v2 ' 2gXv�, (3)

mNi =
Y i

N
p
2
v�, (4)

mij

D
=

Y ij

D
p
2
v, (5)

where gX is the U(1)X gauge coupling. Here we have used the LEP [77], Tevatron [78]

and LHC [79] constraints which generically imply mZ0/gX & 6.9 TeV at 95% CL (for the

B � L case) to assume v2
�
� v2. Also, without loss of generality, we have set our basis

in which YN is diagonal. With the generation of the Dirac and Majorana masses, type-I

seesaw mechanism can be used to account for tiny Majorana masses of the light neutrino

mass eigenstates (see Section IV for more details).

B. Case-II: Alternative U(1)X Model

The other model we consider is the alternative U(1)X model, whose minimal particle

content is listed in Table II.1 Except for the alternative U(1)X charge assignment for the

RHNs, the fermion particle content is the same as in Table I. Note that when we assume the

1 Here, we list the scalar content essential for our discussion in this paper. With only this scalar particle

content, we have Nambu-Goldstone modes more than those eaten by the weak bosons and Z
0 boson since

mixing mass terms for the scalars are forbidden by the gauge symmetry. Thus, we need to introduce

additional (SM-singlet) scalar fields to eliminate phenomenologically dangerous massless modes. Since

there are many possibilities for new scalars and it is easy to arrange a suitable Higgs potential, we do not

discuss a complete Higgs sector in this paper.
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FIG. 2. Left: The lightest RHN pair-production cross sections (normalized by g
2

X
) from the Z

0

boson resonance for xH = 0 (solid), �1.2 (dashed) and 1 (dotted) in Case-I. Right: The production

cross sections (normalized by g
2

X
) for dilepton (solid) a pair of N1’s (dashed) and a pair of N2’s

(dotted) as a function of xH . Here we have chosen mN1 = 500 GeV, mN2 = 1 TeV and mN3 = 2

TeV. In the right panel, we have fixed mZ0 = 4 TeV.

a function of Z 0 boson mass.

Similarly, in the left panel of Fig. 2, we show the RHN pair production cross sections

from the Z 0 boson resonance for xH = 0 (solid), �1.2 (dashed) and 1 (dotted), respectively,

as a function of Z 0 boson mass. Here we have chosen mN1 = 500 GeV, mN2 = 1 TeV and

mN3 = 2 TeV, as in Fig. 1. For mZ0 = 4 TeV, we show in the right panel of Fig. 2 the

production cross sections for the dilepton (solid), a pair of N1’s (dashed) and a pair of N2’s

(dotted) as a function of xH . We can see that the RHN production cross section is enhanced

for xH . �1.5. As has been pointed out in Refs. [43, 44], the ratio of BR(Z 0
! NiNi) to

BR(Z 0
! `+`�) is maximized at xH = �1.2. For this choice, the RHN production process

from Z 0 boson resonance is optimized under the severe LHC dilepton constraints.

B. Case-II

We now repeat the same analysis for the alternative U(1)X model. For simplicity, we

assume all extra scalar fields are very heavy and cannot be produced on-shell from Z 0 boson

decay. Because of the alternative U(1)X charge assignment for the RHNs (see Table II),

the partial decay widths to RHNs in Eq. (12) are enhanced. As discussed in Ref. [86], the
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FIG. 1. Left: The dilepton production cross sections (normalized by g
2

X
) from the Z

0 boson

resonance for xH = 0 (solid), �1.2 (dashed) and 1 (dotted) in Case-I. Right: The corresponding

upper bounds on gX from the recent ATLAS result.

wherefq (fq̄) is the parton distribution function (PDF) for a quark (anti-quark), ŝ = xys is

the invariant mass squared of the colliding quarks with
p
s = 13 TeV for the LHC Run-2,

and the NWA cross section of the colliding quarks to produce Z 0 boson is given by

�̂(ŝ) =
4⇡2

3

�(Z 0
! qq̄)

mZ0
�(ŝ�m2

Z0). (14)

For the PDFs, we employ CTEQ6L [108] with a factorization scale Q = mZ0 for simplicity.

In our calculation, we scale our result by a k-factor of k = 0.947 to match the recent ATLAS

analysis [41]. See Ref. [109] for a procedure to obtain a suitable k-factor. Note that in the

NWA, the cross section is proportional to g2
X
.

In the left panel of Fig. 1, we show the dilepton production cross sections �(pp !

Z 0)BR(Z 0
! `+`�) from the Z 0 boson resonance for xH = 0 (solid), �1.2 (dashed) and

1 (dotted), respectively, as a function of Z 0 boson mass. In this analysis, we have set the

RHN mass spectrum as mN1 = 500 GeV, mN2 = 1 TeV and mN3 = 2 TeV for the calculation

of the dilepton branching ratio. Since the cross section is proportional to g2
X
, we have shown

the cross section normalized by g2
X
. From this figure, we can read o↵ an upper bound on

gX from the LHC upper limit on the dilepton cross section as a function of the dilepton

invariant mass, i.e. mZ0 in our case. For example, using the recent ATLAS result for the

upper bound on �(pp ! Z 0)BR(Z 0
! `+`�)  0.027 fb for mZ0 = 4 TeV [41], we obtain an

upper bound on gX  0.12 for xH = 0 (B � L limit). In the right panel of Fig. 1, we show

these upper bounds on gX for xH = 0 (solid), �1.2 (dashed) and 1 (dotted), respectively, as
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analysis [41]. See Ref. [109] for a procedure to obtain a suitable k-factor. Note that in the

NWA, the cross section is proportional to g2
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! `+`�) from the Z 0 boson resonance for xH = 0 (solid), �1.2 (dashed) and

1 (dotted), respectively, as a function of Z 0 boson mass. In this analysis, we have set the

RHN mass spectrum as mN1 = 500 GeV, mN2 = 1 TeV and mN3 = 2 TeV for the calculation

of the dilepton branching ratio. Since the cross section is proportional to g2
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, we have shown

the cross section normalized by g2
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. From this figure, we can read o↵ an upper bound on

gX from the LHC upper limit on the dilepton cross section as a function of the dilepton

invariant mass, i.e. mZ0 in our case. For example, using the recent ATLAS result for the

upper bound on �(pp ! Z 0)BR(Z 0
! `+`�)  0.027 fb for mZ0 = 4 TeV [41], we obtain an

upper bound on gX  0.12 for xH = 0 (B � L limit). In the right panel of Fig. 1, we show

these upper bounds on gX for xH = 0 (solid), �1.2 (dashed) and 1 (dotted), respectively, as
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Figure 1: The branching ratios of Z 0 boson as a function of xH with a fixed mZ0 = 3 TeV.
The solid lines correspond to mN1 = mZ0/4 and mN2,3 > mZ0/2; the dashed (dotted) lines
correspond to mN1,2 = mZ0/4 and mN3 > mZ0/2 (mN1,2,3 = mZ0/4 ). From top to bottom, the
solid (red, black and blue) lines at xH = �1 are the branching ratios to the first generations of
jets (up and down quarks), RHNs , and charged leptons, respectively. The lines for the RHN
final states correspond to the sum of the branching ratio to all possible RHNs.
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where Nc = 1(3) is the color factor for lepton (quark), QfL is the U(1)X charge of the SM
fermion, and we have neglected all the SM fermion masses. In Fig. 1, we show the Z 0 bo-
son branching ratios for mZ0 = 3 TeV. The solid lines correspond to mN1 = mZ0/4 and
mN2,3 > mZ0/2, the dashed (dotted) lines correspond to mN1,2 = mZ0/4 and mN3 > mZ0/2
(mN1,2,3 = mZ0/4). For the SM final states, we show branching ratios to only the first gener-
ation dilepton and jets (sum of the jets from up and down quarks). The lines for the RHN
final states correspond to the sum of the branching ratio to all possible RHNs. The plot shows
the enhancement of RHNs branching ratios around xH = �0.8 with the maximum values of
the branching ratios, 0.09, 0.16, and 0.23 for the cases with one, two, and three generations
of RHNs, respectively. For the minimal B � L model (xH = 0), the branching ratios are 0.05,
0.09, and 0.13, respectively.

As we have discussed above, the current LHC bound on the Z 0 boson production into the
dilepton final states, which is very severe, requires BR(Z0!NN)

BR(Z0!`+`�) � 1 for the discovery of RHNs at

the future LHC. This ratio is nothing but the ratio between the partial decay widths, �(Z0!NN)
�(Z0! ¯̀̀ )

,
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FIG. 2. Left: The lightest RHN pair-production cross sections (normalized by g
2

X
) from the Z

0

boson resonance for xH = 0 (solid), �1.2 (dashed) and 1 (dotted) in Case-I. Right: The production
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X
) for dilepton (solid) a pair of N1’s (dashed) and a pair of N2’s

(dotted) as a function of xH . Here we have chosen mN1 = 500 GeV, mN2 = 1 TeV and mN3 = 2

TeV. In the right panel, we have fixed mZ0 = 4 TeV.
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With the same parameter choice as in Fig. 1, we show this ratio as a function of xH in Fig. 2.
We find the peaks at xH = �1.2 with the maximum values of 3.25, 6.50, and 9.75, respectively.
Although we have obtained remarkable enhancement factors, they do not reach the values
required in the worst case scenario (see Eq. (2)). Since the enhancement required for the
trilepton final states is extremely large, in the following we focus on the same sign dimuon and
diboson final state, which is the smoking-gun signature of the Majorana RHN production.

Let us now consider an optimistic case and assume that the LHC experiment starts observing
the Z 0 boson production through a dilepton final states with a luminosity below 300 fb�1. In
this case we remove the constraint �(pp ! Z 0

! `+`�) . 2.4 ⇥ 10�2 fb. Instead, we estimate
the cross section �(pp ! Z 0

! `+`�) in order to achieve the RHN production cross section
�(pp ! Z 0

! NN) ' 0.8 fb required for the 5� discovery with the 300 fb�1 luminosity
[17]. Let us fix xH = �1.2 for which the ratio BR(Z 0

! NN)/BR(Z 0
! `+`�) reaches the

maximum values of 3.25, 6.50, and 9.75 for the cases with one, two, and three degenerate RHNs,
respectively. Hence, we obtain �(pp ! Z 0

! `+`�) ' 0.246, 0.123, and 0.0821 fb for each case.
The case with only one generation of RHN is already excluded by the current LHC results at
95 % confidence (see Eq. (1)). Since the number of SM background events is very small for a
high Z 0 boson mass region (mZ0 & 3 TeV), let us here naively require 25 signal events for a
5-� discovery of the Z 0 boson production. Hence, the corresponding luminosities are found to
be L(fb�1) = 203 and 305 for the case with two and three RHNs, respectively. The required
luminosities will be reached at the future LHC.
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FIG. 4. Left: The lightest RHN pair-production cross sections (normalized by g
2

X
) from the Z

0

boson resonance for xH = 0 (solid), �1.2 (dashed) and 1 (dotted) in Case-II. Right: The production

cross sections (normalized by g
2

X
) for dilepton (solid) a pair of N1’s (dashed) and a pair of N2’s

(dotted) as a function of xH . Here we have chosen mN1 = 500 GeV and mN2 = 1 TeV. In the right

panel, we have fixed mZ0 = 4 TeV.

cross section because of the larger U(1)X charge of �4 for N1. For mZ0 = 4 TeV, we show

in the right panel of Fig. 4 (which corresponds to the right panel of Fig. 2) the production

cross sections for the dilepton (solid), a pair of N1’s (dashed) and a pair of N2’s (dotted) as

a function of xH . As in Case-I, the ratio of BR(Z 0
! NiNi) to BR(Z 0

! `+`�) is maximized

at xH = �1.2 and the RHN production process is optimized under the severe LHC dilepton

constraints.

IV. LONG-LIVED RIGHT-HANDED NEUTRINOS

After the breaking of the electroweak and the U(1)X symmetries, we can write the full

neutrino mass matrix as

M⌫ =

0

@ 0 mD

mT

D
mN

1

A . (15)

Without loss of generality, we go to the basis in which the Majorana mass matrix mN is

diagonal, with eigenvalues given in Eqs. (4) (for Case-I) and (8), (9) (for Case-II). The

Dirac mass matrix (mD) elements are given in Eqs. (5) (for Case-I) and (11) (for Case-

II). Diagonalizing the mass matrix in Eq. (15), we obtain the seesaw formula for the light
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Long lived RHNs

Majorana neutrino mass matrix as

m⌫ ' �mDm
�1

N
mT

D
. (16)

We express the light neutrino flavor eigenstate (⌫↵) in terms of the mass eigenstates of the

light (⌫i) and heavy (Ni) Majorana neutrinos:

⌫↵ = N↵i⌫i +R↵iNi , (17)

where R = mDm
�1

N
characterizes the light-heavy neutrino mixing, N =

⇣
1� 1

2
✏
⌘
UPMNS with

✏ = R
⇤
R

T the non-unitarity parameter, and UPMNS is the 3⇥3 light neutrino mixing matrix

which diagonalizes the light neutrino mass matrix as

UT

PMNS
m⌫UPMNS = diag(m1,m2,m3). (18)

In the presence of ✏, the mixing matrix N is not unitary, namely N
†
N 6= 1.

In terms of the neutrino mass eigenstates, the charged current (CC) interaction can be

written as

�LCC =
g
p
2
Wµ`↵�

µPL (N↵j⌫j +R↵jNj) + H.c., (19)

where g is the SU(2)L gauge coupling, `↵ (↵ = e, µ, ⌧) denotes the three generations of SM

charged leptons, and PL = 1

2
(1 � �5) is the left-handed projection operator. Similarly, the

neutral current (NC) interaction is given by

�LNC =
g

2 cos ✓w
Zµ

h
⌫i�

µPL(N
†
N )ij⌫j +Ni�

µPL(R
†
R)ijNj

+
n
⌫i�

µPL(N
†
R)ijNj +H.c.

oi
, (20)

where ✓w is the weak mixing angle. Through these interactions and the original Dirac Yukawa

interactions given in Eqs. (1) and (6), the RHNs mainly decay into N ! `W , ⌫Z, ⌫h, where

h is the SM Higgs boson. If kinematically allowed, these are two-body decays, followed by

the SM decays of the W,Z, h. For smaller RHN masses, these decays will be three-body,

with o↵-shell W,Z, h. Here, we have assumed the U(1)X Higgs boson(s) is heavier than the

RHNs, for simplicity.

In the seesaw model with 2 degenerate RHNs, the upper bound on R has been found in

Ref. [11] as |R↵j| . 0.01 by considering various experimental constraints such as neutrino

14

Diagonalizing

Majorana neutrino mass matrix as

m⌫ ' �mDm
�1

N
mT

D
. (16)

We express the light neutrino flavor eigenstate (⌫↵) in terms of the mass eigenstates of the

light (⌫i) and heavy (Ni) Majorana neutrinos:

⌫↵ = N↵i⌫i +R↵iNi , (17)

where R = mDm
�1

N
characterizes the light-heavy neutrino mixing, N =

⇣
1� 1

2
✏
⌘
UPMNS with

✏ = R
⇤
R

T the non-unitarity parameter, and UPMNS is the 3⇥3 light neutrino mixing matrix

which diagonalizes the light neutrino mass matrix as

UT

PMNS
m⌫UPMNS = diag(m1,m2,m3). (18)

In the presence of ✏, the mixing matrix N is not unitary, namely N
†
N 6= 1.

In terms of the neutrino mass eigenstates, the charged current (CC) interaction can be

written as

�LCC =
g
p
2
Wµ`↵�

µPL (N↵j⌫j +R↵jNj) + H.c., (19)

where g is the SU(2)L gauge coupling, `↵ (↵ = e, µ, ⌧) denotes the three generations of SM

charged leptons, and PL = 1

2
(1 � �5) is the left-handed projection operator. Similarly, the

neutral current (NC) interaction is given by

�LNC =
g

2 cos ✓w
Zµ

h
⌫i�

µPL(N
†
N )ij⌫j +Ni�

µPL(R
†
R)ijNj

+
n
⌫i�

µPL(N
†
R)ijNj +H.c.

oi
, (20)

where ✓w is the weak mixing angle. Through these interactions and the original Dirac Yukawa

interactions given in Eqs. (1) and (6), the RHNs mainly decay into N ! `W , ⌫Z, ⌫h, where

h is the SM Higgs boson. If kinematically allowed, these are two-body decays, followed by

the SM decays of the W,Z, h. For smaller RHN masses, these decays will be three-body,

with o↵-shell W,Z, h. Here, we have assumed the U(1)X Higgs boson(s) is heavier than the

RHNs, for simplicity.

In the seesaw model with 2 degenerate RHNs, the upper bound on R has been found in

Ref. [11] as |R↵j| . 0.01 by considering various experimental constraints such as neutrino

14

Flavor to mass eigenstates

Majorana neutrino mass matrix as

m⌫ ' �mDm
�1

N
mT

D
. (16)

We express the light neutrino flavor eigenstate (⌫↵) in terms of the mass eigenstates of the

light (⌫i) and heavy (Ni) Majorana neutrinos:

⌫↵ = N↵i⌫i +R↵iNi , (17)

where R = mDm
�1

N
characterizes the light-heavy neutrino mixing, N =

⇣
1� 1

2
✏
⌘
UPMNS with

✏ = R
⇤
R

T the non-unitarity parameter, and UPMNS is the 3⇥3 light neutrino mixing matrix

which diagonalizes the light neutrino mass matrix as

UT

PMNS
m⌫UPMNS = diag(m1,m2,m3). (18)

In the presence of ✏, the mixing matrix N is not unitary, namely N
†
N 6= 1.

In terms of the neutrino mass eigenstates, the charged current (CC) interaction can be

written as

�LCC =
g
p
2
Wµ`↵�

µPL (N↵j⌫j +R↵jNj) + H.c., (19)

where g is the SU(2)L gauge coupling, `↵ (↵ = e, µ, ⌧) denotes the three generations of SM

charged leptons, and PL = 1

2
(1 � �5) is the left-handed projection operator. Similarly, the

neutral current (NC) interaction is given by

�LNC =
g

2 cos ✓w
Zµ

h
⌫i�

µPL(N
†
N )ij⌫j +Ni�

µPL(R
†
R)ijNj

+
n
⌫i�

µPL(N
†
R)ijNj +H.c.

oi
, (20)

where ✓w is the weak mixing angle. Through these interactions and the original Dirac Yukawa

interactions given in Eqs. (1) and (6), the RHNs mainly decay into N ! `W , ⌫Z, ⌫h, where

h is the SM Higgs boson. If kinematically allowed, these are two-body decays, followed by

the SM decays of the W,Z, h. For smaller RHN masses, these decays will be three-body,

with o↵-shell W,Z, h. Here, we have assumed the U(1)X Higgs boson(s) is heavier than the

RHNs, for simplicity.

In the seesaw model with 2 degenerate RHNs, the upper bound on R has been found in

Ref. [11] as |R↵j| . 0.01 by considering various experimental constraints such as neutrino

14

Majorana neutrino mass matrix as

m⌫ ' �mDm
�1

N
mT

D
. (16)

We express the light neutrino flavor eigenstate (⌫↵) in terms of the mass eigenstates of the

light (⌫i) and heavy (Ni) Majorana neutrinos:

⌫↵ = N↵i⌫i +R↵iNi , (17)

where R = mDm
�1

N
characterizes the light-heavy neutrino mixing, N =

⇣
1� 1

2
✏
⌘
UPMNS with

✏ = R
⇤
R

T the non-unitarity parameter, and UPMNS is the 3⇥3 light neutrino mixing matrix

which diagonalizes the light neutrino mass matrix as

UT

PMNS
m⌫UPMNS = diag(m1,m2,m3). (18)

In the presence of ✏, the mixing matrix N is not unitary, namely N
†
N 6= 1.

In terms of the neutrino mass eigenstates, the charged current (CC) interaction can be

written as

�LCC =
g
p
2
Wµ`↵�

µPL (N↵j⌫j +R↵jNj) + H.c., (19)

where g is the SU(2)L gauge coupling, `↵ (↵ = e, µ, ⌧) denotes the three generations of SM

charged leptons, and PL = 1

2
(1 � �5) is the left-handed projection operator. Similarly, the

neutral current (NC) interaction is given by

�LNC =
g

2 cos ✓w
Zµ

h
⌫i�

µPL(N
†
N )ij⌫j +Ni�

µPL(R
†
R)ijNj

+
n
⌫i�

µPL(N
†
R)ijNj +H.c.

oi
, (20)

where ✓w is the weak mixing angle. Through these interactions and the original Dirac Yukawa

interactions given in Eqs. (1) and (6), the RHNs mainly decay into N ! `W , ⌫Z, ⌫h, where

h is the SM Higgs boson. If kinematically allowed, these are two-body decays, followed by

the SM decays of the W,Z, h. For smaller RHN masses, these decays will be three-body,

with o↵-shell W,Z, h. Here, we have assumed the U(1)X Higgs boson(s) is heavier than the

RHNs, for simplicity.

In the seesaw model with 2 degenerate RHNs, the upper bound on R has been found in

Ref. [11] as |R↵j| . 0.01 by considering various experimental constraints such as neutrino

14

Majorana neutrino mass matrix as

m⌫ ' �mDm
�1

N
mT

D
. (16)

We express the light neutrino flavor eigenstate (⌫↵) in terms of the mass eigenstates of the

light (⌫i) and heavy (Ni) Majorana neutrinos:

⌫↵ = N↵i⌫i +R↵iNi , (17)

where R = mDm
�1

N
characterizes the light-heavy neutrino mixing, N =

⇣
1� 1

2
✏
⌘
UPMNS with

✏ = R
⇤
R

T the non-unitarity parameter, and UPMNS is the 3⇥3 light neutrino mixing matrix

which diagonalizes the light neutrino mass matrix as

UT

PMNS
m⌫UPMNS = diag(m1,m2,m3). (18)

In the presence of ✏, the mixing matrix N is not unitary, namely N
†
N 6= 1.

In terms of the neutrino mass eigenstates, the charged current (CC) interaction can be

written as

�LCC =
g
p
2
Wµ`↵�

µPL (N↵j⌫j +R↵jNj) + H.c., (19)

where g is the SU(2)L gauge coupling, `↵ (↵ = e, µ, ⌧) denotes the three generations of SM

charged leptons, and PL = 1

2
(1 � �5) is the left-handed projection operator. Similarly, the

neutral current (NC) interaction is given by

�LNC =
g

2 cos ✓w
Zµ

h
⌫i�

µPL(N
†
N )ij⌫j +Ni�

µPL(R
†
R)ijNj

+
n
⌫i�

µPL(N
†
R)ijNj +H.c.

oi
, (20)

where ✓w is the weak mixing angle. Through these interactions and the original Dirac Yukawa

interactions given in Eqs. (1) and (6), the RHNs mainly decay into N ! `W , ⌫Z, ⌫h, where

h is the SM Higgs boson. If kinematically allowed, these are two-body decays, followed by

the SM decays of the W,Z, h. For smaller RHN masses, these decays will be three-body,

with o↵-shell W,Z, h. Here, we have assumed the U(1)X Higgs boson(s) is heavier than the

RHNs, for simplicity.

In the seesaw model with 2 degenerate RHNs, the upper bound on R has been found in

Ref. [11] as |R↵j| . 0.01 by considering various experimental constraints such as neutrino

14

Majorana neutrino mass matrix as

m⌫ ' �mDm
�1

N
mT

D
. (16)

We express the light neutrino flavor eigenstate (⌫↵) in terms of the mass eigenstates of the

light (⌫i) and heavy (Ni) Majorana neutrinos:

⌫↵ = N↵i⌫i +R↵iNi , (17)

where R = mDm
�1

N
characterizes the light-heavy neutrino mixing, N =

⇣
1� 1

2
✏
⌘
UPMNS with

✏ = R
⇤
R

T the non-unitarity parameter, and UPMNS is the 3⇥3 light neutrino mixing matrix
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In the presence of ✏, the mixing matrix N is not unitary, namely N
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where ✓w is the weak mixing angle. Through these interactions and the original Dirac Yukawa

interactions given in Eqs. (1) and (6), the RHNs mainly decay into N ! `W , ⌫Z, ⌫h, where

h is the SM Higgs boson. If kinematically allowed, these are two-body decays, followed by

the SM decays of the W,Z, h. For smaller RHN masses, these decays will be three-body,

with o↵-shell W,Z, h. Here, we have assumed the U(1)X Higgs boson(s) is heavier than the

RHNs, for simplicity.
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oscillation data [1], charged LFV phenomena [110–112] and electroweak precision measure-

ments [113–115]. The smallness of the mixing (R↵j) between the light and heavy neutrinos

implies an RHN mass eigenstate can be long-lived. If this is the case, a long-lived RHN, once

produced at collider experiments through the Z 0-portal which is unsuppressed by the small

mixing, decays into the SM particles after propagating over a measurable distance. This

displaced vertex phenomenon is a characteristic signature of the production of long-lived

particles. For RHNs with mass of the TeV-scale scale or smaller, collider searches for the

RHNs with displaced vertex provide a promising probe of the seesaw mechanism [24].

Let us now evaluate the lifetime of RHNs in a general parametrization of neutrino mixing.

We first consider Case-I in which three RHNs are involved in the seesaw mechanism. As

we will discuss later, the results for Case-II with only two RHNs can be obtained from the

results in Case-I in a special limit. The elements of the matrix R are constrained so as

to reproduce the neutrino oscillation data. In our analysis, we adopt the following best-

fit values for the neutrino oscillation parameters: �m2

12
= m2

2
� m2

1
= 7.6 ⇥ 10�5 eV2,

�m2

23
= |m2

3
�m2

2
| = 2.4⇥ 10�3 eV2, sin2 2✓12 = 0.87, sin2 2✓23 = 1.0, and sin2 2✓13 = 0.092,

from a recent global fit [116]. The 3⇥ 3 neutrino mixing matrix is given by

UPMNS =

0

BBB@

c12c13 s12c13 s13ei�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12c23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

CCCA

0

BBB@

1 0 0

0 ei⇢1 0

0 0 ei⇢2

1

CCCA
, (21)

where cij = cos ✓ij and sij = sin ✓ij. In our analysis, we set the Dirac CP -phase as � = 3⇡

2

as indicated by the recent NO⌫A [117] and T2K [118] data while the Majorana phases ⇢1,2

are set as free parameters.

We consider both normal hierarchy (NH) where the light neutrino mass eigenvalues are

ordered as m1 < m2 < m3 and inverted hierarchy (IH) where the light neutrino mass

eigenvalues are ordered as m3 < m1 < m2. We vary the lightest mass eigenvalue mlightest up

to sub-eV scale, to be consistent with the Planck upper limit on the sum of light neutrino

masses:
P

i
mi < 0.12 eV [119].

The seesaw formula allows us to parameterize the mixing angle between the light and

heavy neutrinos as [120]

R
NH/IH = U⇤

PMNS

p

DNH/IH O
q

m�1

N
, (22)
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general orthogonal matrix
where O is a general orthogonal matrix:

O =

0

BBB@

1 0 0

0 cosx sin x

0 � sin x cos x

1

CCCA

0

BBB@

cos y 0 sin y

0 1 0

� sin y 0 cos y

1

CCCA

0

BBB@

cos z sin z 0

� sin z cos z 0

0 0 1

1

CCCA
(23)

with the angles, x, y, z being complex numbers, and DNH/IH is the light neutrino mass

eigenvalue matrix:

DNH = diag
�
mlightest,m

NH

2
,mNH

3

�
, (24)

with mNH

2
=

q
�m2

12
+m2

lightest
and mNH

3
=

p
�m2

23
+ (mNH

2
)2, while the mass eigenvalue

matrix for the IH case is

DIH = diag
�
mIH

1
,mIH

2
,mlightest

�
(25)

with mIH

2
=

q
�m2

23
+m2

lightest
and mIH

1
=

p
(mIH

2
)2 ��m2

12
. In both cases, the RHN mass

matrix is defined as

mN = diag (mN1 ,mN2 ,mN3) (26)

with an ordering of mN1  mN2  mN3 . Hence, the matrix R in Eq. (22) is a function of ⇢1,2,

mlightest, mNi (i = 1, 2, 3), and the three complex angles. A generalization of the formula of

R at the one loop level has been studied in Ref. [121], which are however not important for

our analysis.

The two-body partial decay widths of the RHNs are given by [22]

�(Ni ! `↵W )NH/IH =
|R

NH/IH

↵i
|
2

16⇡

(m2

Ni
�m2

W
)2(m2

Ni
+ 2m2

W
)

m3

Ni
v2

,

�(Ni ! ⌫↵Z)NH/IH =
|R

NH/IH

↵i
|
2

32⇡

(m2

Ni
�m2

Z
)2(m2

Ni
+ 2m2

Z
)

m3

Ni
v2

,

�(Ni ! ⌫↵h)NH/IH =
|R

NH/IH

↵i
|
2

32⇡

(m2

Ni
�m2

h
)2

mNiv
2

. (27)

respectively. In the limit of mNi � mW ,mZ ,mh, the ratio among the partial decay widths

is found to be �(Ni ! `↵W )NH/IH : �(Ni ! ⌫↵Z)NH/IH : �(Ni ! ⌫↵h)NH/IH = 2 : 1 : 1. This

result is consistent with the Goldstone boson equivalence theorem, since the RHN decay
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Neutrino oscillation data

oscillation data [1], charged LFV phenomena [110–112] and electroweak precision measure-

ments [113–115]. The smallness of the mixing (R↵j) between the light and heavy neutrinos

implies an RHN mass eigenstate can be long-lived. If this is the case, a long-lived RHN, once

produced at collider experiments through the Z 0-portal which is unsuppressed by the small

mixing, decays into the SM particles after propagating over a measurable distance. This

displaced vertex phenomenon is a characteristic signature of the production of long-lived

particles. For RHNs with mass of the TeV-scale scale or smaller, collider searches for the

RHNs with displaced vertex provide a promising probe of the seesaw mechanism [24].

Let us now evaluate the lifetime of RHNs in a general parametrization of neutrino mixing.

We first consider Case-I in which three RHNs are involved in the seesaw mechanism. As

we will discuss later, the results for Case-II with only two RHNs can be obtained from the

results in Case-I in a special limit. The elements of the matrix R are constrained so as

to reproduce the neutrino oscillation data. In our analysis, we adopt the following best-

fit values for the neutrino oscillation parameters: �m2
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= 7.6 ⇥ 10�5 eV2,
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where cij = cos ✓ij and sij = sin ✓ij. In our analysis, we set the Dirac CP -phase as � = 3⇡

2

as indicated by the recent NO⌫A [117] and T2K [118] data while the Majorana phases ⇢1,2

are set as free parameters.

We consider both normal hierarchy (NH) where the light neutrino mass eigenvalues are

ordered as m1 < m2 < m3 and inverted hierarchy (IH) where the light neutrino mass

eigenvalues are ordered as m3 < m1 < m2. We vary the lightest mass eigenvalue mlightest up

to sub-eV scale, to be consistent with the Planck upper limit on the sum of light neutrino

masses:
P

i
mi < 0.12 eV [119].

The seesaw formula allows us to parameterize the mixing angle between the light and

heavy neutrinos as [120]
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where cij = cos ✓ij and sij = sin ✓ij. In our analysis, we set the Dirac CP -phase as � = 3⇡

2

as indicated by the recent NO⌫A [117] and T2K [118] data while the Majorana phases ⇢1,2

are set as free parameters.

We consider both normal hierarchy (NH) where the light neutrino mass eigenvalues are

ordered as m1 < m2 < m3 and inverted hierarchy (IH) where the light neutrino mass

eigenvalues are ordered as m3 < m1 < m2. We vary the lightest mass eigenvalue mlightest up

to sub-eV scale, to be consistent with the Planck upper limit on the sum of light neutrino

masses:
P

i
mi < 0.12 eV [119].

The seesaw formula allows us to parameterize the mixing angle between the light and

heavy neutrinos as [120]
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originates from the Dirac Yukawa coupling in Eq. (1). The total decay width of the RHN

Ni is just the sum of the partial widths:

�NH/IH

Ni
=

X

↵=e,µ,⌧

⇥
�(Ni ! `↵W )NH/IH + �(Ni ! ⌫↵Z)

NH/IH + �(Ni ! ⌫↵h)
NH/IH

⇤
, (28)

and the total proper decay length of the RHN Ni is

LNH/IH

i
=

1.97⇥ 10�13

�NH/IH

Ni
[GeV]

[mm]. (29)

Employing the general parametrization for the neutrino Dirac mass matrix in Eq. (22),

we perform a parameter scan with free parameters, 0  ⇢1,2  2⇡, mlightest, x, y, and z, to

evaluate LNH/IH

i
while satisfying all the phenomenological constraints listed in Ref. [11]. For

concreteness, we fix mN1 = 500 GeV, mN2 = 1 TeV and mN3 = 2 TeV in our analysis. See

Ref. [11] for a detail of this parameter scan procedure. The most stringent lower bound on

the decay length of the RHN Ni comes from two experimental constraints. The first is from

LFV muon decay process of µ ! e�, whose branching ratio must be  4.2 ⇥ 10�13 [110]

which provides an upper bound on |✏12| < 1.3⇥ 10�5. The second is from the lower limit on

the half-life of neutrino-less double beta decay: T 0⌫

1/2
(76Ge) � 8⇥1025yr [122] that translates

into an upper limit on the amplitude for the contribution mediated by the RHNs [123, 124]:

�����

3X

j=1

Rej

mNj [GeV]

����� . 7.8⇥ 10�8 . (30)

Our results for the upper and lower bounds on LNH/IH

i
as a function of the lightest neutrino

mass eigenvalue are shown in Fig. 5 for the NH (left panel) and IH (right panel) cases in the

minimal U(1)X scenario. We also show as horizontal bands typical decay lengths relevant to

the displaced vertex search at the LHC and at MATHUSLA. The vertical shaded region is

excluded by the cosmological upper bound on the sum of light neutrino masses ⌃imi < 0.12

eV from the Planck 2018 results [119]. We find that the maximum proper decay length of

an RHN can be approximately expressed as

LNH

max
' 0.62

✓
0.001 eV

mlighest

◆✓
1TeV

mN1

◆
[mm] , (31)

LIH

max
' 0.15

✓
0.001 eV

mlighest

◆✓
1TeV

mN3

◆
[mm] . (32)
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where O is a general orthogonal matrix:

O =

0

BBB@

1 0 0

0 cosx sin x

0 � sin x cos x

1

CCCA

0

BBB@

cos y 0 sin y

0 1 0

� sin y 0 cos y

1

CCCA

0

BBB@

cos z sin z 0

� sin z cos z 0

0 0 1

1

CCCA
(23)

with the angles, x, y, z being complex numbers, and DNH/IH is the light neutrino mass

eigenvalue matrix:

DNH = diag
�
mlightest,m

NH

2
,mNH

3

�
, (24)

with mNH

2
=

q
�m2

12
+m2

lightest
and mNH

3
=

p
�m2

23
+ (mNH

2
)2, while the mass eigenvalue

matrix for the IH case is

DIH = diag
�
mIH

1
,mIH

2
,mlightest

�
(25)

with mIH

2
=

q
�m2

23
+m2

lightest
and mIH

1
=

p
(mIH

2
)2 ��m2

12
. In both cases, the RHN mass

matrix is defined as

mN = diag (mN1 ,mN2 ,mN3) (26)

with an ordering of mN1  mN2  mN3 . Hence, the matrix R in Eq. (22) is a function of ⇢1,2,

mlightest, mNi (i = 1, 2, 3), and the three complex angles. A generalization of the formula of

R at the one loop level has been studied in Ref. [121], which are however not important for

our analysis.

The two-body partial decay widths of the RHNs are given by [22]

�(Ni ! `↵W )NH/IH =
|R

NH/IH

↵i
|
2

16⇡

(m2

Ni
�m2

W
)2(m2

Ni
+ 2m2

W
)

m3

Ni
v2

,

�(Ni ! ⌫↵Z)NH/IH =
|R

NH/IH

↵i
|
2

32⇡

(m2

Ni
�m2

Z
)2(m2

Ni
+ 2m2

Z
)

m3

Ni
v2

,

�(Ni ! ⌫↵h)NH/IH =
|R

NH/IH

↵i
|
2

32⇡

(m2

Ni
�m2

h
)2

mNiv
2

. (27)

respectively. In the limit of mNi � mW ,mZ ,mh, the ratio among the partial decay widths

is found to be �(Ni ! `↵W )NH/IH : �(Ni ! ⌫↵Z)NH/IH : �(Ni ! ⌫↵h)NH/IH = 2 : 1 : 1. This

result is consistent with the Goldstone boson equivalence theorem, since the RHN decay

16
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0
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matrix is defined as
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with an ordering of mN1  mN2  mN3 . Hence, the matrix R in Eq. (22) is a function of ⇢1,2,

mlightest, mNi (i = 1, 2, 3), and the three complex angles. A generalization of the formula of

R at the one loop level has been studied in Ref. [121], which are however not important for
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respectively. In the limit of mNi � mW ,mZ ,mh, the ratio among the partial decay widths

is found to be �(Ni ! `↵W )NH/IH : �(Ni ! ⌫↵Z)NH/IH : �(Ni ! ⌫↵h)NH/IH = 2 : 1 : 1. This

result is consistent with the Goldstone boson equivalence theorem, since the RHN decay

16

originates from the Dirac Yukawa coupling in Eq. (1). The total decay width of the RHN

Ni is just the sum of the partial widths:

�NH/IH
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=

X

↵=e,µ,⌧

⇥
�(Ni ! `↵W )NH/IH + �(Ni ! ⌫↵Z)

NH/IH + �(Ni ! ⌫↵h)
NH/IH

⇤
, (28)

and the total proper decay length of the RHN Ni is

LNH/IH

i
=

1.97⇥ 10�13

�NH/IH

Ni
[GeV]

[mm]. (29)

Employing the general parametrization for the neutrino Dirac mass matrix in Eq. (22),

we perform a parameter scan with free parameters, 0  ⇢1,2  2⇡, mlightest, x, y, and z, to

evaluate LNH/IH

i
while satisfying all the phenomenological constraints listed in Ref. [11]. For

concreteness, we fix mN1 = 500 GeV, mN2 = 1 TeV and mN3 = 2 TeV in our analysis. See

Ref. [11] for a detail of this parameter scan procedure. The most stringent lower bound on

the decay length of the RHN Ni comes from two experimental constraints. The first is from

LFV muon decay process of µ ! e�, whose branching ratio must be  4.2 ⇥ 10�13 [110]

which provides an upper bound on |✏12| < 1.3⇥ 10�5. The second is from the lower limit on

the half-life of neutrino-less double beta decay: T 0⌫

1/2
(76Ge) � 8⇥1025yr [122] that translates

into an upper limit on the amplitude for the contribution mediated by the RHNs [123, 124]:
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3X
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Rej

mNj [GeV]

����� . 7.8⇥ 10�8 . (30)

Our results for the upper and lower bounds on LNH/IH

i
as a function of the lightest neutrino

mass eigenvalue are shown in Fig. 5 for the NH (left panel) and IH (right panel) cases in the

minimal U(1)X scenario. We also show as horizontal bands typical decay lengths relevant to

the displaced vertex search at the LHC and at MATHUSLA. The vertical shaded region is

excluded by the cosmological upper bound on the sum of light neutrino masses ⌃imi < 0.12

eV from the Planck 2018 results [119]. We find that the maximum proper decay length of

an RHN can be approximately expressed as

LNH
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✓
0.001 eV
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◆
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◆
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FIG. 1: The experimental constraints on the mixing matrix elements |R↵i|2 = |V↵i|2 in the NH

case. The allowed region is shaded. The results are shown with respect to �⇡ < � < ⇡.

in Table I the upper bounds on the mixing parameters from the collider experiments, for

MN = 100 GeV. We can see that the upper bounds on the mixing we have obtained are

more severe than those listed in Table I.

In summary, we have studied the minimal type-I seesaw scenario and the current experi-

mental bounds on the mixing between the heavy Majorana neutrinos and the SM neutrinos.

We have employed the general parameterization for the neutrino Dirac mass matrix so as

to reproduce all neutrino oscillation data. In this way, the model is controlled by only

three parameters, the Dirac CP -phase, one Majorana phase, and the (complex) angle of the
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in Table I the upper bounds on the mixing parameters from the collider experiments, for

MN = 100 GeV. We can see that the upper bounds on the mixing we have obtained are

more severe than those listed in Table I.

In summary, we have studied the minimal type-I seesaw scenario and the current experi-

mental bounds on the mixing between the heavy Majorana neutrinos and the SM neutrinos.

We have employed the general parameterization for the neutrino Dirac mass matrix so as

to reproduce all neutrino oscillation data. In this way, the model is controlled by only
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FIG. 2: The experimental constraints on the mixing matrix elements |R↵i|2 = |V↵i|2 in the NH

case. The allowed region is shaded. The results are shown with respect to Y .

2⇥ 2 orthogonal matrix with the degenerate heavy neutrino mass MN = 100 GeV. We have

performed the parameter scan to identify the allowed parameter region which satisfies the

experimental constraints from the electroweak precision measurements and the lepton-flavor

violations. For the allowed parameter region, we have found the upper bound on the mixing

parameters to be |R↵i|2 . 10�4, which is more severe than those obtained from the search

for heavy Majorana neutrinos at the current LHC experiments. The region |R↵i|2 . 10�4

we have found can be tested at the High-Luminosity LHC or at a 100 TeV pp-collider in the

future. We have also performed parameter scan for the e↵ective neutrino mass relevant to

the neutrinoless double beta decay and found the range of 0.00154  |m⌫

ee
|(eV)  0.00389
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2⇥ 2 orthogonal matrix with the degenerate heavy neutrino mass MN = 100 GeV. We have

performed the parameter scan to identify the allowed parameter region which satisfies the

experimental constraints from the electroweak precision measurements and the lepton-flavor

violations. For the allowed parameter region, we have found the upper bound on the mixing

parameters to be |R↵i|2 . 10�4, which is more severe than those obtained from the search

for heavy Majorana neutrinos at the current LHC experiments. The region |R↵i|2 . 10�4

we have found can be tested at the High-Luminosity LHC or at a 100 TeV pp-collider in the

future. We have also performed parameter scan for the e↵ective neutrino mass relevant to

the neutrinoless double beta decay and found the range of 0.00154  |m⌫
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FIG. 3: Same as Fig. 1 but for the IH case.

(NH case) and 0.0167  |m⌫

ee
|(eV)  0.0473 (IH case), which are consistent with the current

experimental bound . 0.1 eV [83].

From Figs. 2 and 4, we can see that the upper bounds on the mixing parameters are ob-

tained for Y ⇠ 12. For such a Y value, the matrix in Eq. (19) is approximately proportional

to e2Y , and hence ✏ / e2Y /MN in Eq. (18) and the upper bound on e2Y /MN is determined

from the constraint of Eq (17). In this case, the mixing matrix is roughly proportional to

eY /
p
MN =

p
e2Y /MN and its upper bound is fixed accordingly. Although the value of

Y to yield the upper bound is a function of MN , the upper bounds on the mixing matrix

elements are almost independent of MN . However, the cross section of the heavy neutrino
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to e2Y , and hence ✏ / e2Y /MN in Eq. (18) and the upper bound on e2Y /MN is determined

from the constraint of Eq (17). In this case, the mixing matrix is roughly proportional to

eY /
p
MN =

p
e2Y /MN and its upper bound is fixed accordingly. Although the value of

Y to yield the upper bound is a function of MN , the upper bounds on the mixing matrix
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FIG. 5. Decay length of RHNs neutrinos as a function of lightest active neutrino mass for the NH

(IH) case in the left (right) panel for the three generations of RHNs with mN1 = 500 GeV, mN2 = 1

TeV and mN3 = 2 TeV. The upper (lower) curves correspond to the maximum (minimum) allowed

decay lifetime, taking into account various phenomenological constraints (see text). The horizontal

red (green) band indicates the typical range relevant for observable displaced vertex signal at the

LHC (MATHUSLA). The vertical shaded region is excluded by Planck upper limit on the sum of

neutrino masses.

Very interestingly, Lmax is controlled by the lightest neutrino mass eigenvalue mlighest, and

if mlighest is small enough, one RHN becomes long-lived even if its mass is of order of 1

TeV. This is contrary to the common lore that RHNs can be long-lived only for the sub-

electroweak scale mass range. We find that for mlighest . 10�5 eV (10�8 eV), the RHN can be

long-lived enough to be explored by the HL-LHC (MATHUSLA).2 For a di↵erent RHN mass

spectrum than that chosen in our illustrative benchmark, the corresponding decay lifetime

and the possibility of having a long-lived RHN can be easily obtained from Eqs. (31) and

(32).

In other words, once a displaced vertex signal is observed in future collider experiments,

we can measure the decay length and the mass of the RHN from the invariant mass of

its decay products. Fig. 5 indicates that with such measurements we can obtain an upper

bound on mlighest. On the other hand, the remaining two RHNs promptly decay to the SM

2 A detailed sensitivity study based on the expected number of events, which depends on other details, such

as the flavor of the final state lepton and the Lorentz boost factor of the RHN (which depends on the

specific production mode, i.e. the Z
0 boson mass in our case), is beyond the scope of this paper and is

postponed to a future work.
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ATLAS − 1DV

Large efficiency
at heavier RHNs

1908.09838

Trigger Muon: |⌘| < 1.07 and pT > 55 GeV

Electron: |⌘| < 2.47 and pT > 120 GeV

DV region DV within 4 mm < rDV < 300 mm and |zDV | < 300 mm

DV selection Made from tracks with |d0| > 2 mm and with pT > 1 GeV

DV track multiplicity Ntrk � 4 and invariant mass mDV � 5 GeV

TABLE II. Cuts for the ATLAS 1DV ID proposed search. These are optimized as in Ref. [27],

and are inspired by the ATLAS search [64].

The event level e�ciency of this strategy, after all selections, is shown in Figure 5 for

the U(1)X model. The e�ciency has a cigar-like shape, and is bounded by the case when

the neutrinos are decaying either too promptly or too far away, outside of the detector’s

acceptance. For a fixed mass, such as mN = 100 GeV, and mixings bigger than ⇠ 10�10, the

neutrino already decays too promptly. The e�ciency in this case goes down with increasing

mixing for a fixed heavy neutrino mass. For fixed mixing and smaller masses, the neutrinos

are decaying outside of the tracker’s acceptance.

FIG. 5. Representative event level e�ciency of the ATLAS 1DV ID search as a function of mN

and |VµN |
2.
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CMS − 2DV Trigger HT > 1000 GeV

Jet selection At least 4 jets with pT > 20 GeV and |⌘| < 2.5

DV region 2 DVs within 0.1 mm < rDV < 20 mm and dV V > 0.4 mm

DV selection Made from tracks with |d0| � 0.1 mm, pT > 20 GeV and |⌘| < 2.5.
P

pT � 350 GeV, correcting for b quarks.

TABLE III. Cuts for the CMS 2DV + jets search following the reinterpretation procedure in [65].

lived neutralinos �̃0
1 by quark-antiquark annihilation. The neutralino then decays into a top

anti-quark and a virtual top squark, and the virtual top squark decays into strange and

bottom anti-quarks. The model spectrum is generated with SOFTSUSY 3.6.1 [71], and is

read as input to Pythia8 using the SLHA structure [72].

Figure 8 shows our recast 95% CL limit taken with zero background and 3 signal events,

against the CMS exclusion for three di↵erent benchmarks.

FIG. 8. Validation of the 95% CL observed CMS upper limits [65] for three mass points in the

MFV RPV SUSY model: m
�̃
0
1
= 800, 1600, 2400 GeV.

The event-level e�ciency is shown in Figure 9 for the U(1)X model. We note the same

15

pattern as with the ATLAS 1DV ID search, although the sensitivity here is a↵ected by the

mass ratio between mN and mZ0 , as the angular opening of the decay products of the long-

lived neutrino is proportional to its boost. This means that for neutrino masses roughly

around 100 GeV and below, it is harder for the decay products to be e↵ectively resolved

into our reconstructed jets, failing the selection criteria. The additional condition that

both neutrinos must decay well separated near the CMS beampipe imposes another strict

requirement on our displaced events.

When estimating the number of signal events, we note nearly no sensitivity to the B�L

scenario, as shown in Figure 10. The situation improves in the U(1)X model shown in

Figure 11, although the parameter space of the models that can be accessed can also be

covered by the ATLAS 1DV search, except for a small region at small mixings and TeV

masses. We can reach mixings down to ⇡ 10�17 for mN = 1200 GeV in the electron case.

The mass reach in mN is limited by its proper lifetime. As for mixings above ⇡ 10�15 and

masses higher than ⇡ 1 TeV, the heavy neutrino is already decaying too promptly.
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FIG. 9. Representative event level e�ciency of the CMS 2DV + jets search as a function of mN

and |VµN |
2.
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both electron and muon mixing, for the U(1)B�L model. One can set a 95%CL exclusion

region with at least 3 signal events, which is reasonable to set as a requirement for discovery

in the absence of background. Analogous plots for the U(1)X model are shown in Figure 7. A

larger parameter region can be excluded in the U(1)X model due to its higher cross section,

although the strategy is sensitive to both models. Mixings as low as ⇠ 10�16 can be accessed

for mN ⇠ 500 GeV in the U(1)B�L model, and ⇠ 10�17 for mN ⇠ 1 TeV in the U(1)X model.

FIG. 6. Number of signal events for the U(1)B�L model at
p
s = 13 TeV expected in L = 3000

fb�1 with the ATLAS 1DV ID search. Reach for mixings in the electron (left) and muon (right)

sector are shown.
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are shown.

13

both electron and muon mixing, for the U(1)B�L model. One can set a 95%CL exclusion

region with at least 3 signal events, which is reasonable to set as a requirement for discovery

in the absence of background. Analogous plots for the U(1)X model are shown in Figure 7. A

larger parameter region can be excluded in the U(1)X model due to its higher cross section,

although the strategy is sensitive to both models. Mixings as low as ⇠ 10�16 can be accessed

for mN ⇠ 500 GeV in the U(1)B�L model, and ⇠ 10�17 for mN ⇠ 1 TeV in the U(1)X model.

FIG. 6. Number of signal events for the U(1)B�L model at
p
s = 13 TeV expected in L = 3000

fb�1 with the ATLAS 1DV ID search. Reach for mixings in the electron (left) and muon (right)

sector are shown.

FIG. 7. Number of signal events for the U(1)X model at
p
s = 13 TeV expected in L = 3000 fb�1

with the ATLAS 1DV ID search. Reach for mixings in the electron (left) and muon (right) sector

are shown.

13

both electron and muon mixing, for the U(1)B�L model. One can set a 95%CL exclusion

region with at least 3 signal events, which is reasonable to set as a requirement for discovery

in the absence of background. Analogous plots for the U(1)X model are shown in Figure 7. A

larger parameter region can be excluded in the U(1)X model due to its higher cross section,

although the strategy is sensitive to both models. Mixings as low as ⇠ 10�16 can be accessed

for mN ⇠ 500 GeV in the U(1)B�L model, and ⇠ 10�17 for mN ⇠ 1 TeV in the U(1)X model.

FIG. 6. Number of signal events for the U(1)B�L model at
p
s = 13 TeV expected in L = 3000

fb�1 with the ATLAS 1DV ID search. Reach for mixings in the electron (left) and muon (right)

sector are shown.

200 400 600 800 1000 1200
mN [GeV]

�18

�16

�14

�12

�10

�8

�6

log
10
|V
eN

|2

L = 3000 fb�1, �s = 13 TeV

U(1)X : g�
1 = 0.8,mZ� = 6000 GeV

4

7

10

15

20

30

200 400 600 800 1000 1200
mN [GeV]

�18

�16

�14

�12

�10

�8

�6

log
10
|V
µ
N
|2

L = 3000 fb�1, �s = 13 TeV

U(1)X : g�
1 = 0.8,mZ� = 6000 GeV

4

7

10

15

20

30

40

FIG. 7. Number of signal events for the U(1)X model at
p
s = 13 TeV expected in L = 3000 fb�1

with the ATLAS 1DV ID search. Reach for mixings in the electron (left) and muon (right) sector

are shown.

13

electron muon

both electron and muon mixing, for the U(1)B�L model. One can set a 95%CL exclusion

region with at least 3 signal events, which is reasonable to set as a requirement for discovery

in the absence of background. Analogous plots for the U(1)X model are shown in Figure 7. A

larger parameter region can be excluded in the U(1)X model due to its higher cross section,

although the strategy is sensitive to both models. Mixings as low as ⇠ 10�16 can be accessed

for mN ⇠ 500 GeV in the U(1)B�L model, and ⇠ 10�17 for mN ⇠ 1 TeV in the U(1)X model.

100 200 300 400 500 600
mN [GeV]

�18

�16

�14

�12

�10

�8

�6
log

10
|V
eN

|2
L = 3000 fb�1, �s = 13 TeV

U(1)B�L : g�1 = 0.8,mZ� = 6000 GeV

10

15

20

30

100 200 300 400 500 600
mN [GeV]

�18

�16

�14

�12

�10

�8

�6

log
10
|V
µ
N
|2

L = 3000 fb�1, �s = 13 TeV

U(1)B�L : g�1 = 0.8,mZ� = 6000 GeV

13

3030

45

60

FIG. 6. Number of signal events for the U(1)B�L model at
p
s = 13 TeV expected in L = 3000

fb�1 with the ATLAS 1DV ID search. Reach for mixings in the electron (left) and muon (right)

sector are shown.

FIG. 7. Number of signal events for the U(1)X model at
p
s = 13 TeV expected in L = 3000 fb�1

with the ATLAS 1DV ID search. Reach for mixings in the electron (left) and muon (right) sector

are shown.

13

U(1)B−L, g′� = 0.8, mZ′� = 6 TeV

electron muon

U(1)X, g′� = 0.8, mZ′� = 6 TeV



FIG. 10. Number of signal events for the U(1)B�L model at
p
s = 13 TeV expected for L = 3000

fb�1 with the CMS 2DV+jets strategy. Reach for mixings in the electron (left) and muon (right)

sector are shown.

FIG. 11. Number of signal events for the U(1)X model at
p
s = 13 TeV expected for L = 3000

fb�1 with the CMS 2DV+jets strategy. Reach for mixings in the electron (left) and muon (right)

sector are shown.
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Alternative scenario under U(1)X
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Fig. 2 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of mZ ′ = 3
TeV and BR(N → Wµ) ≃ 0.5. The solid lines correspond to
mN1 = mZ ′/4 and mN2,3 > mZ ′/2; the dashed (dotted) lines corre-
spond to mN1,2 = mZ ′/4 and mN3 > mZ ′/2 (mN1,2,3 = mZ ′/4)

σ (pp → Z ′ → NN → µ±µ±W∓W∓)
σ (pp → Z ′ → ℓ+ℓ−)

≃0.1
25
L

. (8)

For a degenerate mass spectrum for the RHNs, σ (pp →
Z ′ → NN → µ±µ±W∓W∓) = σ (pp → Z ′ →
Ni
mN

i
m)×

∑
i BR(Ni

mN
i
m → µ±µ±W∓W∓), and we obtain

L(fb−1) ≃250 ×
∑

i=1

BR(Ni
mN

i
m → µ±µ±W∓W∓)

× #(Z ′ → Ni
mN

i
m)

#(Z ′ → ℓ+ℓ−)
, (9)

where #(Z ′→Ni
m Ni

m )

#(Z ′→ℓ+ℓ−) is shown in the right panel of Fig. 1.
For the fixed values of mZ ′ = 3 TeV and BR(N →

Wµ) ≃ 0.5, we employ Eq. (9) and show the luminosity
(L) as a function of xH in Fig. 2. The solid lines corre-
spond to mN1 = mZ ′/4 and mN2,3 > mZ ′/2, while the
dashed (dotted) lines correspond to mN1,2 = mZ ′/4 and
mN3 > mZ ′/2 (mN1,2,3 = mZ ′/4 ). Hence, xH is con-
strained to be in the range of −2 ! xH ! 0. For example,
let us consider the case of xH = −1.2 for which the ratio
#(Z ′ → NN )/#(Z ′ → ℓ̄ℓ) reaches the maximum values
of 3.25, 6.50, and 9.75 for one, two, and three degener-
ate RHNs, respectively. Hence, we obtain the luminosities
L(fb−1) ≃102, 203 and 305 for one, two and three gener-
ations of degenerate RHNs, respectively. These luminosities
will be reached in the near future.

3 Alternative U(1)X model

There is another way to assign the B−L charges for the three
RHNs to achieve gauge anomaly cancellations. The B −L
charge −4 is assigned to the first two generation of RHNs
(N 1,2), while −5 for N 3 [38]. In addition to the SM particle

Table 2 New particle content of the alternative U(1)X model

SU(3)c SU(2)L U(1)Y U(1)X

N 1
R 1 1 0 −4

N 2
R 1 1 0 −4

N 3
R 1 1 0 5

HE 1 2 −1
2 (−1/2)xH + 3

$A 1 1 0 +8

$B 1 1 0 −10

2 doublet, 1 singlet

content, the new particle content of this “alternative U(1)X
model” is listed in Table 2. The U(1)X charge assignment for
the SM particles is exactly the same as in the minimal U(1)X
model. Here, we have introduced additional scalar fields, HE
and $A,B .5 The new Higgs doublet HE generates the Dirac
masses for the neutrinos, while the singlet scalars $A and $B
generate Majorana masses for N 1,2

R and N 3
R , respectively.

The Yukawa sector of the SM is extended to include

LY ⊃−
3∑

i=1

2∑

j=1

Y i j
D ℓiL HE N

j
R −1

2

2∑

k=1

Y k
N$ANkc

R Nk
R + h.c.

−1
2
Y 3
N$BN 3c

R N 3
R + h.c. (10)

We assume a suitable scalar potential for H , HE , $A, and
$B , in which these scalars develop their vacuum expectation
values as follows:

⟨H⟩ =
(

1√
2
vh

0

)

, ⟨HE ⟩ =
(

1√
2
ṽh
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,
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where we require that v2
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h = (246 GeV)2. Associated
with the U(1)X symmetry breaking, the RHNs and the U(1)X
gauge boson (Z ′) acquire their masses as
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After the electroweak symmetry breaking, the neutrino Dirac
masses,

mi j
D = Y i j

D√
2
ṽh , (13)

5 One may consider an extended particle content (and some additional
global symmetry) to forbid the seesaw mechanism at the tree level and
generate neutrino mass at the quantum levels [39,40].
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SU(3)c SU(2)L U(1)Y U(1)X

qLi 3 2 1/6 (1/6)xH + (1/3)

uRi 3 1 2/3 (2/3)xH + (1/3)

dRi 3 1 �1/3 �(1/3)xH + (1/3)

`Li 1 2 �1/2 (�1/2)xH � 1

eRi 1 1 �1 �xH � 1

H 1 2 �1/2 (�1/2)xH

NR1,2 1 1 0 �4

NR3 1 1 0 +5

HE 1 2 �1/2 (�1/2)xH + 3

�A 1 1 0 +8

�B 1 1 0 �10

�C 1 1 0 �3

TABLE II. Minimal particle content of the “alternative” U(1)X -extended SM. In addition to the SM

particle content, three RHNs (NRi) and three new Higgs fields (HE ,�A,�B, �C) are introduced.

Here i = 1, 2, 3 stands for the family index and xH is a real parameter.

same charge for two RHNs among three RHNs in total, this alternative charge assignment

is a unique choice in order to cancel all the anomalies [86].

For generating neutrino masses, we have introduced additional scalar fields: one SU(2)

doublet HE and two SM-singlets �A,B,C . The new Higgs doublet (HE) generates the neu-

trino Dirac masses, while the SM-singlet scalars generate the Majorana mass terms for

{NR,1, NR,2} and NR,3, respectively. The Yukawa Lagrangian of the SM is extended to

include

�LY �

3X

i=1

2X

j=1

Y ij

D
`LiHENRj +

1

2

2X

k=1

Y A,k

N
NC

Rk
�ANRk

+
1

2
Y B

N
NC

R3
�BNR3 +H.c. , (6)

where we have assumed a basis in which Y A

N
is diagonal, without loss of generality. We also

assume a suitable potential for the Higgs fields H, HE, �A, �B and �C to develop their

7

Possible alternative B − L, with xH = 0

Detailed scalar sector study
In Progress
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Fig. 3 For the alternative U(1)X model, the left panel shows the
branching ratios of Z ′ as a function of xH with a fixed mZ ′ = 3 TeV.
The solid lines correspond to mN1 = mZ ′/4 and mN2 > mZ ′/2, and
the dashed lines correspond to mN1,2 = mZ ′/4. From top to bottom, the
solid (red, black and blue) lines at xH = − 1 are the branching ratios to
the first generations of jets (up and down quarks), RHNs, and charged

leptons, respectively. The lines for the RHN final states correspond to
the sum of the branching ratio to all possible RHNs. In the right panel,
we show the ratio of the partial decay widths of Z ′ boson into RHNs
and dilepton final states. The line codings are the same as in the left
panel

are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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leptons, respectively. The lines for the RHN final states correspond to
the sum of the branching ratio to all possible RHNs. In the right panel,
we show the ratio of the partial decay widths of Z ′ boson into RHNs
and dilepton final states. The line codings are the same as in the left
panel

are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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branching ratios of Z ′ as a function of xH with a fixed mZ ′ = 3 TeV.
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leptons, respectively. The lines for the RHN final states correspond to
the sum of the branching ratio to all possible RHNs. In the right panel,
we show the ratio of the partial decay widths of Z ′ boson into RHNs
and dilepton final states. The line codings are the same as in the left
panel

are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
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values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
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required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
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ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
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tively.
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widths into a pair of NN and dilepton final states (see Eq. (7)).
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values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
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Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
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we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
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values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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we show the ratio of the partial decay widths of Z ′ boson into RHNs
and dilepton final states. The line codings are the same as in the left
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
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values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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and dilepton final states. The line codings are the same as in the left
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
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and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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leptons, respectively. The lines for the RHN final states correspond to
the sum of the branching ratio to all possible RHNs. In the right panel,
we show the ratio of the partial decay widths of Z ′ boson into RHNs
and dilepton final states. The line codings are the same as in the left
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
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N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
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required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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Fig. 1. The lower bounds on mZ ′ /gBL as a function of mZ ′ from the ATLAS 2017 
result and the HL-LHC search reach [19], along with the LEP constraint of mZ ′ /gBL >

6.9 TeV (dotted horizontal line) [11].

where we have neglected all SM fermion masses, and Q N j is the 
U(1)B−L charge of the RHN N j

R . For the minimal (alternative) B − L
model, let us consider two benchmark (degenerate) mass spec-
tra for the RHNs: mN1,2,3(mN1,2 ) = mN = 50 GeV and 100 GeV. It 
has been recently shown in Ref. [13] that in the alternative B − L
model, N3

R plays the role of DM in the Universe, reproducing the 
observed DM relic abundance with mN3 ≃ mZ ′/2. Motivated by the 
discussion, we set mN3 ≃ mZ ′/2, so that the N3 contribution to !Z ′

is neglected.
In our LHC analysis, we employ CTEQ6L [16] for the parton dis-

tribution functions and calculate the cross section of the dilepton 
production through the Z ′ boson exchange in the s-channel. Ne-
glecting the mass for the RHNs in our LHC analysis, the resultant 
cross section is controlled by only two parameters: gBL and mZ ′ . 
To derive a constraint for these parameters from the ATLAS 2017 
results [14], we follow the strategy in Refs. [17,18]: we first calcu-
late the cross section of the process, pp → Z ′ + X → ℓ+ℓ− + X , for 
the sequential SM Z ′ boson and find a k-factor (k = 1.31) by which 
our cross section coincides with the cross section for the sequen-
tial SM Z ′ boson presented in the ATLAS paper [14]. We employ 
this k-factor for all of our LHC analysis, and find an upper bound 
on gBL as a function of mZ ′ from the ATLAS 2017 results. For the 
prospect of the future constraints to be obtained after the HL-LHC 
experiment with the 3000/fb integrated luminosity, we refer the 
simulation result presented in the ATLAS Technical Design Report 
[19]. Figure 4.20 (b) in this report shows the prospective upper 
bound on the cross section, pp → Z ′ + X → e+e− + X , as low as 
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chine than the LHC to explore the B − L models, if the Z ′ boson 
mass is beyond the search reach of the HL-LHC experiment.

Let us now investigate the RHN pair production at the 250 GeV 
ILC. The relevant process is e+e− → Z ′∗ → Ni Ni mediated by a 
virtual Z ′ boson in the s-channel. Since the collider energy 
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s =
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section is approximately given by
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For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 

∑3
i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
s = 500 GeV [9]

we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
N mT

D = 1
mN

mD mT
D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
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B − L model, the Z ′ boson decay to a pair of RHNs dominates 
the total decay width and hence the branching ratio into dileptons 
is relatively suppressed, resulting in the LHC constraints weaker 
than those for the minimal B − L model. Note that the LHC con-
straint for mZ ′/gBL becomes dramatically weaker as mZ ′ increases. 
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ated processes at the ILC are described by effective higher dimen-
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For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 
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i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
s = 500 GeV [9]

we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
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D = 1
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D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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prospect of the future constraints to be obtained after the HL-LHC 
experiment with the 3000/fb integrated luminosity, we refer the 
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[19]. Figure 4.20 (b) in this report shows the prospective upper 
bound on the cross section, pp → Z ′ + X → e+e− + X , as low as 
10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
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ated processes at the ILC are described by effective higher dimen-
sional operators which are proportional to (mZ ′/gBL)
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chine than the LHC to explore the B − L models, if the Z ′ boson 
mass is beyond the search reach of the HL-LHC experiment.

Let us now investigate the RHN pair production at the 250 GeV 
ILC. The relevant process is e+e− → Z ′∗ → Ni Ni mediated by a 
virtual Z ′ boson in the s-channel. Since the collider energy 
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s =

250 GeV is much smaller than mZ ′ , the RHN pair production cross 
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For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 

∑3
i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
s = 500 GeV [9]

we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
N mT

D = 1
mN

mD mT
D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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model, N3

R plays the role of DM in the Universe, reproducing the 
observed DM relic abundance with mN3 ≃ mZ ′/2. Motivated by the 
discussion, we set mN3 ≃ mZ ′/2, so that the N3 contribution to !Z ′

is neglected.
In our LHC analysis, we employ CTEQ6L [16] for the parton dis-

tribution functions and calculate the cross section of the dilepton 
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glecting the mass for the RHNs in our LHC analysis, the resultant 
cross section is controlled by only two parameters: gBL and mZ ′ . 
To derive a constraint for these parameters from the ATLAS 2017 
results [14], we follow the strategy in Refs. [17,18]: we first calcu-
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this k-factor for all of our LHC analysis, and find an upper bound 
on gBL as a function of mZ ′ from the ATLAS 2017 results. For the 
prospect of the future constraints to be obtained after the HL-LHC 
experiment with the 3000/fb integrated luminosity, we refer the 
simulation result presented in the ATLAS Technical Design Report 
[19]. Figure 4.20 (b) in this report shows the prospective upper 
bound on the cross section, pp → Z ′ + X → e+e− + X , as low as 
10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
lower bound on mZ ′ > 6.4 TeV for the sequential SM Z ′ boson.

For the following ILC analysis, instead of the LHC upper bound 
on gBL as a function of mZ ′ , it is more useful to plot the LHC lower 
bound on mZ ′/gBL , which is shown in Fig. 1. The lower and upper 
solid lines correspond to the lower bound from the ATLAS 2017 
and the prospective HL-LHC bound, respectively, for the minimal 
B − L model. The corresponding lower bounds for the alternative 
B − L model are depicted as the dashed lines. In the alternative 
B − L model, the Z ′ boson decay to a pair of RHNs dominates 
the total decay width and hence the branching ratio into dileptons 
is relatively suppressed, resulting in the LHC constraints weaker 
than those for the minimal B − L model. Note that the LHC con-
straint for mZ ′/gBL becomes dramatically weaker as mZ ′ increases. 
Since the ILC energy is much smaller than mZ ′ , the Z ′ boson medi-
ated processes at the ILC are described by effective higher dimen-
sional operators which are proportional to (mZ ′/gBL)
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the plots in Fig. 1 imply that the ILC can be a more powerful ma-
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prospective HL-LHC bounds shown in Fig. 1. The upper (black) and lower (red) 
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chine than the LHC to explore the B − L models, if the Z ′ boson 
mass is beyond the search reach of the HL-LHC experiment.

Let us now investigate the RHN pair production at the 250 GeV 
ILC. The relevant process is e+e− → Z ′∗ → Ni Ni mediated by a 
virtual Z ′ boson in the s-channel. Since the collider energy 
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s =

250 GeV is much smaller than mZ ′ , the RHN pair production cross 
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For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 
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i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
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i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 
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we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
N mT

D = 1
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D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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the sequential SM Z ′ boson and find a k-factor (k = 1.31) by which 
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tial SM Z ′ boson presented in the ATLAS paper [14]. We employ 
this k-factor for all of our LHC analysis, and find an upper bound 
on gBL as a function of mZ ′ from the ATLAS 2017 results. For the 
prospect of the future constraints to be obtained after the HL-LHC 
experiment with the 3000/fb integrated luminosity, we refer the 
simulation result presented in the ATLAS Technical Design Report 
[19]. Figure 4.20 (b) in this report shows the prospective upper 
bound on the cross section, pp → Z ′ + X → e+e− + X , as low as 
10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
lower bound on mZ ′ > 6.4 TeV for the sequential SM Z ′ boson.

For the following ILC analysis, instead of the LHC upper bound 
on gBL as a function of mZ ′ , it is more useful to plot the LHC lower 
bound on mZ ′/gBL , which is shown in Fig. 1. The lower and upper 
solid lines correspond to the lower bound from the ATLAS 2017 
and the prospective HL-LHC bound, respectively, for the minimal 
B − L model. The corresponding lower bounds for the alternative 
B − L model are depicted as the dashed lines. In the alternative 
B − L model, the Z ′ boson decay to a pair of RHNs dominates 
the total decay width and hence the branching ratio into dileptons 
is relatively suppressed, resulting in the LHC constraints weaker 
than those for the minimal B − L model. Note that the LHC con-
straint for mZ ′/gBL becomes dramatically weaker as mZ ′ increases. 
Since the ILC energy is much smaller than mZ ′ , the Z ′ boson medi-
ated processes at the ILC are described by effective higher dimen-
sional operators which are proportional to (mZ ′/gBL)
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chine than the LHC to explore the B − L models, if the Z ′ boson 
mass is beyond the search reach of the HL-LHC experiment.

Let us now investigate the RHN pair production at the 250 GeV 
ILC. The relevant process is e+e− → Z ′∗ → Ni Ni mediated by a 
virtual Z ′ boson in the s-channel. Since the collider energy 

√
s =

250 GeV is much smaller than mZ ′ , the RHN pair production cross 
section is approximately given by
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For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 

∑3
i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
s = 500 GeV [9]

we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
N mT

D = 1
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mD mT
D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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[19]. Figure 4.20 (b) in this report shows the prospective upper 
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10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
lower bound on mZ ′ > 6.4 TeV for the sequential SM Z ′ boson.

For the following ILC analysis, instead of the LHC upper bound 
on gBL as a function of mZ ′ , it is more useful to plot the LHC lower 
bound on mZ ′/gBL , which is shown in Fig. 1. The lower and upper 
solid lines correspond to the lower bound from the ATLAS 2017 
and the prospective HL-LHC bound, respectively, for the minimal 
B − L model. The corresponding lower bounds for the alternative 
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B − L model, the Z ′ boson decay to a pair of RHNs dominates 
the total decay width and hence the branching ratio into dileptons 
is relatively suppressed, resulting in the LHC constraints weaker 
than those for the minimal B − L model. Note that the LHC con-
straint for mZ ′/gBL becomes dramatically weaker as mZ ′ increases. 
Since the ILC energy is much smaller than mZ ′ , the Z ′ boson medi-
ated processes at the ILC are described by effective higher dimen-
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chine than the LHC to explore the B − L models, if the Z ′ boson 
mass is beyond the search reach of the HL-LHC experiment.

Let us now investigate the RHN pair production at the 250 GeV 
ILC. The relevant process is e+e− → Z ′∗ → Ni Ni mediated by a 
virtual Z ′ boson in the s-channel. Since the collider energy 
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s =
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For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 

∑3
i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
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we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:
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D = 1
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D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 

∑3
i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
s = 500 GeV [9]

we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
N mT

D = 1
mN

mD mT
D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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Fig. 1. The lower bounds on mZ ′ /gBL as a function of mZ ′ from the ATLAS 2017 
result and the HL-LHC search reach [19], along with the LEP constraint of mZ ′ /gBL >

6.9 TeV (dotted horizontal line) [11].

where we have neglected all SM fermion masses, and Q N j is the 
U(1)B−L charge of the RHN N j

R . For the minimal (alternative) B − L
model, let us consider two benchmark (degenerate) mass spec-
tra for the RHNs: mN1,2,3(mN1,2 ) = mN = 50 GeV and 100 GeV. It 
has been recently shown in Ref. [13] that in the alternative B − L
model, N3

R plays the role of DM in the Universe, reproducing the 
observed DM relic abundance with mN3 ≃ mZ ′/2. Motivated by the 
discussion, we set mN3 ≃ mZ ′/2, so that the N3 contribution to !Z ′

is neglected.
In our LHC analysis, we employ CTEQ6L [16] for the parton dis-

tribution functions and calculate the cross section of the dilepton 
production through the Z ′ boson exchange in the s-channel. Ne-
glecting the mass for the RHNs in our LHC analysis, the resultant 
cross section is controlled by only two parameters: gBL and mZ ′ . 
To derive a constraint for these parameters from the ATLAS 2017 
results [14], we follow the strategy in Refs. [17,18]: we first calcu-
late the cross section of the process, pp → Z ′ + X → ℓ+ℓ− + X , for 
the sequential SM Z ′ boson and find a k-factor (k = 1.31) by which 
our cross section coincides with the cross section for the sequen-
tial SM Z ′ boson presented in the ATLAS paper [14]. We employ 
this k-factor for all of our LHC analysis, and find an upper bound 
on gBL as a function of mZ ′ from the ATLAS 2017 results. For the 
prospect of the future constraints to be obtained after the HL-LHC 
experiment with the 3000/fb integrated luminosity, we refer the 
simulation result presented in the ATLAS Technical Design Report 
[19]. Figure 4.20 (b) in this report shows the prospective upper 
bound on the cross section, pp → Z ′ + X → e+e− + X , as low as 
10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
lower bound on mZ ′ > 6.4 TeV for the sequential SM Z ′ boson.

For the following ILC analysis, instead of the LHC upper bound 
on gBL as a function of mZ ′ , it is more useful to plot the LHC lower 
bound on mZ ′/gBL , which is shown in Fig. 1. The lower and upper 
solid lines correspond to the lower bound from the ATLAS 2017 
and the prospective HL-LHC bound, respectively, for the minimal 
B − L model. The corresponding lower bounds for the alternative 
B − L model are depicted as the dashed lines. In the alternative 
B − L model, the Z ′ boson decay to a pair of RHNs dominates 
the total decay width and hence the branching ratio into dileptons 
is relatively suppressed, resulting in the LHC constraints weaker 
than those for the minimal B − L model. Note that the LHC con-
straint for mZ ′/gBL becomes dramatically weaker as mZ ′ increases. 
Since the ILC energy is much smaller than mZ ′ , the Z ′ boson medi-
ated processes at the ILC are described by effective higher dimen-
sional operators which are proportional to (mZ ′/gBL)

2. Therefore, 
the plots in Fig. 1 imply that the ILC can be a more powerful ma-

Fig. 2. The RHN pair production cross sections at the 250 GeV ILC, along the 
prospective HL-LHC bounds shown in Fig. 1. The upper (black) and lower (red) 
solid lines are the results for the minimal B − L model with mN1,2,3 = 50 GeV and 
100 GeV, respectively. The results for the alternative B − L model are shown as the 
upper (black) and lower (red) dashed lines corresponding to mN1,2 = 50 GeV and 
100 GeV, respectively.

chine than the LHC to explore the B − L models, if the Z ′ boson 
mass is beyond the search reach of the HL-LHC experiment.

Let us now investigate the RHN pair production at the 250 GeV 
ILC. The relevant process is e+e− → Z ′∗ → Ni Ni mediated by a 
virtual Z ′ boson in the s-channel. Since the collider energy 

√
s =

250 GeV is much smaller than mZ ′ , the RHN pair production cross 
section is approximately given by

σ (e+e− → Z ′∗ → Ni Ni)

≃ (Q Ni )2

24π
s
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)4
(
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4m2
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) 3
2

. (8)

For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 

∑3
i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
s = 500 GeV [9]

we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
N mT

D = 1
mN

mD mT
D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-

(Alt . B − L)

s = 250 GeV

Luminosity = 2000 fb−1 52 and 576 events respectively
satisfying constraints from the HL − LHC

Majorana RHNs will show ℓ±ℓ±4j signal which can be a smoking gun signature

at the ILC to probe Majorana nature . Let′�s find the branching ratios after the neutrino
data fitting .



mN = 50 GeV e+ jj µ+ jj τ + jj

N1 0.412 0.104 0.104

N2 0.204 0.224 0.224

N3 0.0154 0.310 0.310

mN = 100 GeV e+ jj µ+ jj τ + jj

N1 0.587 0.148 0.148

N2 0.276 0.304 0.304

N3 0.0208 0.431 0.431

TABLE III: Branching ratios of the decay of the heavy neutrinos
N i=1,2,3 into e/µ/τ+jj in the minimal B−L model. The resultant
branching ratios are independent of the pattern of the light neutrino
spectra and mlightest.

250 GeV ILC can operate as a Majorana RHN discovery ma-
chine towards confirming the type-I seesaw mechanism. In the
second stage of the ILC with

√
s = 500 GeV [9] we expect

roughly 4 times more events with the same goal luminosity.
For detailed discussion about the ILC phenomenology, we

need to consider the decay processes of the heavy neutrinos.
Assuming |mij

D/mNj | ≪ 1 in Eq. (2) or Eq. (4), the type-I
seesaw mechanism leads to the light Majorana neutrino mass
matrix of the form:

mν ≃ mDM−1
N mT

D =
1

mN
mD mT

D, (9)

where MN = mN1 with the 3×3 (2×2) identity matrix 1 for
the minimal (alternative) B − L model. Through the seesaw
mechanism, the SM neutrinos and the RHNs are mixed in the
mass eigenstates. The flavor eigenstates of the SM neutrinos
(ν) are expressed in terms of the light (νm) and heavy (Nm)
Majorana neutrino mass eigenstates as ν ≃ RNm + Nνm,

where R = mD(MN )−1, N =
(

1 − 1
2R

∗RT
)

UMNS ≃
UMNS, and UMNS is the neutrino mixing matrix which diago-
nalizes the light neutrino mass matrix as

UT
MNSmνUMNS = diag(m1,m2,m3). (10)

Through the mixing matrix R and the original Dirac Yukawa
interactions, the heavy neutrino mass eigenstates, if kinemat-
ically allowed, decay into ℓW , νZ , νh (h is the SM Higgs
boson). If the decays to on-shell W /Z/h are not allowed, the
heavy neutrinos decay into SM fermions mainly through off-
shell W /Z . In Appendix I-III, we list the heavy neutrino de-
cay width formulas for two cases: (A) the heavy neutrinos
decay into three SM fermions through off-shell W /Z , and (B)
the heavy neutrinos decay into ℓW , νZ , νh. As shown in
Appendix IV, in our simple parametrization of mD from the
type-I seesaw formula, |Rαi|2 is expressed as a function of
only the lightest light neutrino mass eigenvalue mlightest and
mN by using the neutrino oscillation data. Therefore, once
we fix mlightest and mN , the heavy neutrino decay processes
are completely determined.

We now consider the smoking-gun signature of the heavy
neutrino pair production, namely, e+e− → Z ′∗ → N iN i, fol-

lowed by N iN i → ℓ±ℓ±W∓(∗)W∓(∗) → ℓ±ℓ±jjjj. This
lepton number violating process originates from the Majorana
nature of the heavy neutrinos and is basically free from the
SM background. The final same-sign dileptons can also vi-
olate the lepton flavor because of the neutrino mixing ma-
trix. Using the formulas given in Appendix II-IV, we calcu-
late the branching ratios of the process, N i → e/µ/τ + jj.
For the minimal B − L model, the resultant branching ratios
into N i → ℓW (∗) → ℓjj for each flavor charged lepton are
listed in Table III, for mN = 50 GeV and 100 GeV. For the
degenerate RHN masses, we find that the resultant branch-
ing ratios are independent of the pattern of the light neutrino
mass spectra and mlightest. We find the branching ratio of
N iN i → ℓ±ℓ±jjjj for any lepton flavors to be about 20%.
For the alternative B − L model, we obtain a similar result.
See Appendix V for details.

Finally, let us discuss another interesting signature of the
heavy neutrino production. Eq. (9) indicates elements of R is
very small, so that heavy neutrinos can be long-lived. Such
long-lived heavy neutrinos leave displaced vertex signatures
which can be easily distinguished from the SM background
events. For the minimal B − L model, we show the de-
cay lengths (lifetime times speed of light) of heavy neutri-
nos in Appendix VI (see Figs. 3 and 4). Interestingly, the
longest-lived heavy neutrino lifetime is inversely proportional
to mlightest [8], so that mlightest can be determined once the
long-lived heavy neutrino is observed with a displaced vertex.
Note that this heavy neutrino becomes stable and thus a DM
candidate in the limit of mlightest → 0. We can see that in
this limit, a Z2 symmetry comes out as an enhanced symme-
try, under which the DM particle is odd. Thus, the stability of
the DM particle is ensured by this Z2 symmetry, as previously
discussed in Ref. [20].

In conclusion, we have considered the minimal and the al-
ternative B − L models which are simple and well-motivated
extension of the SM to incorporate the SM neutrino masses
and flavor mixings through the type-I seesaw mechanism. To-
wards the experimental confirmation of the seesaw mecha-
nism, we have investigated the heavy neutrino pair produc-
tion mediated by the Z ′ boson at the 250 GeV ILC. The Z ′

boson mediated process is very severely constrained by the
LHC Run-2 results and the constraints will be more stringent
in the future. Nevertheless, we have found that if Z ′ boson is
very heavy, for example, mZ′ ! 7.5 TeV, the heavy neutrino
pair production cross section at the 250 ILC can be sizable,
while satisfying the prospective bounds after the HL-LHC ex-
periment with the 3000/fb integrated luminosity. Once a pair
of heavy neutrinos is produced, the same-sign dilepton final
states can be observed, which are the signature of the Ma-
jorana nature of the heavy neutrinos. In addition, the heavy
neutrinos can be long-lived and leave displaced vertex signa-
tures. Therefore, it is possible that the 250 GeV ILC operates
as not only a Higgs Factory but also a heavy neutrino discov-
ery machine to explore the origin of the Majorana neutrino
mass generation, namely the seesaw mechanism.

The Z ′ boson can be indirectly searched with the dilepton
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we set the Dirac CP -phase as δ = 3π/2 from the indications
by the recent T2K [22] and NOνA [23] data.

In our analysis we consider two patterns of the light neu-
trino mass spectrum, namely the Normal Hierarchy (NH)
where the light neutrino mass eigenvalues are ordered as
m1 < m2 < m3 and the Inverted Hierarchy (IH) where
the light neutrino mass eigenvalues are ordered as m3 <
m1 < m2. In the NH (IH) case, this lightest mass eigen-
value mlightest is identified with m1 (m3). Thus, the mass
eigenvalue matrix for the NH case is expressed as

DNH = diag
(

mlightest,m
NH
2 ,mNH

3

)

, (18)

with mNH
2 =

√

∆m2
12 +m2

lightest and mNH
3 =

√

∆m2
23 + (mNH

2 )2, while the mass eigenvalue matrix
for the IH case is

DIH = diag
(

mIH
1 ,mIH

2 ,mlightest

)

(19)

with mIH
2 =

√

∆m2
23 +m2

lightest and mIH
1 =

√

(mIH
2 )2 −∆m2

12. Through the type-I seesaw mecha-
nism, the light neutrino mass matrix is expressed as

mν = mDM−1
N mT

D = U∗
MNSDNH/IHU

†
MNS, (20)

for the NH/IH cases, respectively. This formula allows us to
simply parametrize the mixing matrix R as

RNH/IH =
1

√
mN

U∗
MNS

√

DNH/IH, (21)

where
√
DNH = diag

(√
mlightest,

√

mNH
2 ,

√

mNH
3

)

, and
√
DIH = diag

(

√

mIH
1 ,

√

mIH
2 ,

√
mlightest

)

in the minimal

B−L model. For the minimal seesaw in the alternative B−L
model, only two RHNs are involved in the seesaw mechanism
and mlightest = 0. In this case,

√

DNH/IH is expressed as
3× 2 matrices as follows:

√

DNH =

⎛

⎜

⎝

0 0
√

mNH
2 0

0
√

mNH
3

⎞

⎟

⎠
,

√

DIH =

⎛

⎜

⎝

√

mIH
1 0

0
√

mIH
2

0 0

⎞

⎟

⎠
. (22)

With the inputs of the oscillation data, the mixing matrix R is
found to be a function mlightest, mN and the Majorana CP -
phases. We find |Rαi|2 is independent of the Majorana CP -
phases, so that the heavy neutrino decay processes are deter-
mined by only two free parameters: mlightest and mN .

V. Heavy neutrino branching ratios in the alternative B − L
model

In the alternativeB−L model, only two RHNs are involved
in the seesaw mechanism and the mixing matrix R is given by

NH case

mN = 50 GeV e+ jj µ+ jj τ + jj

N1 0.194 0.213 0.213

N2 0.0154 0.318 0.318

mN = 100 GeV e+ jj µ+ jj τ + jj

N1 0.276 0.304 0.304

N2 0.0208 0.431 0.431

IH case

mN = 50 GeV e+ jj µ+ jj τ + jj

N1 0.412 0.104 0.104

N2 0.204 0.224 0.224

mN = 100 GeV e+ jj µ+ jj τ + jj

N1 0.587 0.148 0.148

N2 0.276 0.304 0.304

TABLE IV: Branching ratios of the heavy neutrinos N i=1,2 into
e/µ/τ + jj in the alternative B − L model.

Eq. (21) with the 3 × 2 matrices in Eq. (22). It is easy to find
a relation between Rαi (i = 1, 2, 3) in the minimal B − L
model and Rαi (i = 1, 2) in the alternative B − L model (for
vanishing Majorana phases). For the NH case, the element
Rαi in the alternative B−L model is the same as the element
Rαi+1 in the minimal B−L model. Similarly, for the IH case,
the element Rαi in the alternative B − L model is the same
as the element Rαi in the minimal B − L model. For the al-
ternative B−L model the resultant branching ratios are listed
in Table IV, corresponding to Table III for the minimal B−L
model. Because of the relation between R elements in the two
B − L models, the NH (IH) case results for N1,2 in Table IV
for mN = 100 GeV are the same as those for N2,3 (N1,2)
in Table III. This correspondence is not exact for the case of
mN = 50 GeV, since the partial decay width of Eq. (15) from
the interference contributes to the total decay width. We find
that this contribution is small, and the correspondence is satis-
fied as a good approximation. Similarly to the minimal B−L
model, we find the branching ratio of N iN i → ℓ±ℓ±jjjj for
any lepton flavors to be about 20%.

VI. Long-lived heavy neutrinos

In the minimal B − L model, we calculate the total decay
widths for N1,2,3 as a function of mlightest. We show in Fig. 3
the lifetime of N1,2,3 for the NH (top) and IH (bottom) cases
for mN = 50 GeV. Fig. 4 is same as Fig. 3 but for mN = 100
GeV. The longest-lived heavy neutrino lifetime is inversely
proportional to mlightest, and hence it becomes a DM candi-
date in the limit of mlightest → 0.

Similarly to our discussion about the branching ratios, the
lifetime of N1,2 in the alternative B − L model can be ob-
tained from the results in Figs. 3 and 4. The lifetime of N1,2
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by the recent T2K [22] and NOνA [23] data.

In our analysis we consider two patterns of the light neu-
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where the light neutrino mass eigenvalues are ordered as
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the light neutrino mass eigenvalues are ordered as m3 <
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With the inputs of the oscillation data, the mixing matrix R is
found to be a function mlightest, mN and the Majorana CP -
phases. We find |Rαi|2 is independent of the Majorana CP -
phases, so that the heavy neutrino decay processes are deter-
mined by only two free parameters: mlightest and mN .

V. Heavy neutrino branching ratios in the alternative B − L
model

In the alternativeB−L model, only two RHNs are involved
in the seesaw mechanism and the mixing matrix R is given by

NH case

mN = 50 GeV e+ jj µ+ jj τ + jj

N1 0.194 0.213 0.213

N2 0.0154 0.318 0.318

mN = 100 GeV e+ jj µ+ jj τ + jj

N1 0.276 0.304 0.304

N2 0.0208 0.431 0.431

IH case

mN = 50 GeV e+ jj µ+ jj τ + jj

N1 0.412 0.104 0.104

N2 0.204 0.224 0.224

mN = 100 GeV e+ jj µ+ jj τ + jj

N1 0.587 0.148 0.148

N2 0.276 0.304 0.304

TABLE IV: Branching ratios of the heavy neutrinos N i=1,2 into
e/µ/τ + jj in the alternative B − L model.

Eq. (21) with the 3 × 2 matrices in Eq. (22). It is easy to find
a relation between Rαi (i = 1, 2, 3) in the minimal B − L
model and Rαi (i = 1, 2) in the alternative B − L model (for
vanishing Majorana phases). For the NH case, the element
Rαi in the alternative B−L model is the same as the element
Rαi+1 in the minimal B−L model. Similarly, for the IH case,
the element Rαi in the alternative B − L model is the same
as the element Rαi in the minimal B − L model. For the al-
ternative B−L model the resultant branching ratios are listed
in Table IV, corresponding to Table III for the minimal B−L
model. Because of the relation between R elements in the two
B − L models, the NH (IH) case results for N1,2 in Table IV
for mN = 100 GeV are the same as those for N2,3 (N1,2)
in Table III. This correspondence is not exact for the case of
mN = 50 GeV, since the partial decay width of Eq. (15) from
the interference contributes to the total decay width. We find
that this contribution is small, and the correspondence is satis-
fied as a good approximation. Similarly to the minimal B−L
model, we find the branching ratio of N iN i → ℓ±ℓ±jjjj for
any lepton flavors to be about 20%.

VI. Long-lived heavy neutrinos

In the minimal B − L model, we calculate the total decay
widths for N1,2,3 as a function of mlightest. We show in Fig. 3
the lifetime of N1,2,3 for the NH (top) and IH (bottom) cases
for mN = 50 GeV. Fig. 4 is same as Fig. 3 but for mN = 100
GeV. The longest-lived heavy neutrino lifetime is inversely
proportional to mlightest, and hence it becomes a DM candi-
date in the limit of mlightest → 0.

Similarly to our discussion about the branching ratios, the
lifetime of N1,2 in the alternative B − L model can be ob-
tained from the results in Figs. 3 and 4. The lifetime of N1,2
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Finally NN → 2ℓ±4j will dominantly be between 16% − 34 % for the final results

B − L

Alt . B − L

for the B − L → Alt . B − Lscenario .
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FIG. 3: Top panel: The lifetime (times speed of light) of N1 (solid),
N2 (dashed) and N3 (dotted) for the NH light neutrino mass spec-
trum, for mN = 50 GeV. Bottom panel: Same as the top panel but
for the IH light neutrino mass spectrum.

for the NH case is given by the lifetime of N2,3, respectively,
in the limit of mlightest → 0. For the IH case, the lifetime
of N1,2 corresponds to the lifetime of N1,2, respectively, in
the limit of mlightest → 0. However, we have to be careful.
These results are true only if vν = 246 GeV in Eq. (4). In the
alternative B−L model, the neutrino Dirac mass is generated
from the VEV of the new Higgs doublet Hν which only cou-
ples with neutrinos. This structure is nothing but the one in the
so-called neutrinophilic two Higgs doublet model [24]. In or-
der to avoid a significant change of the SM Yukawa couplings,
we normally take vν ≪ vh ≃ 246 GeV. This means that the
actual lifetime of N1,2 is shorten by a factor of (vν/vh)2 ≪ 1.
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Longest lived RHN life time is inversely proportional to mlightest
mlightest → 0 leads to the long lived species as a potential DM candiadte

B − L case



In this work we are studying the Higgs production at the ILC from the 
heavy resonance. To study such a scenario we have used a general 
U(1) extension of the Standard Model where the Higgs production is 
enhanced by the additional U(1) charges obtained after the anomaly 
cancellations. 

This model is extremely useful for the further study of the various 
properties of the beyond the standard model physics such as the pair 
production of the heavy neutrinos, displaced vertex searches for the 
long lived particles, dark matter physics (both of the scalar and 
fermion) and vacuum stability. Such studies have been performed in a 
variety of past literatures and also will be done in some future articles.

Conclusions

Thank you

Finally a 250 GeV ILC can be an promising machine to probe BSM 
physics apart from considering it as a Higgs factory.


