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Cosmic Microwave Background (CMB)

Right after Big Bang
light scatters frequently
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Cosmic Microwave Background (CMB

cold blobs: Picture of the Universe 13.6996 bn years ago




Gravitational lensing of the CMB

gravitationally deflected by
galaxies and dark matter
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CMB after lensing

CMB Temp.
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Statistics of the CMB

What are the statistics of the CMB before and after lensing”




Statistics of the CMB before lensing

Normally distributed as far as we can tell




Statistics of the CMB before lensing
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Statistics of the CMB before lensing
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Statistics of the CMB before lensing
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Statistics of the CMB atfter lensing
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Peaks of global power are smeared out




Statistics of the CMB atfter lensing
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Rather than averaging the modulation, measure it as a signal
—> magnification map




Measured lensing magnification

Planck Collaboration: Planck 2018 lensing




Cross-correlate with galaxy catalogs

Galaxy catalog is sensitive to tails of the distribution
of matter (galaxies form at peaks)

Lensing magnification probes entire distribution
(light is deflected by any mass)

Some models of the Big Bang enhance peaks, so
can test them

Cross-correlations particularly well suited: Can
determine ratio of two pertectly correlated random
variables with infinite precision




Sample variance cancellation

Galaxy number density: ¢ = (1 + fxi)&
CMB magnification: & ~ N(0,c2)

Big Bang models are characterized by parameter fnr.




Sample variance cancellation

Galaxy number density: g = (1 + fxi)-
CMB magnification: x ~ N (0, )

Big Bang models are characterized by parameter fnr,

It we measure only g:

var(fxi) ~ o7

If we measure g and «:

fNL = % — = Var(fNL) =0




Sample variance cancellation
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Dalal+ (2008), Seljak (2009), McDonald & Seljak (2009), MS & Seljak (2018)




Forecast for future experiments

CMB S4

". Next Generahon CMB Experiment %

b=y




Forecast for future experiments

Compute Fisher information matrix assuming Gaussian likelihood
(curvature of the likelihood near maximum = Hessian)

P <a2 1n£(d\9)>

00,00,

1 adﬁ

[COV(dg, dg)] a—eb

Inverse gives lower bound on parameter error bars




Optimistic setting

It models work and systematics under control, what can we hope for?




LSST number density

Gold sample
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At low z, use clustering redshifts (Gorecki+ 2014)

At high z, add Lyman-break galaxies (dropouts; extrapolated from HSC observations)
Total of 66 galaxies per arcmin2 (MS & Seljak 2018)
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Lyman-break galaxies (LBGs) at z>3
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HST filters

Uspo

4,000 6,000 8,000

Observed wavelength (A)

Ellis 1998

10,000

Photons blueward of 912 A
lonize neutral hydrogen in
young star-forming galaxies

= Lyman break at (1+2) 912 A

Blue band ‘dropout’

0.5 million z=4-7 LBGs found

by HSC/Goldrush in 100 deg?
Ono, Ouchi+ (2018) 1704.06004

= Expect ~100 million in LSST

Good for CMB lensing Xcorrel




Tomographic redshift bins

LSST i < 27 (3 yrs)
DESI BGS

RCMB

Dropout
galaxies

MS & Seljak (2018)



Power spectra: CMB-54 & LSST

MS & Seljak (2018)
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SNR of auto-power spectra

emax

SNR of C*+ 500 1000 2000
KCMB 233 (406 539
BOSS LRG 2=0-0.9 140 187 230
SDSS r < 22 2z=0-0.5 247 487 936
SDSS r < 22 2=0.5-0.8 247 487 936
DESI BGS 2z=0-0.5 230 417 665
DESI ELG 2=0.6-0.8 158 210 256
DESI ELG 2=0.8-1.7 150 194 225
DESI LRG 2z=0.6-1.2 184 267 349
DESI QSO 2z=0.6-1.9 44.8 48.8 50.8
LSST 4 < 27 (3yr) 2=0-0.5 250
LSST 4 < 27 (3yr) 2=0.5-1 250
LSST i < 27 (3yr) 249
LSST i < 27 (3yr) 245

(3yr)

(3yr)

LSST i < 27 (3yr 239
LSST i < 27 (3yr 224

MS & Seljak (2018)



SNR of kg cross-power spectra

Emax

SNR of C"oMB* 500
BOSS LRG z=0-0.9 77.3
SDSS r < 22 2=0-0.5 88.3
SDSS r < 22 2=0.5-0.8 88.3
DESI BGS 2=0-0.5 50.1
DESI ELG z=0.6-0.8 50.7
DESI ELG z=0.8-1.7 103
DESI LRG 2=0.6-1.2 86.7
DESI QSO 2=0.6-1.9 74.9
LSST i < 27 (3yr) 2=0-0.5  78.1
LSST i < 27 (3yr) 2=0.5-1 112
LSST ¢ < 27 (3yr) 2=1-2 144
LSST ¢ < 27 (3yr) 2=2-3 121
(3yr)
(3yr)

LSST 7 < 27 (3yr) z=3-4 101
LSST 7 < 27 (3yr) z=4-7 94

MS & Seljak (2018)



Correlation of CMB lensing and galaxies
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Forecast for local non-Gaussianity

. Threshold needed to
distinguish Big Bang
/ models
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—> Potential to rule out all Big Bang models driven by a single field

MS & Seljak (2018); Forecast papers for Simons Observatory, CMB-S4, NASA PICO satellite



Other science from cross-correlations

Growth of structure as function of time
Expansion history / geometry / dark energy
Sum of neutrino masses

Galaxy formation?




-xample: Sum of neutrino masses

Byeonghee Yu (PhD student @ UC Berkeley)




-xample: Sum of neutrino masses

Massless neutrinos

éO meV neutrinos
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Marginalize over other cosmological params
B Fix other cosmological params
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(Size of the Universe)1 - 1

Yu, Knight et al. (arXiv:1809.02120)


https://arxiv.org/abs/1809.02120

-xample: Sum of neutrino masses

S4Lens + LSST (Optimistic) Uses Z<7

- SdLens + LSST (Optimistic) + Planck(l > 30) redshift lever
S4Lens + LSST (Optimistic) + S4(I > 30) I arm
Planck/S4(I > 30) + DESI
S4Lens + Planck/S4(l > 30) + DESI
- S4Lens + LSST (Gold) + Planck/S4(l > 30) + DESI - Measures
S4Lens + LSST (Optimistic) +Planck/S4(7 > 30) + DESI | :
Neutrino mMass

without optical
depth to CMB

Independent &
competitive to
usual probes

Yu, Knight, Sherwin+ (1809.02120)


https://arxiv.org/abs/1809.02120

-xample: Sum of neutrino masses

o(>_m,) [meV] (Gold/Optimistic)

Lens + LSST  + Planck/S4 T&P  + DESI Sensitive to
307 / 243 94 / 68 32 / 29 Kmax, but not
176 / 129 68 / 53 31 / 27 too much
107 / 71 A7 / 38 28 / 25 when all data

84 / 55 40 / 33 27 | 24 combined
79 / 49 38 / 31 26 / 23

Yu, Knight, Sherwin+ (1809.02120)

lgnores scale-dependent bias due to neutrinos

LoVerde 2014, LoVerde 2016, Mufioz & Dvorkin 2018, MS &
Seljak 2018, Chiang, LoVerde & Villaescusa-Navarro 2019



https://arxiv.org/abs/1809.02120
https://arxiv.org/search/?searchtype=author&query=Villaescusa-Navarro%2C+F

Challenges for growth measurements

Modeling all power spectra for nonlinear scales (high L)

Photometric redshift errors

Relationship between galaxies and dark matter (galaxy bias)




Other cool things to do with CMB lensing

(1) Joint analysis of CMB and CMB magnification, with covariance

80 T T T T 0.75
| 0.70

| Joint analysis ' A . 0.65
\ 0.60

n 7 0.55
. 0.50

~
N

MS, Challinor et al. (2013)
Peloton, MS, et al. (2017)
Planck collab. (2013, 2018)

[
(o)}

0.45
0.40
0.35
0.30

Exnansion rate

S
[ee]
T

ADJBUS MJep JO Junowy

e
40 : '
—-0.12 -0.08 —0.04 0.00 0.04

Curvature of space

(2) Estimate unlensed CMB e.g. Sherwin & MS (2015)

Bé6hm, MS & Sherwin (2016)

(3) Biases of the magnification estimator Beck, Fabbian & Errard (2018)
Bdhm, Sherwin et al. (2018)




Science with galaxy catalogs

Simulation, logM = 10.8—11.8 | v ', ‘. ~ v a
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(2) Cosmological parameter analysis

(3) Accounting for skewness

(4) Getting initial from final conditions ~__ | |




Science with galaxy catalogs
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Overview

We calculate halo density field in PT and compare to simulations

1. How well does perturbative bias expansion work”

2. How correlated is the halo density field with the initial conditions?

3. What are the properties of the noise?

Joint work with Marko Simonovic, Valentin Assassi & Matias Zaldarriaga




Overview

These questions have been extensively explored in the past

Desjacques, Jeong, Schmidt: Large-Scale Galaxy Bias

Most of the analyses use n-point functions. Disadvantages:

— Cosmic variance, compromise on resolution/size of the box

— At high k hard to disentangle different sources of nonlinearities
— Overfitting (smooth curves, many parameters)

— Only a few lowest n-point functions explored in practice

— Difficult to isolate and study the noise




Overview

Roth & Porciani (2011
Baldauf, Schaan, Zaldarriaga (2015

)
)
Use fields rather than summary statistics Lazeyras, Schmit 2017;
)
)

Abidi, Baldauf (2018
McQuinn, D’Aloisio (2018
Taruya, Nishimichi, Jeong (2018

Advantages:

NO cosmic variance, small boxes with high resolution are sufficient
High S/N at low k, no need to go to the very nonlinear regime
No overfitting, each Fourier mode (amplitude and phase) is fitted

“All” n-point functions measured simultaneously
Easier to isolate and study the noise




Overview

Same initial conditions




Modeling halo number density

First predict dark matter (purple), then halos (yellow)
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Simple peak model

Whenever dark matter density > threshold, a halo forms

Halo forms
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Simple peak model

Whenever dark matter density > threshold, a halo forms

Halo forms Snow falls
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Simple peak model

Whenever dark matter density > threshold, a halo forms

Halo forms Snow falls

It we zoom out, halos trace the large scale background that
modulates the small-scale fluctuations and increases P(>threshold).




Simple peak model

Tracing the large scale background means halo number density is
proportional to matter density, it both smoothed on large scales:

Ng(X) X pm(X)

Write this as  04(X) = 010y, (%)

using fractional deviations from the mean

59(X) — ng(X) 1 5m(X) — pm(X) 1

()

(Pm)

and proportionality constant b, (related to how likely a halo forms
when changing the threshold density)




Simple peak model

Tracing the large scale background means halo number density is
proportional to matter density, it both smoothed on large scales:

Ng(X) X pm(X)

Write this as  04(X) = D10y, (X) linear regression

using fractional deviations from the mean

59(X) — ng(X) 1 5m(X) — pm(X) 1

()

(Pm)

and proportionality constant b, (related to how likely a halo forms
when changing the threshold density)




Simulations

Ran 5 MP-Gadget! DM-only N-body sims with 15363 DM particles,
30723 mesh for PM forces, L=500 Mpc/h, mptele = 2.9 x 10° Mg, /h

~4000 time steps to evolve z=99 to z=0.6

4 FoF halo mass bins

log M[h~'Mg] n[(h~'Mpc)~®] @ is comparable to

10.8 — 11.8 4.3 x 10™2 LSST [80, 81|, Billion Object Apparatus [82]
11.8 — 12.8 5.7 x 107° SPHEREx [83, 84]

12.8 — 13.8 5.6 x 1074 BOSS CMASS [85], DESI [86, 87|, Euclid [88-90]
13.8 — 15.2 2.6 x 107° Cluster catalogs

Feng et al. https://github.com/bluetides-project/MP-Gadget
[derived from P-Gadget]



https://github.com/bluetides-project/MP-Gadget

est of l[inear mode|

Simulation, logM =10.8—11.8 F -

Sl N " s P Simulation
P ', | 15 : . . (: trUth)

o e ‘ Model by6,, (x)

. SV

Reasonable prediction on large scales

Missing some structure on small scales

MS, Simonovic¢ et al. (2019)



Nonlinear model

So far used linear model




Nonlinear model

So far used linear model
D10, (X) + b262, (x) + tidal term + b3d2 (x) + - - -
Include all nonlinear terms allowed by symmetries (EFT)

Fit parameters b; by minimizing mean-squared error (least-squares
‘polynomial’ regression)

MS, Simonovic¢ et al. (2019)



Bulk flows

q .
—_— e — — — — — ———— = Lagrangian space

Eulerian space

linear displacement is large

Slide credit: Marko Simonovic¢



Bulk flows

Good model of §¢ruth Displace d¢,utn, DY a shift W

Large bulk flows lead to large model error €(x) = Struth — dmodel
because fields are incoherent

Need a model that takes into account large bulk flows




Including bulk flows in the model

0 (q) = by d1(q) + b5 (07(q) — o) + bg,G2(q) +

/ — k* Py (k
l

on(k) = /d3a: (1+6p(x)) e ™® = /d3q (1+6,,(q)) e~ (a+e(@)

|

ouk) = [ @q (14 bE6i(a) + b5 (63 (a) — o) + b, 0a(@) +

— ik - Pa(q) + - ) e~k (a+¢1(q))

Usual approximation in (C)LPT for example: Vlah, Castorina, White (2016)




Shifted operators

Motivates bias expansion in “shifted” operators (incl. bulk flows)

O(k) = / d’q O(g) e 1)

~

b1 01 (k) + by 02 (k) + bg, Go(k) + - -+ + noise




Shifted operators

Motivates bias expansion in “shifted” operators (incl. bulk flows)

O(k) = [ d*q Olg)e ™ (a+¥@)

~

b1 01 (k) + by 02(k) + bg, Go(k) + --- + noise

Result is in Eulerian space so easy to compare against simulations
Has IR resummation, giving correct halo positions and BAO spread
Model is perturbative, only linear fields used in the construction

Power spectrum agrees with resummed 1-loop PT




Model on the grid

O(q)
& & & q—q+ ¥i(q)

000/_\

Distribute 15368 particles on regular grid q

Assign artificial particle masses m; = O(q;)

Displace by linear displacement ¥4(q)

Interpolate to Eulerian grid using CIC weighted by particle masses

[Very similar to generating N-body initial conds./Zeldovich density]




Test of nonlinear model

Simulation, logM =10.8—11.8 §

\ .
R B SRS Simulation
g : . — -

(= truth)

Cubic bias | :
D Nk " . Nonlinear
»

4 I3 .' e 3 model

-

Much better agreement than previous model

MS, Simonovic¢ et al. (2019)



Measures of success

Error power spectrum (= MSE per wavenumber k)

Perr(k) — <‘5truth(k) — 5model(k)‘2>

Cross-correlation between model and truth

<5truth (k) 51>:nodel (k)>

TCC(k) - \/Ptruth(k)Pmodel(k)

For best-fit model, Perr = Piputh (1 — frgc), so focus on Py here




Error power spectrum (= MSE)
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Error is quite white, similar to Poisson shot noise (discrete sampling)

MS, Simonovic¢ et al. (2019)



rled many other nonlinear bias operators

Give few times larger model error

T ]
t10NL
NL + T2 5131L + tg2gz [5NL
B (0 R [01]) + tadf +tg,Ga[d1]
B t10NL + f20R B, G201 ]

ﬁlgl + ﬂ252 + 66 ~2
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Fourier wavenumber Kk

MS, Simonovic¢ et al. (2019)



Scale dependence of the error

. o logM=10.8-11.8, n=4.3e-02 41 . logM =11.8—12.8, n=15.7e-03

Expanding 07 [

Cubic bias

Linear Std.
Eul. bias

‘logM: 12.8—13.8, i = 5.6e-04

0.01
k [hMpc 1]

Scale dependence of the noise important around the nonlinear scale

Potentially dangerous because can bias cosmological parameters



Kmax UP to which noise Is constant

kKmax When scale dependence of Per is detectable with 1o in V=10
h3Gpc3 volume (or V=0.5 in brackets):

Emax [RMpc 1]
log M[h~*Mg] n[(h~'*Mpc)~®]  Lin. Std. Eul.  Cubic
10.8 — 11.8 4.3 x 1072 0.1 (0.14) 0.3 (0.37)
11.8 — 12.8 5.7 x 1077 0.08 (0.1)  0.18 (0.24)
12.8 — 13.8 5.6 x 1074 0 07 (0.1)  0.13 (0.18)
13.8 — 15.2 2.6 x 107° 1(0.14)  0.24 (0.32)

Nonlinear bias has 2-3x higher Kmax
= 8-30x more Fourier modes

= 4-5x smaller error bars (in principle; also have more params!)




Weighting halos by their mass

Halo number density Halo mass density
(how many halos per cell) (how much halo mass per cell)

used so far more similar to dark matter
= smaller shot noise

Seljak, Hamaus & Desjacques (2009)
Hamaus, Seljak & Desjacques (2010, 2011, 2012)
Cai, Bernstein & Sheth (2011)




Weighting halos by their mass

FOF halos at z= 0.6, with mass weighting

| . oy, = o logM >10.8 logM > 11.8, 7 = 6.3e-03 - Shot noise (squared
| . oy, = 0.4dex n =4.9e-02 '
| o 02000 — model error) 17x
o= 0.1dex | lower for light halos,
O'M:O _

2-7x lower for heavy

halos

logM > 12.8, n =5.9¢-04 logM > 13.8, n =2.6e-05

With 60% halo mass

|,  scatter (green), still
Poisson prediction \ ge’[ faCtOr feW
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Mass welighting questions

How well can halo masses be measured (e.g. BOSS, DESI)?
What observable properties of galaxies can we use” What sims?
New ideas to get halo masses”?

For shot noise limited applications, gain may be large

What if mass estimates are biased”?

Use for BAO reconstruction? (Suffers from high shot noise)




Science with galaxy catalogs

(2) Cosmological parameter analysis




(2) Cosmological parameter analysis

Compare model with galaxy catalogs to infer cosmological
parameters 6: Expansion rate, amount of dark matter, curvature, ...

Work with power spectrum P,,(k) of the galaxy number density
(variance of fluctuations as a function of scale).

Monte-Carlo sample 6 to get posterior

L(Py4]0) P(6)
[ 0" P(Pyy|67)P(6")

P(‘g‘pgg) —




(2) Cosmological parameter analysis

Compare model with galaxy catalogs to infer cosmological
parameters 6: Expansion rate, amount of dark matter, curvature, ...

Work with power spectrum P,,(k) of the galaxy number density
(variance of fluctuations as a function of scale).

Monte-Carlo sample 6 to get posterior

L L(Pygl0) P(6)
J 6" P(Pyy|67)P(6")

P(e‘pgg) —

shifted bias
] ) 1 operators

A 1 P _Pmodele 27
L(P,,|0) x exp | — (Foo 99 ©)

2 var(P,,)




(2) Cosmological parameter analysis

For sampling, need tast evaluation of the model power spectrum
(reduce 2D integrals to 1D FFTs)

McEwen+ (2016); MS+ (2016); Cataneo+ (2017); Simonovi¢+ (2018)

Recently applied to Sloan Digital Sky Survey (SDSS)

D’Amico, Gleyzes+; lvanov, Simonovi¢ & Zaldarriaga; Troster, Sanchez+

Validated using Masahiro’s challenge simulations




(2) Cosmological parameter analysis

mm Galaxies (SDSS)
== CMB (Planck 2018)

Similar precision
as CMB

1 1 1 1 1 1 1 1 :\
0.24 0.28 0.32 0.36 64 68 76 0.60 0.75 0.90
Qm Ho Og

Amount of DM Expansion rate rms of fluctuations

lvanov+ (arXiv:1909.05277)



Science with galaxy catalogs

(3) Accounting for skewness




Normal distribution

Only used power spectrum, i.e. sample variance of each scale

Gaussian random field

&
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Field value

Sufficient if halo/galaxy distribution were a Gaussian random field




Halos

Not normally distributed, pdf is highly skewed

Halo number density
.';‘.\‘;c:‘.. : :‘.:‘,. “J.
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variance

—I3 —IZ —Il (I) i 2 3
Field value

Information in the tails can improve precision of parameter estimates




How to extract information from the tails?

Challenges:

(a) Distribution has no simple analytical form

(b) What summary statistics should we use?

(c) How can we make sure that we extract all the information”




How to extract information from the tails?

Some options:

(a) Count outliers

(b) Measure higher-order moments: Skewness, kurtosis, etc

(c) Reconstruct initial conditions (normally distributed) & measure
their sample variance
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Skewness

Need scale-dependent generalization of skewness

Correlation of 3 Fourier modes

Contains info about Big Bang, relation between galaxies and dark
matter, rms amplitude of fluctuations




Measuring skewness

Challenging: Can form too many Fourier mode triplets

Solution 1: In space of all triplets, use simple basis functions to
capture most of the information

equilateral (inside the volume)

Solution 2: Given signal of interest, can compute its maximum
likelihood estimator (matched filter). This reduces to a sum over all
triplets which can be computed using a few 3D FFTs

MS, Regan & Shellard (2013)
MS, Baldauf & Seljak (2015)
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Getting initial from final conditions
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Getting initial from final conditions
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Getting initial from final conditions
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Goal: Reconstruct initial conditions & measure their sample variance




Getting initial from final conditions

Challenges:

(a) Forward evolution is highly nonlinear, so how to invert?

(b) Not injective: Multiple initial conds. can give same final conds.

(c) Algorithm must be fast to be applicable to data




Getting initial from final conditions

Long history — recently quite active:

Zhu, Yu+ ("17)

Wang, Yu+ ('17)

MS, Baldauf+ ('17)

Seljak, Aslanyan+ ('17)

Modi, Feng+ (‘18), Shi+ ('18), Hada+ (’18), Modi, White+ ('19),
Sarpa+ ('19), Schmidt+ ('19), Elsner+ ('19), Yu & Zhu ('19), Zhu,
White+ ('19)

Also sampling (Jasche, Kitaura, Lavaux, Wandelt)

machine learning (Ho, Li, ...)

theory (e.g. MS+ ('15), Hikage+ ('17), Wang+ ('18), Sherwin+ ('18))




Getting initial from final conditions
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Getting initial from final conditions
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Getting initial from final conditions




Getting initial from final conditions

‘negative gravitational force’
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Getting initial from final conditions

‘negative gravitational force’
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Getting initial from final conditions

‘negative gravitational force’
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Uniform catalog

From path of each galaxy, can estimate initial conditions

MS, Baldauf & Zaldarriaga (2017)
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Measures of success

Error power spectrum (= MSE per wavenumber k)

Perr(k) <‘5true ICs(k) — 5rec(k)‘2>

Correlation of reconstruction with true initial conditions

<5true 1Cs (k) 5;'kec (k)>

TCC(k) N \/Ptrue ICs(k)Prec(k)




Correlation with true initial conditions

03 04 05
k [h/Mpc]
(Wavelength)-1




Correlation with true initial conditions
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Correlation with true initial conditions
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MS, Baldauf & Zaldarriaga (2017), similar to Zhu, Yu+ (2017); noise-free DM
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MS, Baldauf & Zaldarriaga (2017)



-Xpansion rate

Initial conditions have a clear feature

Can estimate expansion rate by measuring angular extent

More precise in initial conditions than observed galaxies




-xpansion rate in 10 simulations

Complicated grav. interactions
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Complicated grav. interactions

|

-xpansion rate in 10 simulations

Initial conditions

Galaxies
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MS, Baldauf & Zaldarriaga (2017)



Alternative reconstruction approach

Previous algorithm works well, but based on intuition & heuristics

Alternative: Use gradient descent to maximize posterior of initial
conditions (1M+ parameters)

From simulation or
| polynomial regression

L(0,101c) P (010
I Normal distribution

(Gaussian ICs)

Fast because shifted operators model has easy gradients

Seljak, Aslanyan et al. (2017)
Schmidt, Elsner et al. (2019)
Modi, White et al. (arXiv:1907.02330)




Gravitational lensing of the CMB

(0) Joint analysis of lensed CMB and magnification

(1) Cross-correlate magnification with galaxy catalogs

(3) Biases of the magnifiction estimator
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(2) Cosmological parameter analysis

(3) Accounting for skewness

(4) Getting initial from final conditions ~__ | |







