# Low-Scale Leptogenesis beyond the Type-I Seesaw.

Kai Schmitz (INFN / University of Padua)

Based on: 1804.09660, 1812.04421, and 1905.12634.

In collaboration with: Tommi Alanne, Vedran Brdar, Alexander Helmboldt, Thomas Hugle, Sho Iwamoto, and Moritz Platscher.

### APEC Seminar | Kavli IPMU | Kashiwa, Japan | 17 July 2019





- Introduction: Leptogenesis at High and Low Energy Scales
- 2 [1905.12634] Leptogenesis + The Neutrino Option
- 3 [1804.09660] Leptogenesis + Ernest Ma's Scotogenic Model
- 4 [1812.04421] Leptogenesis + The Real-Scalar-Singlet Extension

### 1 Introduction: Leptogenesis at High and Low Energy Scales

- 2 [1905.12634] Leptogenesis + The Neutrino Option
- 3 [1804.09660] Leptogenesis + Ernest Ma's Scotogenic Model
- [1812.04421] Leptogenesis + The Real-Scalar-Singlet Extension

# Baryogenesis via leptogenesis



$$\eta_B = rac{n_b - n_{\overline{b}}}{n_\gamma} \simeq rac{n_b}{n_\gamma} \simeq 6.1 imes 10^{-10}$$

Problem: The *Baryon Asymmetry of the Universe* cannot be explained by Standard Model physics!

Sakharov conditions: [Sakharov '67]

Baryogenesis via leptogenesis: [Fukugita & Yanagida '86]

- 1 B violation
- 2 C and CP violation
- 3 Departure from therm. equilibrium



# Leptogenesis at high energies

Standard thermal leptogenesis requires very heavy right-handed neutrinos (RHNs)

- Vanilla leptogenesis:  $M_1\gtrsim \mathcal{O}\left(10^9
  ight)\,\mathrm{GeV}$  [Davidson & Ibarra '02] [Buchmüller et al. '02] [Giudice et al. '03]
- Plus flavor effects, etc.:  $M_1 \gtrsim \mathcal{O}(10^8) \text{ GeV}$  [Blanchet & Di Bari '08] [See also Motifat et al. '18 (1804.05066)]



Davidson-Ibarra bound: CP asymmetry parameter suppressed by SM neutrino masses

$$|\varepsilon_1| \lesssim rac{3}{16\pi} rac{(m_3 - m_1)M_1}{v_{
m ew}^2} \sim 10^{-6} \left(rac{M_1}{10^{10}\,{
m GeV}}
ight)$$

# Leptogenesis at low energies

#### Try to find alternative scenarios that can be realized at a lower energy scale



[Deppisch, Harz, Huang, 1503.04825 [hep-ph]]

[Drewes, Garbrecht, Gueter, Klaric, 1609.09069 [hep-ph]]

- **1** Directly search for RHNs with masses of  $\mathcal{O}(1 \cdots 10)$  GeV in collider experiments.
- 2 Evidence for low-energy LNV/LFV would challenge high-scale leptogenesis.
- **3** Heavy RHNs contribute to the SM Higgs mass  $\rightarrow$  EW naturalness problem.

This talk: A few ideas to lower the leptogenesis scale in beyond-type-I-seesaw scenarios.

- Introduction: Leptogenesis at High and Low Energy Scales
- 2 [1905.12634] Leptogenesis + The Neutrino Option
- 3 [1804.09660] Leptogenesis + Ernest Ma's Scotogenic Model
- 4 [1812.04421] Leptogenesis + The Real-Scalar-Singlet Extension

#### Radiative corrections to the Higgs potential [Vissani, hep-ph/9709409] [Clarke, Foot, Volkas, 1502.01352 [hep-ph]]

$$\mathscr{L}_{\text{seesaw}} \supset -y_{l\alpha} \, N_l \, \ell_{\alpha} \, \tilde{H} + \frac{1}{2} M_l \, N_l \, N_l \,, \quad V_{\text{Higgs}} = \mu^2 \, |H|^2 + \lambda \, |H|^4$$

RHN loop diagrams contribute to the parameters in the Higgs potential



#### Radiative corrections to the Higgs potential [Vissani, hep-ph/9709409] [Clarke, Foot, Volkas, 1502.01352 [hep-ph]]

$$\mathscr{L}_{\text{seesaw}} \supset -y_{l\alpha} \, N_l \, \ell_{\alpha} \, \tilde{H} + \frac{1}{2} M_l \, N_l \, N_l \,, \quad V_{\text{Higgs}} = \mu^2 \, |H|^2 + \lambda \, |H|^4$$

RHN loop diagrams contribute to the parameters in the Higgs potential



#### Philosophy of the "neutrino option": [Brivio, Trott, 1703.10924 [hep-ph], 1809.03450 [hep-ph]]

- Assume the Higgs sector respects classical scale invariance at high energies,  $\mu 
  ightarrow 0$ .
- Mass term soley induced by RHN threshold corrections at the RHN decoupling scale.
- New physics expected to be located at energies  $E \gtrsim M_l$ ; no new physics at  $\mathcal{O}(\text{TeV})$ .

# EFT matching at the RHN mass threshold



Running of parameters in the SM Higgs potential based on *n*-loop RG equations and n - 1-loop threshold corrections:

 $\mu \sim 101\,\text{GeV}$  @  $\bar{\textit{Q}} \sim 10^6\cdots 10^7\,\text{GeV}$ 

Match UV theory (including RHNs) onto SMEFT (without RHNs) at mass threshold

$$\begin{split} V_{\rm UV} &= \lambda \, |H|^4 \\ \rightarrow \quad V_{\rm SMEFT} &= \Delta \mu^2 \, |H|^2 + (\lambda + \Delta \lambda) \, |H|^4 \end{split}$$

Type-I seesaw as the common origin of neutrino mass, BAU, and the EW scale [Brdar, Helmboldt, Iwamoto, KS, 1905.12634 [hep-ph]] [See also Brivio, Molfat, Pascoli, Petcov, Turner, 1905.12642 [hep-ph]]

$$y_{l\alpha} = \frac{\mathrm{i}}{\nu/\sqrt{2}} M_l^{1/2} R_{li} m_i^{1/2} (U^{\dagger})_{i\alpha}, \qquad \sum_{l,\alpha} \frac{C \varepsilon_{l\alpha}}{z_{\alpha} \kappa_{\alpha}^{\mathrm{eff}}} = \eta_B^{\mathrm{obs}}, \qquad \frac{\mathrm{Tr} \left[ y y^{\dagger} \right]}{16\pi^2} M_1^2 = \mu_0^2.$$

• Use Casas–Ibarra parametrization and simultaneously solve conditions for  $\eta_B$  and  $\mu$ .

Vary experimental input values within  $3\sigma$ , scan over remaining free parameters.

## **Resonant leptogenesis**

$$\varepsilon_{l\alpha}^{(s)} = \sum_{J \neq I} \left\{ \frac{\Im \left[ y_{l\alpha} y_{J\alpha}^{*} \left( yy^{\dagger} \right)_{IJ} \right]}{\left( yy^{\dagger} \right)_{II} \left( yy^{\dagger} \right)_{JJ}} + \frac{M_{I}}{M_{J}} \frac{\Im \left[ y_{l\alpha} y_{J\alpha}^{*} \left( yy^{\dagger} \right)_{JI} \right]}{\left( yy^{\dagger} \right)_{II} \left( yy^{\dagger} \right)_{JJ}} \right\} \frac{M_{I}^{2} - M_{J}^{2}}{\left( M_{I}^{2} - M_{J}^{2} \right)^{2} + R_{IJ}}$$



# Leptogenesis from low-energy *CP* violation

Set all high-energy phases to zero  $\rightarrow$  PMNS matrix U only source of CP violation



- Introduction: Leptogenesis at High and Low Energy Scales
- 2 [1905.12634] Leptogenesis + The Neutrino Option
- 3 [1804.09660] Leptogenesis + Ernest Ma's Scotogenic Model
- 4 [1812.04421] Leptogenesis + The Real-Scalar-Singlet Extension

## Ernest Ma's scotogenic model of neutrino masses Ma 106

#### "Dark" equivalent of the type-I seesaw mechanism

- Again introduce N<sub>i=1,2,...</sub>, but replace SM Higgs doublet H by "dark" scalar doublet η
- ▶ Impose exact  $\mathbb{Z}_2$  symmetry:  $[N_i] = [\eta] = -1$ , whereas [SM] = +1

$$L \supset -h_{\alpha i} \ell_{\alpha} \tilde{\eta} N_{i} + \frac{1}{2} M_{i} N_{i} N_{i} + \text{h.c.}$$

$$V = -\mu^{2} |H|^{2} + m_{\eta}^{2} |\eta|^{2} + \frac{\lambda_{1}}{2} |H|^{4} + \frac{\lambda_{2}}{2} |\eta|^{4} + \lambda_{3} |H|^{2} |\eta|^{2} + \lambda_{4} |H^{\dagger} \eta|^{2} + \lambda_{5} \operatorname{Re} \{ (H^{\dagger} \eta)^{2} \}$$



#### Neutrino masses, dark matter, and leptogenesis in one go!

- $\langle \eta 
  angle \equiv$  0, no Dirac mass, neutrino masses at one loop
- Lightest Z<sub>2</sub>-odd state = viable DM candidate
- LNV by RHN Majorana masses / scalar  $\lambda_5$  interaction

# Possible avenues towards low-scale leptogenesis



Our work: Standard thermal leptogenesis without any degeneracy in the mass spectrum

- ▶  $N_1$  DM suffers from large Yukawa couplings  $\rightarrow$  LFV, washout. Therefore,  $\eta$  DM.
- Analytical + numerical study of both 2 and 3 RHNs (incl. Boltzmann equations).
- Restrict to parameters that manage to reproduce the neutrino oscillation data.

# Key parameter relations (1)

Active-neutrino mass matrix  $\mathcal{M}_{v}$ 

$$(\mathcal{M}_{\nu})_{\alpha\beta} = \sum_{i} \left( \frac{\lambda_{5}}{2\pi^{2}} \frac{1}{\xi_{i}} \times h_{\alpha i}^{*} h_{\beta i}^{*} \frac{v_{ew}^{2}}{M_{i}} \right)$$

Extra suppression by small  $\lambda_5$  values allows for larger Yukawas couplings  $h_{\alpha i}$ .

Davidson-Ibarra bound on  $\varepsilon_1$ 

$$|\varepsilon_1| \lesssim rac{2\pi^2}{\lambda_5} \, \xi_{2/3} imes rac{3}{16\pi} rac{(m_3 - m_1) \, M_1}{v_{
m ew}^2}$$

As a consequence, small  $\lambda_5$  values result in a larger *CP* asymmetry parameter  $\varepsilon_1$ .

Decay parameter  $K_1 = \Gamma_{N_1}/H(T = M_1)$  and decay rate  $\Gamma_{N_1}$ 

$$\left(1-a_{\eta}\right)^{-2}\Gamma_{N_{1}}=\frac{1}{8\pi}\left(h^{\dagger}h\right)_{11}M_{1}=\frac{2\pi^{2}}{\lambda_{5}}\xi_{1}\times\frac{1}{8\pi}\frac{\widetilde{m}_{1}M_{1}^{2}}{v_{ew}^{2}}$$

But at the same time, small λ<sub>5</sub> values also easily lead to a stronger washout.

# Key parameter relations (2)

The effective mass parameter  $\widetilde{m}_1$  is bounded from below:  $\widetilde{m}_1 \ge m_{\text{lightest}}$ 

$$\widetilde{m}_{1} \gtrsim \sqrt{\Delta m_{\rm sol}^2} \, (2\mathrm{RHN} + \mathrm{NO}), \quad \sqrt{\Delta m_{\rm atm}^2} \, (2\mathrm{RHN} + \mathrm{IO}), \quad m_1 \, (3\mathrm{RHN})$$

For 2 RHNs:  $K_1 \gtrsim 10 \rightarrow$  strong-washout regime  $\rightarrow$  no gain in  $\eta_B$ , despite  $\lambda_5 \ll 1$ .

Larger parametric freedom for 3 RHNs: Enlarge  $\varepsilon_1$  by small  $\lambda_5$ , control  $K_1$  by small  $m_1$ 

$$K_1 = K_1^{\text{opt}} \sim \mathcal{O}(1), \quad \varepsilon_1 = \varepsilon_1^{\max} \quad \Rightarrow \quad m_1 \sim 8 \times 10^{-3} (\lambda_5/0.1) \text{ meV}$$

▶ RHNs must decay out of equilibrium  $\rightarrow (h^{\dagger}h)_{11}$  must remain small  $\rightarrow$  tiny mass  $m_1$ .

Washout because of  $\Delta L = 2$  scattering processes:  $\ell \eta \leftrightarrow \bar{\ell} \eta^*, \, \ell \ell \leftrightarrow \eta^* \eta^*$ 

$$\frac{\Gamma_{\Delta L=2}}{H} \propto \lambda_5^{-2} \, v_{\rm ew}^{-4} \, \overline{m}_{\xi}^2 \, T \, M_{\rm Pl}$$

▶ Becomes relevant at small  $\lambda_5$  values,  $\lambda_5 \lesssim \mathcal{O}(10^{-2}) \rightarrow \text{Solve Boltzmann equations!}$ 

# Scan of parameter space

[Hugle, Platscher, KS, 1804.09660 [hep-ph]]



If  $\Delta L = 2$  washout is negligible, analytical and numerical results agree very well.

- ▶ If not,  $M_1$  and  $m_1$  can still be lowered by  $K_1 \ll 1$ . RHNs then decay at very late times.
- This is possible as long as leptogenesis occurs before sphaleron freeze-out.

Absolute lower bounds:  $m_1 \gtrsim \mathcal{O}(10^{-12}) \text{ eV}, \quad M_1 \gtrsim \mathcal{O}(10) \text{ TeV}$ 

- Introduction: Leptogenesis at High and Low Energy Scales
- 2 [1905.12634] Leptogenesis + The Neutrino Option
- 3 [1804.09660] Leptogenesis + Ernest Ma's Scotogenic Model
- 4 [1812.04421] Leptogenesis + The Real-Scalar-Singlet Extension

#### Type-I seesaw + a real scalar singlet [Aristizabal Sierra, Tor LLe Dall, Ritz, 1408.24

[Aristizabal Sierra, Tortola, Valle, Vicente, 1405.4706 [hep-ph]] [Le Dall, Ritz, 1408.2498 [hep-ph]]

#### Extend the RHN sector by an additional scalar gauge singlet S

- ▶ Introduce additional RHN Yukawa couplings that lead to fast  $N_i \rightarrow SN_i$  decays.
- ▶ UV origin: Multiple breaking of B-L? Composite Higgs models? ... [Alanne, Meroni, Tuominen '17]

$$L \supset -h_{\alpha i} \,\ell_{\alpha} \,\tilde{H} \,N_{i} + \frac{1}{2} M_{i} \,N_{i} \,N_{i} + \frac{1}{2} \alpha_{i j} \,S \,N_{i} \,N_{j} + \text{h.c.}$$
$$V = m_{H}^{2} |H|^{2} + \frac{\lambda}{2} |H|^{4} + \frac{1}{2} m_{S}^{2} \,S^{2} + \mu \,S \,|H|^{2} + \cdots$$



#### Additional CP-violating diagrams

- $\alpha_{ij}$  not diagonal in RHN mass basis.
- Trilinear portal coupling to the Higgs.
- Realize N<sub>2</sub>-dominated leptogenesis!

### Time evolution of the baryon asymmetry [Alanne, Hugle, Platscher, KS, 1812.04421 [hep-ph]]



•  $N_2$ -dominated leptogenesis is boosted by additional contributions to  $\varepsilon_2$ .

- ▶ Washout by inverse  $N_1$  decays is less severe because of  $SN_1 \rightarrow N_2 \rightarrow \ell H$ .
- ▶ Respective deviations from thermal equilibrium:  $N_{N_2} N_{N_2}^{eq} \sim N_{N_1} N_{N_1}^{eq}$

#### Working parameter examples for: $M_1 \sim 0.1 \cdots 1 \,\text{TeV}, M_2 \sim 1 \cdots 10 \,\text{TeV}$

## Scan of parameter space



- Introduction: Leptogenesis at High and Low Energy Scales
- 2 [1905.12634] Leptogenesis + The Neutrino Option
- 3 [1804.09660] Leptogenesis + Ernest Ma's Scotogenic Model
- [1812.04421] Leptogenesis + The Real-Scalar-Singlet Extension

### Conclusions

This talk: Low-scale leptogenesis in three beyond-type-I-seesaw scenarios.

- 1 Leptogenesis + the neutrino option
  - Assume classically scale-invariant boundary conditions in the SM Higgs sector.
  - Successful resonant leptogenesis for a RHN mass splitting  $\delta M \lesssim 10^{-4}$ .
- 2 Leptogenesis + Ernest Ma's scotogenic model
  - Extra suppression of the active-neutrino mass matrix by  $\lambda_5 \rightarrow$  larger Yukawas.
  - $M_1 \gtrsim 10 \,\text{TeV}, \, m_1 \gtrsim 10^{-12} \,\text{eV} \rightarrow \text{can}$  be tested by KATRIN / PROJECT 8, etc.
- 3 Leptogenesis + the real-scalar-singlet extension of the Standard Model
  - Additional Yukawa interactions in the RHN sector  $\rightarrow$  additional  $\mathcal{P}$  diagrams.
  - Successful examples with  $M_1 \sim 0.1 \cdots 1 \text{ TeV}$  and  $M_2 \sim 1 \cdots 10 \text{ TeV}$ .

### Conclusions

This talk: Low-scale leptogenesis in three beyond-type-I-seesaw scenarios.

- **1** Leptogenesis + the neutrino option
  - Assume classically scale-invariant boundary conditions in the SM Higgs sector.
  - Successful resonant leptogenesis for a RHN mass splitting  $\delta M \lesssim 10^{-4}$ .
- 2 Leptogenesis + Ernest Ma's scotogenic model
  - Extra suppression of the active-neutrino mass matrix by  $\lambda_5 \rightarrow$  larger Yukawas.
  - $M_1 \gtrsim 10 \,\text{TeV}, \, m_1 \gtrsim 10^{-12} \,\text{eV} \rightarrow \text{can}$  be tested by KATRIN / PROJECT 8, etc.
- 3 Leptogenesis + the real-scalar-singlet extension of the Standard Model
  - Additional Yukawa interactions in the RHN sector  $\rightarrow$  additional  $\mathcal{P}$  diagrams.
  - Successful examples with  $M_1 \sim 0.1 \cdots 1 \text{ TeV}$  and  $M_2 \sim 1 \cdots 10 \text{ TeV}$ .

# Thank you for your attention!