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Abstract

® Discuss possible uncertainties on the
prediction for the axion dark matter mass
by considering the axion production from
cosmic strings in the early universe.

® Present some new results of large scale




Plan

® Brief introduction of axions

® |ssue of axion dark matter mass predictions

® Post-inflationary Peccei-Quinn symmetry breaking scenario

® Axionic strings: controversies




Strong CP problem and axion

® Strong CP problem

® Quantum chromodynamics (QCD) allows a CP violating term:

PTG L it
ST

Physical observable: @ = § + arg det M,

® Non-observation of neutron electric dipole moment implies




Axion as a Nambu-Goldstone boson

® Axions can be identified as
Nambu-Goldstone bosons arising from
breaking of global symmetry.
(Peccei-Quinn (PQ) symmetry)

® Hidden scalar field:
1

P(x) = ﬁ[fa -+ p(;p)]eia(x)/fa

Massive modulus, massless phase:

ssosles =)

® |nteractions with standard model particles are
suppressed by assuming a large symmetry breaking scale.

fa > Velectroweak ~ 0(100) GeV
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Coupling to QCD

® Axions couple to gluons via

s G -
L = e
S fi s

® Below the QCD scale Aqcp ~ O(100 MeV),
topological charge fluctuations in QCD vacuum
induce the potential energy:

Vaocp(a) ~ AéCD (1 — COS %)

mP (o) = 0 at the minimum, solving the strong CP problem

® Mass of QCD axions m, ~ A{cp/ fa:

fa

® Tiny coupling with matter + non-thermal production

10 GeV
0 el BT ( 5 )

— good candidate of cold dark matter
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Axion dark matter mass ?
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® Experiments will cover many orders of magnitudes in the axion mass...
® What is the “typical” theoretical prediction for axion dark matter mass!?

® How to interpret experimental results?
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Axion dark matter mass !

® Relic axion abundance depends on the Peccei-Quinn scale,
and hence on the axion mass.




Assumptions in cosmology

® Many different theoretical possibilities and different consequences.

® A simple scenario based on three assumptions:
. PQ symmetry has been broken after inflation.

2. Standard expansion history (i.e. radiation domination) after axion
number is fixed (T < 1 GeV).

A

3. Domain wall (DW) number (# of degenerate vacua) is Now = |.




Post-inflationary PQ symmetry breaking scenario

end of inflation
PQ symmetry
restoration

~ PQ symmetry
breaking

QCD phase
transition

after QCD
phase transition

Precise knowledge about the field configurations around the epoch of QCD
phase transition is crucial for a reliable estimate of the relic axion abundance.




Axionic strings
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Axionic strings

o a
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Position space




Difficulty in string dynamics

® Jwo extremely different length scales.

; , —1 —1
® Stl’lng core radius llcore B IL & & fa

MM s : mass scale of the UV completion

e Hubble radius H !

® String tension acquires a logarithmic correction:
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Scaling solution

® (1) strings per horizon volume:

b ud

= AN ——

Pstring —
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® The net energy density of radiated axions should be the same order.

Rac G O SHzfaz, log(ms/H)
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Axion production from strings

® Energy transfer from strings in the scaling regime

. §
Pa == 4Hpa o Fstr—m,a str—a — 'i'gf

® Differential energy transfer rate [Gorghetto, Hardy andVilladoro (2018)]
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Controversy on the spectrum

Important to know about the shape of the spectrum of axions
radiated at a given instant.

If IR modes dominate,
many soft axions — Higher mass is predicted.

[Davis (1986); Davis and Shellard (1989); Battle and Shellard (1994);Yamaguchi, Kawasaki and Yokoyama (1999);
Hiramatsu et al. (201 I); Kawasaki, KS and Sekiguchi (2015); Kawasaki et al. (2018)]

A kH
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Controversy on the spectrum

If UV modes dominate,
few hard axions — Lower mass is predicted.

[Harari and Sikivie (1987); Hagmann and Sikivie (1991); Hagmann, Chang and Sikivie (2001);
Fleury and Moore (2016); Klaer and Moore (2017)]

k

Note:
® Shape of the spectrum may depend on log(m,/H).

® Careful extrapolation to large log(m,/H)is required.

[Gorghetto, Hardy and Villadoro (2018)] 16/28



Axion DM mass prediction: discrepancies
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Current & future experiments
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Axion models

[Irastorza and Redondo (2018)]

It is important to reduce the uncertainty of theoretical prediction for
the “Vanilla” scenario in light of future developments of experimental searches.
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Recent simulation results



Field theoretic lattice simulation

® Solve EOM for a complex scalar
field ® numerically.

§5+3H$—%V2¢+)\gb lgb\Q—vQ — 0

® The largest number
of grids N = 81923
“at the COBRA cluster







String density

Preliminary
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Logarithmic growth compatible with previous results.

[Fleury and Moore (2016); Gorghetto, Hardy and Villadoro (2018);
Kawasaki, Sekiguchi, Yamaguchi and Yokoyama (2018)]
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Spectrum of radiated axions

Preliminary
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Fitting to a power law

Assume F' o 1/z? in the intermediate range H < k < m,

Preliminary
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q seems to grow with log.
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Extrapolation to large log

{1 = simulation

] === ¢=0.1log+0.15

Preliminary
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More issues on analysis methods



PRS vs physical strings

® Results in the previous slides PRS

are obtained based on the 1
me(t)T

Press-Ryden-Spergel (PRS) trick )

(or “fat string” trick):

[Press, Ryden and Spergel (1989)]

Modifying the action such that

i s (R(tini)) M (i) R(Z)Ax R(;;)'Ax
[ Physical

® PRS strings take a longer time

SOk =%
LR R4

v}
»

“to reach the same value

7 EEAT

AN T S INAN B b A b Lt h A ho Ay 1 IR W S s Bl A sA N v
TR T S L e i e e o N i X SRR ), : W i gt 2 BV q NS TR DIAN ALORS Y PRI Resser H Y N S PR IO e ] [Ch Vot Hect| RIS MR o SRR e L B DL Rt B St S s S
AP W S IB N RrCr SO e W o by O S @ T P18 8 7 PR e ey ) Ve = o VI ™ WY Y ¢ 3N @l B R &5 5 B W @ AR iesw R N RS RIVEIT [l de e il T Xk ARSI TR I EER] R U St n A DS e S SLABPEL] MIOMRGUBS WROMETRY, L (o iRaa i R Bt
R ST _g,{“ C‘\“ S )V 7 ST 5 i onlli W 2 5 ) ' i ,&. Els2RE ) RIS l‘t‘?’ij‘f SN % .b{z{ v}\,ﬂ,“ ..;g.u:. ey 3 R B ‘Q:% ;'é.', 1 y ':"‘ - - - i St - - STl B 1‘,}




Spectrum from physical strings

—— PRS strings
—— physical strings

Very preliminary

® |nstantaneous quantities may depend solely on log(m,/H) (TBC).

® Difference should appear when integrated over time.

loglz).  (PRS)
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26/28



Interpretation of string density evolution

arXiv:1908.03522 The scaling density of axion strings

Mark Hindmarsh,!:2:* Joanes Lizarraga,®' T Asier Lopez-Eiguren,!>¥ and Jon Urrestilla3: 8

! Department of Physics and Helsinki Institute of Physics, PL 64, FI-00014 University of Helsinki, Finland
2 Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, U.K.
3 Department of Theoretical Physics, University of the Basque Country UPV/EHU, /8080 Bilbao, Spain
(Dated: August 12, 2019)

e Better fits are obtained for & o< (1 — to/t)~?
rather than & o log(m,/H), implying that { ~ 1 (const.)
at large log(ms/H) ... a new controversy!

® Should be checked in simulations with larger dynamical ranges!
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Summary

® Typical scenario for axion dark matter production:
® Post-inflationary PQ symmetry breaking
® Axions produced from strings

® We should be careful about potentially large uncertainty
on the relic axion dark matter abundance.
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