Axion dark matter mass: Towards a reliable estimate

Ken'ichi Saikawa (Max-Planck-Institute for Physics)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Work in progress, with Javier Redondo (Zaragoza U./MPP) and Alejandro Vaquero (Utah U.)

21 August 2019, Kavli IPMU

Abstract

- Discuss possible uncertainties on the prediction for the axion dark matter mass by considering the axion production from cosmic strings in the early universe.
- Present some new results of large scale numerical simulations of axionic strings and discuss their implication for the axion mass prediction.

Plan

- Brief introduction of axions
- Issue of axion dark matter mass predictions
 - Post-inflationary Peccei-Quinn symmetry breaking scenario
 - Axionic strings: controversies
- Up-to-date results of large scale numerical simulations
- Some more issues on analysis methods
- Summary

Strong CP problem and axion

- Strong CP problem
 - Quantum chromodynamics (QCD) allows a CP violating term:

$$\mathcal{L} \supset \frac{\alpha_s}{8\pi} \theta G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Physical observable: $\bar{\theta} = \theta + \arg \det M_q$

- Non-observation of neutron electric dipole moment implies $\left|\bar{\theta}\right| < \mathcal{O}(10^{-11}) \quad \text{``Why it is so small ?''}$
- Peccei-Quinn (PQ) mechanism
 - Take $\bar{\theta}$ as a dynamical variable that explains its smallness, i.e. $\bar{\theta} \to \bar{\theta}_{\mathrm{eff}}(x) = a(x)/f_a$
 - Predicts the existence of light particle a(x) = axion.

Axion as a Nambu-Goldstone boson

- Axions can be identified as Nambu-Goldstone bosons arising from breaking of global symmetry. (Peccei-Quinn (PQ) symmetry)
- Hidden scalar field:

$$\phi(x) = \frac{1}{\sqrt{2}} [f_a + \rho(x)] e^{ia(x)/f_a}$$

Massive modulus, massless phase:

$$m_{\rho} \sim f_a, \quad m_a = 0$$

• Interactions with standard model particles are suppressed by assuming a large symmetry breaking scale. $f_a \gg v_{
m electroweak} \approx \mathcal{O}(100) \, {
m GeV}$

Coupling to QCD

• Axions couple to gluons via

$$\mathcal{L} \supset -\frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

• Below the QCD scale $\Lambda_{\rm QCD} \sim O(100 \, {\rm MeV})$, topological charge fluctuations in QCD vacuum induce the potential energy:

$$V_{\rm QCD}(a) \sim \Lambda_{\rm QCD}^4 \left(1 - \cos\frac{a}{f_a}\right)$$

 $\langle a \rangle = 0$ at the minimum, solving the strong CP problem

• Mass of QCD axions $m_a \sim \Lambda_{\rm QCD}^2/f_a$:

$$m_a \simeq 57 \,\mu \mathrm{eV}\left(\frac{10^{11}\,\mathrm{GeV}}{f_a}\right)$$

Tiny coupling with matter + non-thermal production

 → good candidate of cold dark matter

Axion dark matter mass ?

- Experiments will cover many orders of magnitudes in the axion mass...
- What is the "typical" theoretical prediction for axion dark matter mass?
- How to interpret experimental results?

Axion dark matter mass ?

• Relic axion abundance depends on the Peccei-Quinn scale, and hence on the axion mass.

$$\Omega_a = \Omega_a(f_a), \quad m_a \simeq 57 \,\mu \text{eV} \left(\frac{10^{11} \,\text{GeV}}{f_a}\right)$$

• Assuming axions are the dominant component of dark matter, one can guess what is their mass.

$$\Omega_a h^2 = 0.12 \qquad \Longrightarrow \qquad m_a = ??? \,\mu \text{eV}$$

• How axions are produced in the early universe ?

Assumptions in cosmology

- Many different theoretical possibilities and different consequences.
- A simple scenario based on three assumptions:
 - I. PQ symmetry has been broken after inflation.
 - 2. Standard expansion history (i.e. radiation domination) after axion number is fixed ($T \lesssim 1 \, {
 m GeV}$).
 - 3. Domain wall (DW) number (# of degenerate vacua) is $N_{DW} = 1$.
- In the scenario based on the above assumptions...
 - there should be one-to-one correspondence between the axion abundance and decay constant (and hence its mass).
 - we must take account of axions produced from global strings.

[Davis (1986)]

Post-inflationary PQ symmetry breaking scenario

Precise knowledge about the field configurations around the epoch of QCD phase transition is crucial for a reliable estimate of the relic axion abundance.

Axionic strings

$$\mathcal{L} = |\partial_{\mu}\phi|^2 - V(\phi), \quad V(\phi) = \lambda \left(|\phi|^2 - \frac{f_a^2}{2}\right)^2$$

• Form when $U(I)_{PQ}$ symmetry is spontaneously broken.

• Disappear around the epoch of the QCD phase transition (if $N_{DW} = I$).

Axionic strings

$$\mathcal{L} = |\partial_{\mu}\phi|^2 - V(\phi), \quad V(\phi) = \lambda \left(|\phi|^2 - \frac{f_a^2}{2}\right)^2 + \chi(T) \left(1 - \cos\left(\frac{a}{f_a}\right)\right)$$

Position space

• Form when $U(I)_{PQ}$ symmetry is spontaneously broken.

• Disappear around the epoch of the QCD phase transition (if $N_{DW} = I$).

Difficulty in string dynamics

- Two extremely different length scales.
 - String core radius $r_{\rm core} \sim m_s^{-1} \sim f_a^{-1}$

 m_s : mass scale of the UV completion

• Hubble radius H^{-1}

• String tension acquires a logarithmic correction:

$$\mu = \frac{\text{energy}}{\text{length}} = \int r dr \int_0^{2\pi} d\varphi \left[\left| \frac{\partial \phi}{\partial r} \right|^2 + \left| \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \right|^2 + V(\phi) \right]$$
$$\approx 2\pi \int r dr \left| \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \right|^2 \simeq \pi f_a^2 \log \left(m_s / H \right)$$

• At the QCD phase transition, $m_s/H_{\rm QCD} \sim 10^{30}$! The large enhancement $\log (m_s/H_{\rm QCD}) \sim 70$ is challenging for simulations with $\log (m_s/H) \lesssim 5-6$.

Scaling solution

• $\mathcal{O}(1)$ strings per horizon volume:

$$\rho_{\text{string}} = \xi \frac{\mu}{t^2} \sim \left. \frac{\mu \ell}{\ell^3} \right|_{\ell \sim H^{-1} \sim t}$$

• The net energy density of radiated axions should be the same order.

$$\rho_a \sim \xi \frac{\mu}{t^2} \sim \xi H^2 f_a^2 \log(m_s/H)$$

Axion production from strings

• Energy transfer from strings in the scaling regime

$$\dot{\rho}_a + 4H\rho_a = \Gamma_{\mathrm{str}\to a}, \quad \Gamma_{\mathrm{str}\to a} = \frac{\xi\mu}{t^3}$$

• Differential energy transfer rate [Gorghetto, Hardy and Villadoro (2018)]

$$\frac{\partial\Gamma}{\partial k}(k,t) = \frac{\Gamma(t)}{H(t)}F\left(\frac{k}{H},\frac{m_s}{H}\right), \quad \int dx F(x,y) = 1$$

$$F\left(\frac{k}{H}, \frac{m_s}{H}\right) = \frac{1}{R^3} \frac{H}{\Gamma} \frac{\partial}{\partial t} \left(R^3 \frac{\partial \rho_a}{\partial k}\right)$$

"Instantaneous spectrum" Information on the amount of energy injected for each mode at a given instant.

R : scale factor of the universe

• Axion number

 $n_a = \int \frac{dk}{k} \frac{\partial \rho_a}{\partial k} = \int^t dt' \frac{\Gamma'}{H'} \left(\frac{R'}{R}\right)^3 \int \frac{dx}{x} F(x, y')$

Controversy on the spectrum

Important to know about the shape of the spectrum of axions radiated at a given instant.

If IR modes dominate, many soft axions \rightarrow Higher mass is predicted.

[Davis (1986); Davis and Shellard (1989); Battle and Shellard (1994); Yamaguchi, Kawasaki and Yokoyama (1999); Hiramatsu et al. (2011); Kawasaki, KS and Sekiguchi (2015); Kawasaki et al. (2018)]

Controversy on the spectrum

If UV modes dominate, few hard axions \rightarrow Lower mass is predicted.

[Harari and Sikivie (1987); Hagmann and Sikivie (1991); Hagmann, Chang and Sikivie (2001); Fleury and Moore (2016); Klaer and Moore (2017)]

Note:

- Shape of the spectrum may depend on $\log(m_s/H)$.
- Careful extrapolation to large $\log(m_s/H)$ is required.

[Gorghetto, Hardy and Villadoro (2018)]

Axion DM mass prediction: discrepancies

Current & future experiments

[[]Irastorza and Redondo (2018)]

It is important to reduce the uncertainty of theoretical prediction for the "Vanilla" scenario in light of future developments of experimental searches.

Recent simulation results

Field theoretic lattice simulation

• Solve EOM for a complex scalar field ϕ numerically.

$$\ddot{\phi} + 3H\dot{\phi} - \frac{1}{R^2}\nabla^2\phi + \lambda\phi(|\phi|^2 - v^2) = 0$$

- The largest number of grids N = 8192³ at the COBRA cluster (MPCDF, Garching).
 - $\Rightarrow \log(m_s/H) \lesssim 7-8$ is feasible.

https://www.mpcdf.mpg.de/services/computing/cobra/about-the-system

String density

Logarithmic growth compatible with previous results.

[Fleury and Moore (2016); Gorghetto, Hardy and Villadoro (2018); Kawasaki, Sekiguchi, Yamaguchi and Yokoyama (2018)]

Spectrum of radiated axions

Fitting to a power law

Assume $F \propto 1/x^q$ in the intermediate range $H \lesssim k \lesssim m_s$

q seems to grow with log.

Extrapolation to large log

More issues on analysis methods

PRS vs physical strings

 Results in the previous slides are obtained based on the Press-Ryden-Spergel (PRS) trick (or "fat string" trick):

[Press, Ryden and Spergel (1989)]

Modifying the action such that

$$m_s \to m_s(t) = \left(\frac{R(t_{\rm ini})}{R(t)}\right) m_s(t_{\rm ini})$$

• PRS strings take a longer time to reach the same value of $\log(m_s/H)$ than physical strings.

$$\log(m_s/H) \propto \begin{cases} \log(\tau) & (\text{PRS}) \\ \log(\tau^2) & (\text{physical}) \end{cases}$$

Physical

PRS strings are less sensitive to the contamination from initial conditions. i.e. Results are relatively easy to understand.

• In the end we must consider physical strings. How will the results be different?

Spectrum from physical strings

• Instantaneous quantities may depend solely on $\log(m_s/H)$ (TBC).

• Difference should appear when integrated over time.

f.
$$\log(m_s/H) \propto \begin{cases} \log(\tau) & (\text{PRS}) \\ \log(\tau^2) & (\text{physical}) \end{cases}$$

Interpretation of string density evolution

arXiv:1908.03522 The scaling density of axion strings

Mark Hindmarsh,^{1, 2, *} Joanes Lizarraga,^{3, †} Asier Lopez-Eiguren,^{1, ‡} and Jon Urrestilla^{3, §}

 ¹Department of Physics and Helsinki Institute of Physics, PL 64, FI-00014 University of Helsinki, Finland ²Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, U.K.
 ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain (Dated: August 12, 2019)

• Better fits are obtained for $\xi \propto (1 - t_0/t)^{-2}$ rather than $\xi \propto \log(m_s/H)$, implying that $\xi \simeq 1$ (const.) at large $\log(m_s/H)$... a new controversy?

Should be checked in simulations with larger dynamical ranges!

Summary

- Typical scenario for axion dark matter production:
 - Post-inflationary PQ symmetry breaking
 - Axions produced from strings
- We should be careful about potentially large uncertainty on the relic axion dark matter abundance.
- A naive extrapolation of the simulation results show a preference for higher mass ranges, but there remain several issues on the systematics.