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Yet the identity of 
Dark Matter is 
unknown

We only know it exists  
throughout the Universe



Dark Matter Candidates

❖ WIMP — weakly interacting massive particles, e.g., LSP in 
SUSY, LTP in little Higgs models,LKP in UED model, hidden-
sector fermions, … 

❖ Ultra-weak — axion, axino, gravitino, RH neutrinos, …  

❖ Decaying dark matter

A lot of experiments are designed to detect WIMPs, but so far … …



Lambda Cold Dark Matter Model

❖ Standard model of Cosmology.

Dark matter consists of unknown elementary particle(s), produced in early universe, that is  

“cold” — velocity dispersion on structure formation is negligible.  

❖ Explains structure formation for large scales:  
with small density fluctuations normalised to the observed CMB and allowed  
to grow via gravitational instability, can account for many properties of structures a  
t most well- observed scales and epochs. On scales larger than about 10 kpc,  
the predictions of ΛCDM have been successful.  

❖  Yet, for scale smaller than 10 kpc,  inconsistent with observations.  
Missing satellite problem, the too-big-to-fail problem, the cusp-core problem. 
 
 





Cusp-Core Problem

❖ LCDM simulations predict DM 
density cusp in center of 
galaxies, but inconsistent with 
observations. 

❖ Especially low-mass galaxies.



A Few Possible Solutions 

❖ Baryon physics: efficiency of transforming baryons into stars to be 
lower in lower-mass systems. 

❖ Some warm DM: its thermal velocity dispersion provides free streaming 
that suppresses low-mass halos or sub-halos, and also reduce the 
density cusp at the center. 

❖  DM has self-interactions, reducing the density cusp, form less sub-
halos. 

❖ Fuzzy dark matter: large de Broglie wavelength suppresses  
small-scale structures (Hu et al.).



Outline
1. Warm DM with relativistic properties can alleviate  

the small-scale crisis.  Majoron DM is warm.  

2. In addition, majoron DM can decay into neutrinos:  
   


  with a life-time of order of the age of the Universe.  
 
3. CMB provides a strong constraint on majoron DM  
  life-time, in order to avoid producing too much  
  fluctuation power on the largest CMB scales.  

4. We investigate the WARM and DECAY nature of  
  majoron DM on structure formation.


J → νν



Majoron Physics
The seesaw mechanism involves spontaneously broken  
lepton number symmetry, involves a singlet scalar  
coupling to singlet neutrino:

λσνcT
L τ2νc

L, ⟨σ⟩ ≡ v1

v1 can be large to give a large majorana mass. So the mass  
matrix for left- and right-handed neutrino is 

In fact, the smallness of neutrino masses, as compared to
the other SM particles, is puzzling in itself. Most likely it is
associated with the properties of the messenger states
whose exchange is responsible for inducing them. This is
the idea underlying the so-called seesaw mechanism
[23–27], whose details remain fairly elusive. Especially
appealing is the possibility that neutrino masses arise from
the spontaneous violation of ungauged lepton number
[28,29]. The associated Nambu-Goldstone boson, the
Majoron, could acquire a mass from nonperturbative gravi-
tational effects [30,31] and play the role of the dark matter
particle. In Ref. [32] the viability of the Majoron as a dark
matter particle was explored using the WMAP three-year
data, and in Ref. [33] the possible x-ray signature associ-
ated with Majoron decay was investigated. A specific
theoretical model implementing the seesaw mechanism
and an A4 flavor symmetry was described in [34].

In this paper, we update our previous constraints in the
light of the more recent cosmological and astrophysical
data. Regarding cosmology we use the WMAP nine-year
data [1,2] [as discussed in Sec. III, we do not expect our
results to change significantly using other cosmic micro-
wave background (CMB) data]. On the astrophysical
front we include emission line searches on the entire
range of photon energies between 0.07 keV and 200 GeV
from Chandra X-ray Observatory, X-ray Multi-Mirror
Mission—Newton (XMM), High Energy Astronomy
Observatory Program (HEAO), INTErnational Gamma-
Ray Astrophysics Laboratory (INTEGRAL), Compton
Gamma Ray Observatory (CGRO), and the Fermi
Gamma-ray Space Telescope.

The paper is organized as follows. In Sec. II, we briefly
recall the relevant Majoron physics. In Secs. III and IV, we
derive observational constraints on the Majoron decay to
neutrinos and photons, respectively, and we compare them
to the predictions of a general seesaw model. Finally, in
Sec. V we draw our conclusions.

II. SEESAW MAJORON PHYSICS

The basic idea of Majoron physics is that the lepton
number symmetry of the standard SUð3Þc # SUð2ÞL #
Uð1ÞY model is promoted to a spontaneously broken
symmetry [28,29]. This requires the presence of a lepton-
number-carrying complex scalar singlet, !, coupling to the
singlet neutrinos "c

L, as follows:

#!"cT
L !2"

c
L þ H:c: (1)

with the Yukawa coupling #. This term provides the large
mass term in the seesaw mass matrix

M" ¼
Y3v3 Y"v2

Y"
Tv2 Y1v1

" #
(2)

in the basis of ‘‘left’’- and ‘‘right’’-handed neutrinos "L,
"c
L. The model is characterized by singlet, doublet and

triplet Higgs scalars whose vacuum expectation values
(vevs) are arranged to satisfy v1 & v2 & v3 obeying a
simple vev seesaw relation of the type

v3v1 'v2
2: (3)

The vev v1 drives lepton number violation and induces also
a small but nonzero v3, while v2 is fixed by the masses of
the weak gauge bosons, theW and the Z. Note that the vev
seesaw condition implies that the triplet vev v3 ! 0 as the
singlet vev v1 ! 1. The three vevs determine all entries in
the seesaw neutrino mass matrix. Regarding the Yukawa
couplings, Y" is an arbitrary flavor matrix, while Y3 and Y1

are symmetric. The effective light neutrino mass obtained
by perturbative diagonalization of Eq. (2) is of the form

m" ’ Y3v3 (Y"Y
(1
1 Y"

T v
2
2

v1
: (4)

Together with Eq. (3) this summarizes the essence of the
seesaw mechanism.
To identify which combination of Higgs fields gives the

Majoron, J, one may write the scalar potential explicitly,
minimize it, and determine the resulting scalar mass
matrices. However, one can do this simply by exploiting
the invariance properties of the Higgs potential V [29]. The
result is proportional to the combination

J/ v3v2
2 Imð!0Þ (2v2v3

2 Imð"0Þ (5)

þ v1ðv2
2 þ 4v3

2Þ Imð!Þ (6)

up to a normalization factor. Im() denotes the imaginary
parts, while !0 and "0 refer to the neutral components of
the triplet and doublet scalars respectively, and ! is the
scalar singlet introduced in Eq. (1). We note the presence
of the quartic lepton-number-conserving term

"y!$2"
)!) þ H:c: (7)

in the scalar potential. Here $2 is the weak isospin Pauli
matrix, and v2 * h"i, v1 * h!i, v3 * h!i. This term
illustrates the need for mixing among neutral fields belong-
ing to all three Higgs multiplets in the expression for the
Majoron, Eq. (5). As a result the Majoron has an explicit
coupling to two photons leading to a possible indirect
detection of Majoron dark matter by searching for the
corresponding high energy photons [33], which we treat
in Sec. IV.
We now turn to the form of the couplings of the Majoron

within the above seesaw scheme, characterized by sponta-
neous lepton number violation in the presence of singlet,
doublet and triplet Higgs scalars. Again one can derive the
form of the couplings of the Majoron using only the
symmetry properties, as described in Ref. [29],

LYuk ¼
iJ

2

X

ij

"T
i gij!2"j þ H:c: (8)
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mν = Y3v3 − YνY−1
1 YT

ν
v2

2

v1



v3 (v2) is the VEV of the Higgs triplet (doublet).  

Since the lepton-number symmetry is spontaneously  
broken, there is Nambu-Goldstone boson: 

J ∝ v3v2
2ℑ(Δ0) − 2v2v2

3ℑ(Φ0) + v1(v2
2 + 4v2

3)ℑ(σ)

In principle, J is massless but acquires a mass via non-  
perturbative gravitational effect.  

mJ ≃ O(keV)



J mainly decays into light neutrinos via

ℒY =
i
2

J ∑
ij

νT
i gijτ2νj + h . c . gij = −

mνi

v1
δij

Decay width into neutrinos is 

ΓJ→νν =
mJ

32π

∑i m2
νi

2v2
1

Subleading  decay into a pair of photons:

ΓJ→γγ =
α2m3

J

64π3 ∑
f

NfQ2
f

2v2
3

v2
2v1

(−2Tf
3)

m2
J

12m2
f

2



CMB Constraint
J → νν
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in Ref. [32], that the CMB anisotropy spectrum is mainly
sensitive to the amount of dark matter prior to the time of
recombination (through the height of the first peak), as this
sets the time of matter-radiation equality. Once the amount
of dark matter in the early Universe is fixed, increasing the
decay rate results in a smaller amount of dark matter at the
present time, and vice versa. This degeneracy between
!dmh

2 and "J !!! explains the different shapes of the
posteriors shown in Fig. 1, and consequently explains the
lower value and larger uncertainty of the estimate of
!dmh

2 with respect to those obtained for #CDM. In fact,
if we compute constraints on the primordial dark
matter density [for example considering the combination
!dmh

2 expð"J !!!t0Þ, which is, up to a multiplicative con-
stant, the comoving density of dark matter at early times],
we find consistent results between the #CDM and the
Majoron DM models.

In the limit of cold dark matter, one cannot directly
constrain the mass of the dark matter particle itself, since
this quantity never appears explicitly either in the back-
ground or in the perturbation equations. Instead, the mass
only appears implicitly inside the physical density parame-
ter!dmh

2, in combination with the present number density
n0dm, since for nonrelativistic particles !dmh

2 / "dm ¼
mdmn

0
dm. The calculation of the number density relies on

the knowledge of the production mechanism of the dark
matter particle and on its thermal history. If the Majoron
was in thermal equilibrium with the rest of the cosmologi-
cal plasma at some early time, and decoupled while still
relativistic, one finds

!th
dmh

2 ¼
!

g$S
106:75

"% 1
!

mJ

1:40 keV

"
e"J !!!t0 ; (16)

where g$S parametrizes the entropy content of the
Universe at the time of Majoron decoupling. If the

Majoron decouples when all the degrees of freedom of
the SM of particle physics are excited and in thermal
equilibrium, one has g$S ¼ 106:75. To account for a
more general scenario, following Ref. [32], we write

!th
dmh

2 ¼ #
!

mJ

1:40 keV

"
e"J !!!t0 ; (17)

so that# ¼ 1 corresponds to the case of a thermal Majoron
decoupling when g$S ¼ 106:75. The parameter # encodes
our ignorance about the Majoron thermal history, and
# ! 1 can account both for a thermal Majoron decoupling
when g$S ! 106:75 and for a nonthermal distribution.
Nonthermal production mechanisms include, for example,
a phase transition [22] or the evaporation of Majoron
strings [38]. However, a detailed study relating the parame-
ters of the underlying particle physics model to the cos-
mological Majoron abundance in any of these scenarios is
still lacking, so it is difficult to identify, on purely theo-
retical grounds, the range of reasonable values of #.
Using Eq. (17), we can constrain the ‘‘effective mass’’

meff
J & #mJ and get

meff
J ¼ ð0:158 ' 0:007Þ keV ð68% C:L:Þ: (18)

In the right panel of Fig. 2 we show 68% and 95% con-
fidence regions in the ð"J !!!; m

eff
J Þ plane. This should

substitute the results appearing in Ref. [32]. Moreover,
we stress again that these constraints can be read in terms
of the actual Majoron mass only in the case of thermal
Majoron decoupling when g$S ¼ 106:75 (i.e., # ¼ 1).
Since the CMB does not really constrain the Majoron
mass (at least in the cold limit), in the next section we
will consider values of the mass also outside the kiloelec-
tronvolt range. We do not consider values of the mass
below ( 0:15 eV (corresponding to # * 1) as they are
likely to lead to problems in the context of structure
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FIG. 2 (color online). Two-dimensional WMAP9 constraints on the Majoron dark matter parameters. The light (dark) shaded regions
correspond to 68% (95%) confidence regions. Left panel: present density vs decay rate to neutrinos. Right panel: effective mass vs
decay rate to neutrinos.
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ΓJ→νν ≤ 6.4 × 10−19 s−1 at 95 % CL meff
J = 0.158 ± 0.007 keV

Late DM decay to invisible relativistic particles:

• gives extra radiation at small redshifts 

• too much power to CMB at the large angular scale.

Thus, CMB can constrain the decay rate or lifetime of J.



X-ray, Gamma-ray Constraint

J → γγ
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formation due to the large free-streaming length of the
particle [39] (although a detailed study would require the
knowledge of the full distribution function). The soft x-ray
band is also observationally challenging with no current
high-resolution observations appropriate for line searches.

IV. X- AND !-RAY CONSTRAINTS ON THE
PHOTON DECAY J ! !!

One of the most interesting features of spontaneous
lepton number violation within the general SUð3Þc #
SUð2ÞL # Uð1ÞY seesaw model is that the neutrino decay
mode in Eq. (10) is accompanied by a two-photon mode,
Eq. (11), as a result of Eq. (5). The decay into photons is
constrained by a number of astrophysical observations.

A. Existing constraints

In Fig. 3 we plot the emission line constraints over the
wide range of photon energies of 0.07 to 200 keV.

The very soft x-ray emission is covered byChandra Low
Energy Transmission Grating (LETG) observations of
NGC3227 (0.07–4.1 keV) [33] and a rocket borne light
cryogenic spectrometer (0.25–1.1 keV) [40,41].

The 0.3–12 keV range is well covered with constraints
from various objects observed with the Chandra and XMM
x-ray telescopes [42–55]. In Fig. 3 we have chosen the
strongest robust constraints3 from XMM observations of
the Milky Way and M31 [42] and from Chandra observa-
tions of the Draco dwarf galaxy [43].

The diffuse x-ray background observed with HEAO was
searched for line emission by Ref. [44] over the range
3–48 keV, and line emission constraints have been derived
from INTEGRAL SPI observations of the soft !-ray back-
ground (20 keV–7 MeV) [45]. For energies above those
covered by INTEGRAL the constraints are 2 orders of
magnitude worse as this range is only covered by a combi-
nation of the rather old COMPTEL and EGRET instru-
ments onboard the CGRO. However, line emission
constraints have been derived up to 100 GeV [60]. The
most recent flagship for !-ray searches is the Fermi !-ray
Space Telescope, for which line emission searches have
been performed for the range of 7–200 GeV [61].

B. Future improvements

The constraints on the Majoron decay rate into two mono-
energetic photons shown in Fig. 3 can be improved by
increasing the statistics or the spectral resolution. Increasing

statistics (either by exposure time or by sensitivity)

improves the constraints as !new
!! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nex

!!=N
new
!!

q
!ex
!!, where

Nex;new
!! are the existing and new total of photons

per bin (assuming both source and background counts
increase by the same amount). Increasing the spectral
resolution improves the constraints directly as !new

!! ¼
Enew
FWHM=E

ex
FWHM!

ex
!! and is consequently preferable but

also technically more challenging.

C. Model comparison

We now compare the observational constraints obtained
in the previous section to the predictions of different real-
izations of a general Majoron seesaw model. In particular,
we perform a random scan over the Yukawa matrices
ðY"; Y1; Y3Þ and vevs ðv1; v3Þ that characterize the seesaw
mass matrixM" in Eq. (2). For each point in the parameter
space we evaluate the effective light neutrino mass matrix
and the Majoron decay rate to neutrinos following Eqs. (4)
and (10), respectively. We then choose, among all possible
realizations, those that are in agreement with current neu-
trino oscillation data [62] as well as with the bound on the
neutrino decay rate in Eq. (15). Finally we compute the
corresponding decay rate to photons, as described in Sec. II.
We show the results of our scan in parameter space in

Fig. 4, together with the constraints already shown in
Fig. 3. It is clearly visible that the J! !! constraints
from line emission searches already begin to cut the
remaining parameter space for realistic models. This
happens in particular for models with v3 larger than a

FIG. 3 (color online). The 3# line emission constraints on the
decay rate into two monoenergetic photons. These constraints
apply to all dark matter candidates with this signature. The
constraints are taken from yellow [33], orange [40] (conserva-
tively rescaled by a factor of 2 due to mass estimate uncertainties
as recommended in [10]), red [42], grey [43], purple [44], blue
[45], cyan [60], green [61].

3Some analyses have claimed stronger constraints in this
energy interval, but were later found to be too optimistic.
Reference [56] underestimated the flux by 2 orders of magnitude
[46,48]. According to Ref. [42] the mass was overestimated in
Ref. [57] leading to too restrictive constraints. The constraints in
Ref. [58] might be too restrictive due to the choice of source
profile [45], and the spectral resolution appears overestimated in
Ref. [59].
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3-sigma line emission 
constraint on  
DM -> 2 photons

The most relevant 
range for majoron by: 
Chandra LETG 
XMM M31 and MW



few MeVs. However, models with lower values of the
triplet vev predict a photon flux that falls below the obser-
vational limits, as seen from the figure. For example, for
v3 < 100 eV, predictions lie below both current and
planned !-ray observatory sensitivities.

Note that, although for masses above 1 MeV the
Majoron could decay to electron-positron pairs, neverthe-
less the branching ratio is negligible. However, at even
higher masses, new decay channels open up, with the
production of muon-antimuon pairs, etc. In this case these
decays would produce continuum !-ray emission at ener-
gies below the emission line. This does not change any of
the constraints given in Figs. 3 and 4, though it would give
rise to additional constraints from continuum photon fluxes
and subsequent radio emission.

V. CONCLUSIONS

We have updated previous constraints on the parameters
of the Majoron dark matter model using the most recent
CMB, x- and !-ray observations. From the CMB, we have

derived an upper limit on the rate of the invisible decay of
the dark matter particle, namely, in the framework of the
model under consideration, on the Majoron decay to neu-
trinos. Translated in terms of the particle lifetime, this
constrains the Majoron lifetime to be larger than 50 Gyrs.
Since, as already shown in Ref. [32], the late decay of

dark matter mostly affects the large angular scale part of
the CMB power spectrum, where the uncertainty is domi-
nated by cosmic variance, we do not expect a dramatic
improvement by using the Planck data rather than
WMAP9. Likewise, the small-scale data from ACT and
SPT are not expected to change significantly our con-
straints. However, we cannot exclude that a more precise
determination of the intermediate to high-ell part of the
spectrum could affect, via parameter degeneracies, the
estimation of the decay rate. We defer a more careful study
of this issue to a future work.
The Majoron also possesses a subleading decay mode to

two photons that can be constrained by astrophysical
observations in the x and ! regions. We have compared
these limits to the theoretical predictions corresponding to
different values for the parameters of the underlying par-
ticle physics model. We have found that the observational
constraints already exclude part of the parameter space for
models in which the vev of the triplet v3 is larger than a few
megaelectronvolts. On the other hand, for smaller values of
v3, the current limits need to be improved by at least 6
orders of magnitude before the allowed region in parameter
space can be reduced.
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Structure Formation



We examine the effect of decaying warm 

dark matter on non-linear structure formation, 

due to two effects


(1) Warm nature (free streaming) of the majoron DM


(2) Decay of majoron DM


Goal of this study



Abbreviations Initial Conditions Lifetime WDM mass
SCDM CDM 1 N/A
DCDM CDM 50Gyr N/A

SWDM-M WDM 1 1.5 keV

DWDM-M WDM 50Gyr 1.5 keV

SWDM-m WDM 1 0.158 keV

DWDM-m WDM 50Gyr 0.158 keV

Table 1. The abbreviations and features of the simulations we have performed in this article. To
avoid word cluttering in the following we will use these abbreviations.

2 The simulations

2.1 Methodology

In order to scrutinize the novel features of the DWDM scenario we perform different cosmo-
logical simulations, as listed in Table. 1. We consider DM that is either stable or that decays
with a lifetime of 50Gyr, which is the lower limit from the CMB obtained in Ref. [22]. We also
consider the case of CDM, and two different cases of WDM. This makes a total of six N-body
cosmological simulations. To avoid word cluttering in the following, we use abbreviations for
these simulations, as given in the Tab. 1.

In the CDM simulations, the mass of the DM particle is large enough to suppress free-
streaming on the initial matter power spectrum. In other words, this is the limit of the DM
temperature-to-mass ratio going to zero. In the DWDM case, we consider two values of the
DM mass, namely mJ = 0.158 keV and mJ = 1.5 keV. The former value, as mentioned in
Sec. 1 , is the one that would give the right relic density for a scalar particle, like the majoron,
that decoupled in the early Universe when all the degrees of freedom of the standard model
were present. The latter value can be realized if the majoron has a nonthermal distribution,
or if it is thermal but its density is diluted by an additional production of entropy after
decoupling (both possibilities were described by an effective parameter called � in [21]). In
any case, we will remain agnostic about the production mechanism, and assume a thermal
distribution in all our WDM simulations when generating initial conditions (see below). This
is also in view of the fact that even if the majoron provides a neat particle physics motivation
for the DWDM scenario, nevertheless our results are more general, in the sense that they
apply independently of the particular nature of DM.

The values that we choose for the DM mass are in tension with lower limits obtained

– 4 –



We use two values for 

        mJ = 0.158 eV and 1.5 eV

and lifetime

        

• The lighter one is for thermal DM production  

• the heavier one is for non-thermal history or based   

  on thermal production but later diluted by additional

  entropy after decoupling.


• The lifetime from CMB is 50 Gyr. We also study the  
stable DM case.

τ = 50 Gyr or ∞



Remarks:

• The lighter mass 0.158 keV gives the correct relic 
density as a scalar particle that decouples in early  
Universe.  

• Both values are in tension with the lower limit from  
Lyman-alpha, mJ> 3.5 keV. Nevertheless, the limit is 
model dependent, e.g., IGM thermal history.  

• If mJ = 5.3 keV is chosen, it is almost no different from CDM.  

• The lighter value is chosen so as to maximize the  
free streaming effects. And it mainly decays into neutrinos.  

• Here we only investigate the effects of free streaming and  
decays, not the exact mass limit from structure formation.



Simulation of Decaying particle
• We concern with decay of DM into relativistic neutrinos

• The mass of “simulation particles” is reduced by a small 

amount at each time step due to decay of DM:

from observations of Ly�↵ flux-power spectra. For example, the recent analysis of Ref [26]
finds m > 5.3 keV at 95% CL for a thermal candidate, from a combined analysis of the XQ-
100 and HIRES/MIKE data samples. This limit can be relaxed to 3.5 keV by allowing for
a non-smooth evolution of the temperature of the intergalactic medium (IGM). We choose
to consider smaller values of the mass for two reasons. The first one is that the nature
of our paper is exploratory, and the main purpose is to study the joint effects of the DM
decay and free streaming. A small value of the mass allows us to maximize free-streaming
in order to better highlight the interplay between these two effects, taking into account also
the computational resources at our disposal. The second reason is that the interpretation of
Ly�↵ data is somehow complicated by several factors, like for example the aforementioned
dependence on the modeling of the IGM thermal history. For example, Ref [28] finds that the
Ly�↵ data can be made consistent with models excluded by other analyses. This, however,
does not necessarily imply that thermal DM with the masses considered here can be made
consistent with Ly�↵ observations; a dedicated study would be necessary for that purpose.
That said we have, in any case, also performed simulations for “large” DM mass, mJ = 5.3 keV.
We found no appreciable difference with the CDM case in the range of scales that we are able to
probe within our numerical resolution. The results for that case are given in the appendix. A
future analysis might consider different values of the mass, using larger-resolution simulations,
and also a non-thermal spectrum for the DM.

The standard N-body simulation code Gadget2 [29] is adopted to perform the simula-
tions. Gadget2 follows the evolution of a self-gravitating system of collisionless “particles”,
taking into account the expansion of the Universe. These particles are in fact macroscopical
objects, composed by a large number of DM particles. For this reason one usually refers to
them as “simulation particles”, as opposed to actual DM particles. In order to implement
the effect of decay, we include two modifications in the original Gadget2 code, following the
approach in Refs. [30, 31], which addressed the issue of dark matter decays into dark radia-
tion. Although here we are concerned with dark matter decaying into relativistic neutrinos,
the algorithm of the simulation is similar to Ref. [31]. First of all, the mass of the simulation
particle is reduced by a small amount at each step in the simulation, in order to account for
the effect of DM decay. Therefore, in the simulation the mass of the simulation particles is
altered according to

M(t) = M(1�R+Re�t(z)/⌧J ), (2.1)

where M is the initial mass of the simulation particles , and R ⌘ (⌦M � ⌦b)/⌦M is the
DM fraction in the matter component, and ⌦b refers to the baryon contribution. In addition
to reducing the simulation particle mass, we also modify the expansion rate of the universe
in accordance with the energy content at each redshift. Due to the dark matter decaying

– 5 –

where  R ≡ (ΩM − Ωb)/ΩM is the DM fraction

• In addition to reducing simulation particle mass,  
the expansion rate of the Universe also modified 
according to the energy content at each z 



The evolution of DM and decay product is described by

into relativistic particles (in the case of the majoron, neutrinos), the expansion history in the
DWDM majoron scenario is different from that of the stable DM case. The evolution of the
dark matter and of the decay products ⇢dm and ⇢dp are described by

⇢̇dm + 3H⇢dm = � a

⌧J
⇢dm,

⇢̇dp + 4H⇢dp =
a

⌧J
⇢dm,

(2.2)

where H and a are the conformal Hubble parameter and the scale factor, and the dot rep-
resents the derivative with respect to the conformal time. Here we assume that the decay
products are relativistic, so the pre-factor for the Hubble drag term for this component in
Eq. (2.2) is 4. On the other hand, H at each redshift is determined by

H2(z) =
8⇡G

3
a2(⇢dm(z) + ⇢b(z) + ⇢dp(z) + ⇢⇤(z)), (2.3)

where G, ⇢b, and ⇢⇤ are the gravitational constant, the baryon energy density, and the
energy density of dark energy, respectively. We assume that dark energy is in the form of a
cosmological constant. We also neglect the presence of the thermal relic neutrinos produced
in the early phases of the cosmological evolution, both at the background and perturbation
level. Note that ⇢b and ⇢⇤ are unaffected by the energy exchange between DM and the
decay products, hence they evolve as in the standard case (i.e., ⇢b / a�3 and ⇢⇤ = const).
Therefore, given the initial values for ⇢dm and ⇢dp, we need to numerically solve Eq. (2.2) in
conjunction with Eq. (2.3) at each timestep, in order to obtain the precise Hubble parameter
describing the expansion of the universe.

For simplicity, in the simulation we neglect the effects of perturbations in the decay
products. Indeed, we note that the contribution of the decay products to the energy density is
very small, since we consider very long DM lifetimes. Moreover, the decay-produced neutrinos
are free-streaming and thus do not cluster, due to their relativistic nature. So the main effect
of the decay products is just to reduce the amount of matter that is able to cluster, and
this is fully captured by decreasing the mass of each simulation particle as in Eq. 2.1. We
expect this approximation to break down on the largest scales, above the free-streaming length
of the decay products, where these are able to cluster. However, this happens around the
horizon scale, which is much larger than the largest scales probed by our simulations, that
use a box size of 50h�1Mpc. Moreover, the power spectrum on those scales can be reliably
computed using linear theory, if necessary. As a result, we expect that addional effects related
to perturbations in the decay-produced neutrinos will be subtle and not change our results
significantly.

Note that we do not include baryons in our simulation and thus neglect, among others,
baryonic feedback processes. The reason again is that, given the scope of our paper, we
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•           are unaffected by energy exchange between DM and dp, so  
they evolve in standard way:

ρb , ρΛ

ρb ∝ a−3, ρΛ ∝ const



• Further assumption: contribution of decay product dp to energy  
density is very small, due to long lifetime of majoron.  

• The decay product, neutrinos, are free streaming and do not cluster.  

• The decay is to reduce the amount of matter that is able to cluster.  
But we expect this assumption to break down on the largest scale  
above the free-streaming length, which is the size of horizon scale  
much larger than our simulation size.  

• Given initial conditions for             we solve for the evolution equations  
and calculate the Hubble parameter at each time-step

ρdm , ρdp



Initial Conditions
❖ Use linear theory to evolve the primordial perturbation 

in k space to some initial redshift z = 99, which is well 
before the DM decays, so decaying DM and stable DM 
have the same initial condition.  

❖ In WDM, we estimate the initial power spectrum as  
  
 
 
where transfer function TWDM(k) 

Figure 1. Left panel: comparison of the matter power spectrum of initial condition for ⇤CDM (red
solid line), WDM with mass 1.5 keV (blue solid line) and WDM with mass 0.158 keV (black solid line).
The vertical “Nyquist” band lies above the limit set by the scale of the average size of the simulation
particle. Right panel: Relative difference between the WDM and CDM power spectra, for WDM with
mass 1.5 keV (blue solid line) and 0.158 keV (black solid line). Here the matter power spectra are
obtained from the output of 2LPTic, hence the effect of finite numerical resolution is already included.
The cut-off due to the free-streaming of WDM can be clearly seen.

want to focus on the interplay between DM decay and free streaming. The inclusion of
baryonic effects, through hydrodynamic simulations, would be of course mandatory for a
rigorous comparison between the predictions of the “full-fledged” DWDM scenario and the
observations. We comment, anyway, on the possible effects of baryonic physics in Sec. 3.4.

2.2 Initial Conditions

To generate initial conditions for the N-body simulations, one uses linear theory to evolve the
primordial perturbations in k space up to some redshift deep in the matter-dominated era,
but still early enough for the linear predictions to be valid. This is the initial redshift, in our
case z = 99, from which the N-body simulations start. Since this initial time is well before
the DM decay kicks off, the initial power spectra for the stable and decaying DM case are the
same. We adopted the fitting form of CDM matter power spectrum PCDM given in Ref. [32],
which is based on the calculation of linear theory, to compute the initial power spectrum for
CDM initial conditions. In the WDM scenario, we estimate the power spectrum at the initial
redshift as

PWDM(k) = T 2
WDM(k)⇥ PCDM(k) , (2.4)
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where TWDM(k) is the transfer function given in Ref. [33] (where it is called T�), which
accounts for the cut-off in the matter power spectrum due to the free-streaming effect. The
initial transfer function for thermal WDM can be written as

TWDM(k) =
�
1 + (↵k)2⌫

��5/⌫
, (2.5)

where ↵ = 0.048(⌦DM/0.4)0.15(h/0.65)1.3(keV/mDM)1.15(1.5/g)0.29 Mpc and ⌫ = 1.2. Here
⌦DM is the dark matter energy density, mDM ⌘ mJ is the dark matter mass and g is the
effective number of dark matter degrees of freedom (g = 1 for the majoron). Note that ↵

is a critical length that determines the cut-off scale in the initial power spectrum. Using
mJ = 0.158 keV or 1.5 keV, g = 1, and the values listed below for the other parameters, one
has that the transfer function reduces the initial fluctuation power to a fraction 1/e of the
corresponding CDM value at k ' 1 and 17hMpc�1, respectively. We can take these values
as rough estimates of the free-streaming wavenumber.

In order to generate the initial condition for the cosmological simulation we used the
2LPTic code [34], based on the second-order Lagrangian perturbation theory. In Fig. 1, we
show the initial (z = 99) power spectra for CDM and for the two WDM models considered
here, given by 2LPTic, hence numerical limitations are already included 3.

Note that when we extract initial conditions from the power spectrum, we use the
same random seed for each pair of stable/decaying DM simulations. In other words, the two
simulations of each pair have exactly the same initial conditions. The simulations start from
redshift z = 99. The input cosmological parameters are: the matter energy density ⌦m = 0.3,
the cosmological constant energy density ⌦⇤ = 0.7, the baryon energy density ⌦b = 0.04, the
dimensionless Hubble constant h = 0.7, the scalar spectral index ns = 0.96, and the power
spectrum normalization factor �8 = 0.8. For WDM simulations, we input thermal velocities at
z = 99 to the simulation particles, consistently with the initial spectrum. This has however a
negligible effect on nonlinear structure formation since thermal velocities have already decayed
out at z = 99, due to the expansion of the Universe. We have used 5123 simulation particles
and a cube containing these particles with each side equals to 50h�1Mpc. The mass Msim

of each simulation particle at the initial time is Msim ' 7.8⇥ 107 h�1M�. Periodic boundary
conditions are employed in order to avoid boundary effects.

2.3 Numerical convergence tests

In this section we quantify the degree of convergence of our simulations. We do this by
considering simulations with different volume and number of particles. In particular, we

3The sudden change of slope for the WDM-m scenario around k = 3hMpc�1 is due to the presence of
shot noise, which will be discussed in Sec. 2.3.

– 8 –

where TWDM(k) is the transfer function given in Ref. [33] (where it is called T�), which
accounts for the cut-off in the matter power spectrum due to the free-streaming effect. The
initial transfer function for thermal WDM can be written as

TWDM(k) =
�
1 + (↵k)2⌫

��5/⌫
, (2.5)

where ↵ = 0.048(⌦DM/0.4)0.15(h/0.65)1.3(keV/mDM)1.15(1.5/g)0.29 Mpc and ⌫ = 1.2. Here
⌦DM is the dark matter energy density, mDM ⌘ mJ is the dark matter mass and g is the
effective number of dark matter degrees of freedom (g = 1 for the majoron). Note that ↵

is a critical length that determines the cut-off scale in the initial power spectrum. Using
mJ = 0.158 keV or 1.5 keV, g = 1, and the values listed below for the other parameters, one
has that the transfer function reduces the initial fluctuation power to a fraction 1/e of the
corresponding CDM value at k ' 1 and 17hMpc�1, respectively. We can take these values
as rough estimates of the free-streaming wavenumber.

In order to generate the initial condition for the cosmological simulation we used the
2LPTic code [34], based on the second-order Lagrangian perturbation theory. In Fig. 1, we
show the initial (z = 99) power spectra for CDM and for the two WDM models considered
here, given by 2LPTic, hence numerical limitations are already included 3.

Note that when we extract initial conditions from the power spectrum, we use the
same random seed for each pair of stable/decaying DM simulations. In other words, the two
simulations of each pair have exactly the same initial conditions. The simulations start from
redshift z = 99. The input cosmological parameters are: the matter energy density ⌦m = 0.3,
the cosmological constant energy density ⌦⇤ = 0.7, the baryon energy density ⌦b = 0.04, the
dimensionless Hubble constant h = 0.7, the scalar spectral index ns = 0.96, and the power
spectrum normalization factor �8 = 0.8. For WDM simulations, we input thermal velocities at
z = 99 to the simulation particles, consistently with the initial spectrum. This has however a
negligible effect on nonlinear structure formation since thermal velocities have already decayed
out at z = 99, due to the expansion of the Universe. We have used 5123 simulation particles
and a cube containing these particles with each side equals to 50h�1Mpc. The mass Msim

of each simulation particle at the initial time is Msim ' 7.8⇥ 107 h�1M�. Periodic boundary
conditions are employed in order to avoid boundary effects.

2.3 Numerical convergence tests

In this section we quantify the degree of convergence of our simulations. We do this by
considering simulations with different volume and number of particles. In particular, we

3The sudden change of slope for the WDM-m scenario around k = 3hMpc�1 is due to the presence of
shot noise, which will be discussed in Sec. 2.3.

– 8 –



Figure 1. Left panel: comparison of the matter power spectrum of initial condition for ⇤CDM (red
solid line), WDM with mass 1.5 keV (blue solid line) and WDM with mass 0.158 keV (black solid line).
The vertical “Nyquist” band lies above the limit set by the scale of the average size of the simulation
particle. Right panel: Relative difference between the WDM and CDM power spectra, for WDM with
mass 1.5 keV (blue solid line) and 0.158 keV (black solid line). Here the matter power spectra are
obtained from the output of 2LPTic, hence the effect of finite numerical resolution is already included.
The cut-off due to the free-streaming of WDM can be clearly seen.

want to focus on the interplay between DM decay and free streaming. The inclusion of
baryonic effects, through hydrodynamic simulations, would be of course mandatory for a
rigorous comparison between the predictions of the “full-fledged” DWDM scenario and the
observations. We comment, anyway, on the possible effects of baryonic physics in Sec. 3.4.

2.2 Initial Conditions

To generate initial conditions for the N-body simulations, one uses linear theory to evolve the
primordial perturbations in k space up to some redshift deep in the matter-dominated era,
but still early enough for the linear predictions to be valid. This is the initial redshift, in our
case z = 99, from which the N-body simulations start. Since this initial time is well before
the DM decay kicks off, the initial power spectra for the stable and decaying DM case are the
same. We adopted the fitting form of CDM matter power spectrum PCDM given in Ref. [32],
which is based on the calculation of linear theory, to compute the initial power spectrum for
CDM initial conditions. In the WDM scenario, we estimate the power spectrum at the initial
redshift as

PWDM(k) = T 2
WDM(k)⇥ PCDM(k) , (2.4)
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Initial matter power spectra for CDM and WDM using 2LTPic code.  
Power spectrum drops to 1/e of CDM at k≈1 (0.158 keV) and  
17h (1.5 keV). These are roughly the free-streaming wave numbers.



Simulation Details  

• starts at z = 99

• both stable and decaying DM exact same initial  

conditions and same random seed.

• For WDM simulations, thermal velocity at z=99 was input  

to simulation particles consistent with initial spectrum.

• Other cosmological parameters:

Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04; h = 0.7, ns = 0.96, σ8 = 0.8

• Use 5123 simulation particles in a cube with side 50 h-1 Mpc

• Msim  ≈ 7.8 107 h-1 Msun. 

• Periodic boundary condition.



Density Fields

Simulation Results



Figure 5. Comparison of the density fields at z = 0. The first and second rows correspond to
stable and decaying cases (with lifetime fixed at the CMB limit, 50Gyr [21]), respectively. The first,
second and third columns correspond to three different paradigms: ⇤CDM, and WDM with masses
mJ = 1.5 keV and mJ = 0.158 keV, from left to right. The horizontal and the vertical axis are given
in units of h�1 Mpc and represent the size of the simulation box. One clearly sees the free-streaming
effect of WDM, indicated by the suppression of structure in the density field of the WDM simulations.

structure is smoothed out in the WDM simulation with WDM mass mJ = 0.158 keV, due to
the large free-streaming length. In fact, the free streaming wavenumber is only one order of
magnitude larger than the fundamental mode of the box. On the other hand, the density fields
of the ⇤CDM simulations and those of the WDM simulations with WDM mass mJ = 1.5 keV

look quite similar, because on the scales probed by the simulations free streaming is rather
weak for such cases. However, a lack of small-scale power in the WDM simulation can still
be observed.

Note that the small peaks in the density field of WDM simulations are due to spurious
halos from finite resolution effects and numerical fragmentation, as discussed in Sec. 2.3. We
will also discuss such effects on the halo mass function in Sec. 3.3.

It is difficult to appreciate the effect of decay by performing a quick visual comparison of
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Density field: 1 + δ = ρ/ρ̄ M: 1.5 keV, m: 0.158 keV



Figure 6. Comparison of the relative density fields at z = 0. The left figure represents the relative
density field of SCDM and DCDM, the middle figure of is the relative density field of SWDM-M and
DWDM-M, and the right figure is the relative density field of SWDM-m and DWDM-m, respectively.
The horizontal and vertical axis are given in the same units as in Fig. 5. One sees that in most of
the regions, the density is larger in the stable case. However, there are small changes due to subtle
features of the decay scenario, see text for explanation.

the density fields in Fig. 5. Thus, in order to better isolate the effect of decay, we refer to the
relative density field ⇢S/⇢D of the stable (S) over the decaying (D) case, shown in Fig. 6. In
that figure, the color scale refers to log10 ⇢S/⇢D = log10[(�S + 1) exp(t0/⌧J)]� log10(�D + 1).
One can see that the decay effect reduces the density in most regions of the density field,
especially near the center of halos and the interior of filaments. This follows from the change
in the gravitational potential due to the decay, which makes the potential wells more shallow.
This is reflected in the fact that most regions are (relatively) overdense in the stable case, as
indicated by the reddish regions in Fig. 6. Note also that changes in the gravitational potential
also affect the dynamics of the simulation, causing diffusion of the simulation particles. This
makes the final density distribution more diffuse with respect to the stable case. Therefore, we
can see that regions near the periphery of the halos and filaments are denser in the decaying
DM case, and appear as the blu-ish regions in Fig. 6.

3.2 Matter Power Spectrum

The matter power spectrum of the simulations is calculated using the ComputePk code [38] with
the triangular shaped cloud scheme. Note that, since in the simulation we neglect the decay-
produced neutrinos, we only consider the overdensity of the DM and baryons in calculating the
matter power spectrum. In Fig. 7, we show the matter power spectrum at z = {0, 1, 2, 3} for
each of the simulations that we have performed, focusing on the differences between stable and

– 14 –

Stable / Decay

log10(ρS /ρD) = log10[(δS + 1)exp(t0/τJ)] − log10(δD + 1)



Matter Power Spectrum



Figure 7. Matter power spectra derived from our simulations, for the standard ⇤CDM⌘SCDM,
DCDM, SWDM-M, DWDM-M, SWDM-m and DWDM-m cases, at redshifts z = 0, 1, 2, 3. The solid
lines represent the stable case, while the dashed ones correspond to the decaying case. The different
colors are associated to different DM mass, and the pink band represents length scales smaller than
the Nyquist limit. One can clearly see the evolution of the matter power spectrum, as well as late-time
decay effects. Further details are given in the text.

decaying DM cases. The solid lines represent the matter power spectra from the simulations
with stable DM, while the dashed lines correspond to the matter power spectra obtained
in the simulations with decaying DM. The dashed vertical line corresponds to the Nyquist
wavenumber kNyq defined in Eq. (2.6), i.e. the scale of the average interparticle distance –
the resolution limit of our simulations. For our simulation parameters, kNyq ' 32hMpc�1.

From Fig. 7, one can easily see that the effect of decay becomes manifest at lower
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Matter Power Spectrum comparison



Interpretations

• Effects of decay is more obvious at low z

• Compare SCDM with SWDM-(M,m), at large scale (small k)  

are very close, but differ at small scale (large k), due to  
free-streaming of WDM.


• Free-streaming of mJ=1.5 keV is really small.

• Compare DWDM-M and DWDM-m, free-streaming effect still 

there for small scale suppression.

• Further suppression at all scales due to decay, which do not  

show strong dependence on scales. In contrast to free-  

streaming effect of WDM.



redshifts. This is due to the late decay time of the DM candidate4. To quantify the overall
effect of decay, we focus on the matter power spectrum at z = 0. As a reference, the scale of
non-linearity at z = 0 is roughly 0.15hMpc�1. By comparing SWDM-m and SWDM-M with
the standard ⇤CDM⌘SCDM paradigm, one can see that the matter power spectra on large
scales (small k) are identical, but differ on small scales, the SWDM spectra being suppressed
due to the free-streaming effect of WDM. This effect is very evident for the SWDM-m case,
that has the larger free-streaming length. The difference between SWDM-M and SCDM is
instead small, and visibile only at the largest k’s, because the free-streaming length for WDM
with mJ = 1.5 keV is still quite small, and thus free-streaming does not cause too much
suppression on the scales probed in our simulations. By comparing DWDM-m and DWDM-
M with SCDM, one can see that the small scale suppression due to the free-streaming effect
of WDM still exists. Moreover, there is further suppression on all scales caused by the effect
of decay. The presence of the decay, inherent in the BV model [20], reduces the matter energy
density in the universe, hence the growth factor is reduced, which delays the formation of
structure. The decay-induced suppression does not show a strong dependence on scale. This
should contrasted with the free-streaming effect of WDM, that has a strong dependence on
the scale, due to the scale of the cut-off in the initial transfer function, related to the mass
and temperature of the WDM. A lighter thermal WDM will cause a cut-off in the matter

4 In our DWDM picture the late majoron decays simply reflect the tiny neutrino mass [16].

Figure 8. Left panel: Ratio between the matter power spectra of decaying and stable dark matter,
for CDM (red), WDM-M (orange), WDM-m (blue) at z = 0. Right panel: Same as the left panel, at
z = 1. It can be noticed how the effect of the decay is manifest on all scales, but is more evident on
small scales, and also more evident for WDM with respect to CDM.
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Ratio of matter power spectrum



• The decay suppresses the matter power at all scales.


• The suppression due to decay is more obvious at small scale.


• The suppression due to decay gradually decreases toward  

large scale. All curves converge to the same value as beyond 

free-streaming length CDM and WDM behave the same. 


• Nonlinear enhancement of the effect of decay on small scales  

is stronger for lighter WDM. There is a sharp drop for  

mJ=0.158 keV near the free-streaming length scale.



Halo Mass Function



Figure 9. Evolution of the halo mass function for the standard ⇤CDM⌘SCDM paradigm (black
circle) compared with the simulations corresponding to DCDM (blue triangle), SWDM-m (green
square), and DWDM-m (red diamond). The dashed lines of corresponding colors in the z = 0

panel represent our derived halo mass function fits based on the given cosmology and the data points
obtained from our simulations. The data points of our simulations that do not fit well to the theoretical
WDM halo mass function are mainly due to spurious halos. By comparing the stable and decaying
cases, we can see that the effect of decay is to reduce the number density of halos for all mass scales.
However, the effect of the warm DM nature is seen by setting a cut-off mass, which is the mass scale
that the halo mass functions of WDM simulations start to deviate from those of CDM simulations.

3.3 Halo Mass Function

The halo mass function is defined as the number density of DM halos per unit logarithmic mass
interval. In order to estimate the halo mass function, we need to identify halos, i.e., bound
objects, within the large set of particles in our simulations. For this purpose, we make use of
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Remarks from Halo mass functions
• Compare stable and decaying DM, the decay reduced the  

number density of halos at all mass scales.  

• Free-streaming effect of WDM is to set a cutoff halo mass,  
where the WDM halo mass function starts to deviate from  
CDM halo mass function.  

• At large halo masses, the difference among various cosmo-  
logies are difficult due to few halos with large mass.  

• Number density of small-mass halos is much higher in CDM  
than WDM



Figure 9. Evolution of the halo mass function for the standard ⇤CDM⌘SCDM paradigm (black
circle) compared with the simulations corresponding to DCDM (blue triangle), SWDM-m (green
square), and DWDM-m (red diamond). The dashed lines of corresponding colors in the z = 0

panel represent our derived halo mass function fits based on the given cosmology and the data points
obtained from our simulations. The data points of our simulations that do not fit well to the theoretical
WDM halo mass function are mainly due to spurious halos. By comparing the stable and decaying
cases, we can see that the effect of decay is to reduce the number density of halos for all mass scales.
However, the effect of the warm DM nature is seen by setting a cut-off mass, which is the mass scale
that the halo mass functions of WDM simulations start to deviate from those of CDM simulations.

3.3 Halo Mass Function

The halo mass function is defined as the number density of DM halos per unit logarithmic mass
interval. In order to estimate the halo mass function, we need to identify halos, i.e., bound
objects, within the large set of particles in our simulations. For this purpose, we make use of
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n(M) = (1 + Mhm/M)−γ × nTinker(M)

Halo mass function fit:

γ ≈ 0.309 γ ≈ 0.345(SWDM-m) (DWDM-m)

Deviations in WDM due to many 
spurious  halos (numerical artifacts) 
due to  strong cutoff in WDM 
transfer fuction



Outlooks and Further Improvements

Include baryons in simulations — ability to cool down by  
radiative processes, gravitational heated, affects the halo  
density profile, star formation, other compact massive objects.  

Here we ignore the free-streaming effects of the neutrinos. 
If the decay time is much shorter (but much later than CMB),  
relativistic effect is important in large scales.  

Other scenarios:

    * CDM decays into relativistic neutrinos,

    * CDM decays into another CDM, velocity boost,

    * CDM interacts non-trivially with baryons, non-minimal heat  
      exchange between CDM and baryons.  



Back up Slides



A Results for 5.3 keV decaying dark matter

Although the uncertainty in the evolution of the IGM temperature might cast doubt on the
interpretation of the Lyman-alpha forest [52, 53] measurements, we note that recent Lyman-
alpha forest observations may set a strong lower limit on the WDM mass. Therefore, for
completeness, we also perform simulations using the 95% CL lower limit on the mass of the
WDM particle allowed by Lyman-alpha forest [26] data, i.e. mJ � 5.3 keV. We keep the
lifetime ⌧J = 50Gyr as in the other simulations with decay. In this appendix, we present the
results with such a mass for both stable and decaying dark matter.

In Fig. 10, we compare the matter power spectrum of SWDM and DWDM with mJ =

5.3 keV to that of SCDM. We show the individual matter power spectra at z = 0 in the left
panel, and the ratios to the SCDM matter power spectrum in the right panel. Note that the
difference between SWDM with mJ = 5.3 keV and SCDM is smaller than 1% on all scales.
This is associated to the relatively small free-streaming length of such a “large” mass WDM
particle. Furthermore, a visual comparison with the red solid curve in the left panel of Fig. 8,
shows that the power suppression due to the decay is in practice the same for WDM with
mJ = 5.3 keV and DCDM. This is again a consequence of the small free-streaming length of
the WDM.

Similar considerations apply to the halo mass functions for SCDM, SWDM and DWDM,

Figure 10. Left panel: The matter power spectrum at z = 0 for SCDM (black dashed), SWDM
(blue solid) and DWDM (red solid) with mJ = 5.3 keV. Right panel: Ratio between SWDM (blue
solid) and DWDM (red solid) with mJ = 5.3 keV and SCDM. The ratio between SWDM and SCDM
is very close to 1 on all scales, due to the small free-streaming length of such a heavy WDM particle.
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shown in Fig. 11. The number densities of halos are almost identical for SCDM and SWDM
with mJ = 5.3 keV, except for some deviations in the high-mass end due to cosmic variance.
Also note that the large number of spurious halos that were seen in the light WDM simulations
discussed in Sec. 3.3 disappear for WDM with mJ = 5.3 keV. Moreover, the decay suppresses
the halo mass function of DWDM on all scales.

From the analysis of the matter power spectrum and the halo mass function, we conclude
that the WDM mass allowed by the Lyman-alpha forest is, at the scales probed by our analysis,
undistinguishable from CDM. This holds for both the stable and decaying case.

Figure 11. The halo mass function at z = 0 for SCDM (black circle), SWDM (green square) and
DWDM (red diamond) with mJ = 5.3 keV. Like the matter power spectrum, the halo mass function
is similar for SCDM and SWDM with mJ = 5.3 keV, despite for some deviations in the high-mass end
related to cosmic variance. The halo mass function of DWDM with mJ = 5.3 keV shows suppression
of the halo number density compared to that of SCDM and SWDM at all mass scales, as discussed
in Sec. 3.3.
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Check for mJ=5.3 keV



Numerical Convergence tests

There are two numerical limitations:

• cosmic variance — finite volume of simulations, preventing  

predictions at very large scale.  Box size:  
   50 h-1 Mpc,   corresponding to k≈0.13 h Mpc-1.  

• Discreteness of simulation particles  

• Resolution limited by box size and the number of particles,  
described by Nyquist wavenumber 
    


  Beyond that the accuracy strongly degraded. 

KNyq
= π(N/V )1/3 ≃ 32 h Mpc−1



Consequences of finite resolution

• Non-zero power exists on all scales — shot noise.  

Independent of k, but depend on the number of  
simulation particles.


• A discrete peak in power spectrum at 2 x Nyquist limit.

The excess power is of more problem to WDM because 
of much small power at small scales — well known 
spurious halo issue in WDM simulations

We compare simulations at z=0 with different N and V 

N = 1283, 2563, 5123; L = V1/3 = 50,100 h−1 Mpc



Figure 3. The matter power spectrum at z = 0 of different simulation resolutions with V =

503 h�3 Mpc3 (left panel) and V = 1003 h�3 Mpc3 (right panel). One can see that in almost the
entire range of scales the matter power spectra at different resolutions converge, all the way up to the
Nyquist limit.

and 16h Mpc�1. On large and intermediate scales, the matter power spectra at different
resolutions converge fairly well, starting to deviate beyond the Nyquist wavenumber kNyq of
the given resolution. In particular, the excess of power above the Nyquist wavenumber is a
manifestation of particle shot noise. In order to better highlight this effect, we show in the
two panels of Fig 4 the ratios between each of the spectra and a (third) reference spectrum
P512(k) for the N = 5123 case, evaluated at z = 0. It can be seen that the simulations
agree to within 5% or better below the Nyquist wavenumber. In particular, at k = kNy/2 the
error at z = 0 is 5.7% for the 1283 particles run and 3.4% for the 2563 run, for a box size of
50h�1Mpc. The corresponding numbers for the 100h�1Mpc boxsize are 2.5% and 2.6%.

From the results presented in this section, it is clear that the parameter set V =

503 h�3Mpc3 and N = 5123 provides an adequate benchmark choice for our simulations. In
particular, we find that our simulations have ⇠ 10% accuracy or better in the wavenumber
range (1� 20)hMpc�1.

3 Simulation Results

By comparing the results of our simulations, we can infer the effect of DWDM on structure
formation. In the following, we derive our results through detailed analyses of the density field,
the matter power spectrum and the halo mass function inferred from our N-body simulations.
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In almost entire range of scales the matter power spectrum  
at different resolution converge all the way up to Nyquist limit. 



Figure 2. Ratio of power spectra obtained from simulations with box-size L = 50 and 100h�1 Mpc,
at fixed resolution. The blue and yellow curves correspond to kny ' 8 and 16hMpc�1, respectively.
The green band shows a 10% deviation between the spectra.

{L, N} = {50h�1Mpc, 1283} and {100h�1Mpc, 2563}. The latter has different number of
particles to ensure that the two simulations have the same resolution (kny ' 8hMpc�1 in
both cases) and that we are isolating the effects of the finite simulation volume. The ratio
between the spectra should give us a rough measure of the numerical error associated to a
finite volume size of 50h�1Mpc, at that resolution. We also do the same for the pair of
simulations with {L, N} = {50h�1Mpc, 2563} and {100h�1Mpc, 5123} (kny ' 16hMpc�1)
to be confident that our results reliably extrapolate to our reference simulation with {L, N} =

{50h�1Mpc, 5123} and kny ' 32hMpc�1. Of course a more direct way would be to perform
a simulation with {L, N} = {100h�1Mpc, 10243}, but we choose not to follow this path due
to our limited computational resources.

We show the ratio of the spectra computed in this way in Fig. 2. It is evident how the
large-scale power of the simulations does not match due to the cosmic variance. However,
we see that for both resolutions, the relative difference between L = 50 and 100h�1Mpc is
10% or better at wavenumbers above k ' 2hMpc�1. This makes us confident that the same
applies at the resolution of our reference simulation.

Then, to study the effect of the finite resolution, in the left panel of Fig. 3 we show
matter power spectra at z = 0 from simulations with 503 h�3Mpc3 box size and N1/3 =

128, 256, 512. Values of kNy for this runs are 8, 16 and 32h Mpc�1. The right panel of
the same figure shows the corresponding plot for a 1003 h�3Mpc3 box size, with kNy = 4, 8

– 10 –

Ratio of power spectrum for L = 50 and 100 h-1 Mpc.  
The green band is 10% deviation.



Figure 4. Effect of changing the simulation resolution at fixed box size L. The solid curves show the
ratio between the matter power spectra at z = 0 of Fig. 3, obtained with the settings for the particle
number indicated in the legend, and the spectrum for N = 5123 choosen as reference. The left (right)
panel is for L = 50 (100)h�1 Mpc.

3.1 Density Field

In Fig. 5, we compare the density field extracted from different simulations. The first, second
and third columns correspond to three different scenarios: CDM, WDM with mass mJ =

1.5 keV and WDM with mass mJ = 0.158 keV. The density field is calculated from the
particle distribution by using the triangular shaped cloud scheme and further smoothed by a
Gaussian filter. The first and second rows in Fig. 5 correspond to the stable and the decaying
case. The density contrast � is defined as

� =
⇢

⇢̄
� 1, (3.1)

where ⇢ is the local density and ⇢̄ is the average density. The color scale we use in Fig. 5 is
the logarithm of � + 1, which represents the ratio of local density ⇢ to the average density ⇢̄.
With the density field and the color scale, one can see how different cosmic structures form
in different cosmologies. By comparing the stable ⇤CDM and the stable WDM simulations,
one can clearly see the suppression of structure in the SWDM case, due to the associated
free-streaming effect. However, the effect of decay is not obvious through a simple visual
comparison of the corresponding stable and decaying density fields.

The well-known suppression of small-scale structure characteristic of WDM is evident
when comparing the different columns in Fig. 5. We can see that a large portion of small-scale
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Ratio of matter power spectrum  at z = 0


