NASA's Next Astrophysics Flagship: The Wide Field Infrared Survey Telescope (WFIRST)

Jason Rhodes NASA Jet Propulsion Laboratory, California Institute of September, 25 2019 Jason Rhodes (MASA Jet Propulsion Laboratory, Technology & IPMU Visiting Scientist (NASAWFIRST) © 2018 California Institute of Technology. Government sponsorship acknowledged The decision to implement the WFIRST mission will not be finalized until NASA's completion of the National Environmental Policy Act (NEPA) process. This document is being made available for information purposes only.

SURVEY

TELESCOPE

MEINS

FIELD INFRARED

The full distribution of planets around stars

New Worlds, New Horizons In Astronomy and Astrophysics

Wide-Field Infrared Surveys of the Universe

(General Observer & Archival Research)

A Bigger WFIRST

- Uses repurposed 2.4 m telescope from the another government agency
- Three science pillars: dark energy, exoplanets, infrared surveys
- Science done with Wide Field Instrument (WFI), with 18 H4RG detectors

- Coronagraph Instrument (CGI) is a tech demo that will be ~1000x better than previous coronagraphs
- Designed to be Starshade ready
- Designed to be serviceable
- 5 year primary mission at L2
- 10+ year extended mission possible

Harris Corporation / TJT Photography

Top-level Observatory Overview

WEIRST

Key Features Telescope: 2.4m aperture Instruments: Wide Field Imager / Slitless Spectrometer Internal Coronagraph Data Downlink: 275 Mbps Data Volume: 11 Tb/day Orbit: Sun-Earth L2 Launch Vehicle: 3 options Mission Duration: 5 yr, 10yr goal Serviceability: Observatory designed to be robotically serviceable Starshade compatible

- 0.25 square degree FOV
- 18 4k by 4k NIR detectors
- 0.1" pixels
- Heritage from HST, JWST, Euclid
- '100 Hubbles for the 2020s' : https://arxiv.org/abs/1902.05569

WFIRST Instrument Field of View Layout

The Universe as a Pie Chart

Consequences of DE

Dark Energy affects the:

- •Expansion history of the Universe
 - •How fast did the Universe expand?
 - •Also called the geometry of the Universe

•Growth of structures

- •How do structures (which are mostly dark matter) evolve and grow over time
- •Attractive gravity competes with repulsive dark energy

If Einstein's General Relativity is wrong, modified gravity theories could explain the accelerating expansion.

This would change the above effects differently, so we must measure them both!

WFIRST will

measure galaxy shapes to map dark matter and measure the growth of galaxies over the Universe's life

From Massey, Rhodes, et al 2007

WFIRST will

map the positions of galaxies to establish a cosmic standard ruler to measure the Universe's expansion history

#WFIRST

WFIRST will

discover exploding stars (supernovae) across cosmic time to establish precise distances to galaxies

#WFIRST

	Band	Element name	Min (µm)	Max (µm)	Center (µm)	Width (μm)	R
Weak lensing	R	F062	0.48	0.76	0.620	0.280	2.2
photo-z	Z	F087	0.76	0.977	0.869	0.217	4
	Y	F106	0.927	1.192	1.060	0.265	4
Weak lensing	L	F129	1.131	1.454	1.293	0.323	4
shapes	Н	F158	1.380	1.774	1.577	0.394	4
	F	F184	1.683	2.000	1.842	0.317	5.81
	Wide	W146	0.927	2.000	1.464	1.030	1.42
Grism for	► GRS	G150	1.0	1.93	1.465	0.930	461λ(2pix)
survey	PRS	P120	0.75	1.80	0.975	1.05	80-180 (2pix)

Prism for SN follow up

Proposed lifetime	2022 - 2032	2022 - 2028	2025 - 2031
Mirror size (m)	6.5 (effective diameter)	1.2	2.4
Survey size (sq deg)	20,000	15,000	2,227
Median z (WL)	0.9	0.9	1.2
BAO specz range	NA	~1-2	~1-3
Depth (AB mag)	~27.5	~24.5	~27
FoV (sq deg)	9.6	0.5 (Vis) 0.5 (NIR)	0.28
Filters	u-g-r-i-z-y	Y-J-H-Vis	Y-J-H-F184
Cosmological probes	WL, SN, LSS, GC	WL, LSS, GC	WL, LSS, SN, GC

WL: Weak Lensing, LSS: Large Scale Structure/Galaxy Clustering, SN: Supernova, GC: Galaxy Clusters

Exoplanet Detections

Detections Per Year

- Exoplanet detection is increasing exponentially
- These methods are largely missing outer solar system analogs

WFIRST Complements Kepler

Microlensing with Euclid & WFIRST: Masses of Free-Floating Planets

A Firefly and a Spotlight

Seeing an exoplanet around a star is like trying to see a firefly near a spotlight in Los Angeles... when you are in Japan

Credit: S Gaudi

Seeing an Earth-like exoplanet in the habitable zone around a Sun-like star is like trying to see a firefly near ONE THOUSAND spotlights in Los Angeles... when you are in Japan!

Coronagraphy- Powers of 10

Contrast Ratio (planet light to star light)

10⁻⁵ – 10⁻⁶ 1 part in 100,000 to 1,000,000

What we can get from coronagraphs now and in the near future

10⁻⁹ 1 part in 1,000,000,000

What WFIRST's coronagraph is being designed to achieve (already demonstrated in lab- idealized conditions)

10⁻¹⁰ 1 part in 10,000,000,000

What we need to see another Earth (with a future mission like HabEx or LUVOIR)

CGI is a Pathfinder for Direct Imaging and Spectroscopy of Earth-like Exoplanets

• CGI projected capabilities represent a 1000 fold compared to current capabilities

ASTROPHYSICS • DARK ENERGY • EXOPLANETS

VIDE-FIELD INEDADED SUDVEY

WEIRST

- Enabled by active control of optical wavefront errors and pointing
- Dozens of planets within reach of characterization
- exoEarths in Habitable zone further x10-100 improvement in contrast and x2 in spatial resolution
- CGI is a major stepping stone that will obtain optical spectra of mature exoJupiters

- CGI will premiere in space many key technologies required for the characterization of rocky planets in the Habitable Zone, significantly reducing the risk and cost of future possible missions such as HabEx and LUVOIR
- CGI is a direct & necessary predecessor to these missions, and is a *crucial* step in the exploration of Sunlike planetary systems

Actuators and Mechanisms

Jet Propulsion Laboratory California Institute of Technology

Recent Fabrications of Coronagraph Masks ((Images not to scale)

Typical Shaped Pupil Masks fabricated at JPL Ref: SPIE Proc 10400, 2017

AHLC6_R3C3

Typical Hybrid Lyot Masks fabricated at JPL Ref: SPIE Proc 11117, 2019

Substrates are JAXA contribution

JAXA contributions of polarizer elements

0

 WIDE-FIELD INFRARED SURVEY TELESCOPE

 ASTROPHYSICS • DARK ENERGY • EXOPLANETS

 Items to be delivered
 EM

WEIRST

items to be delivered	EIVI	FIVI
DI Lens doublet for position 1 on DPAM	3 each	3 each
Polarizer Elements for position 2 on DPAM	3 each	3 each
Polarizer Elements for position 3 on DPAM	3 each	3 each

ENA

Polarization Optical elements from JAXA Polarization module tubes designed and assembled on a mounting plate at JPL

Starshade

WFIRST Status

- WFIRST remains on the plan approved at the beginning of Phase B in 2018
- Lifecycle cost range \$3.2B -\$3.9B
- Launch in late 2025
- Major Milestones for 2019
 - Progress through all element Preliminary Design Reviews (5 of 6 done)
 - Flight build of significant items (primary mirror, H4RG detectors)
 - Mission Preliminary Design Review in October/November 2019
 - Expected move to Phase C early 2020

Teledyne H4RG detector

Source: WFIRST Science Requirements Document (SRD), Reference Survey Material & Requirements

Observing Program	Program Attributes	Notional Time Allocation		Current Time Estimate
HLIS	Survey Speed: 0.20 sq-deg/hour Reference Survey: 2000 sq-deg, 2 passes, 4 filters Baseline Survey: 1700 sq-deg, 2 passes, 4 filters	Survey Time: 2 days Deep-field observations: 2 Total: days	352 39 days 391	291-342 days* (1700-2000 sq-deg)
HLSS	Survey Speed: 0.34 sq-deg/hour Reference Survey: 2000 sq-deg, 4 passes, Grism Baseline Survey: 1700 sq-deg, 4 passes, Grism	Survey Time: 2 days Deep-field observations: 2 Total: days	211 23 days 234	169-199 days* (1700-2000 sq-deg)
SNS	Survey Area: 5 sq-deg, up to 6 filters + Prism Survey Cadence: 30 hours every 5 days over 2 year period	Survey Time: days	183	
EMS	Reference Survey Coverage: 731.7 sq-deg-days Baseline Survey Coverage: 585.4 sq-deg-days Survey Area: 2 sq-deg Survey Cadence: 15 minutes	Survey Time: 3 days	372	
GO	Full sky availability throughout the mission	Program Time: 4	456 days	
EC	90 days of observing to support technology demonstration	Program Time:	90 days	
		TOTAL: 1726 days (4. years)	.73	
	Schedule Reserve (Used for Mission Overheads)	99 days (0.2	27 years)	* Using MEV slew durations

JAXA	Coordinated, contemporaneous ground-based observations on Subaru Ground station for telemetry and tracking Polarization optics for the CGI Microlensing data from the MOA project & new PRIME observatory
DLR	Precision mechanisms for the CGI
ESA	Star trackers, possibly other S/C components EMCCD detectors for the CGI (e2v in UK) Ground station for telemetry and tracking
CNES	Superpolished optics for the CGI Grism data processing Cosmology simulations

Subaru and WFIRST: A Partnership for the 2020s

An Activity White Paper for submission to the 2020 Decadal Survey

Jason Rhodes (Jet Propulsion Laboratory, California Institute of Technology; Jason.d.rhodes@jpl.nasa.gov), Takahiro Sumi (Osaka University), David Bennett (NASA/GSFC), Peter Capak (IPAC/Caltech), Olivier Doré (JPL), A. Fukui (NAOJ), Jeremy Kasdin (Princeton University), Bryan Holler (STScI), Takayuki Kodama (Tohoku), Yusei Koyama (NAOJ), Noriyuki Matsunaga (The University of Tokyo), Stefanie Milam (NASA/GSFC), Hironao Miyatake (Nagoya), Shogo Nishiyama (Miyagi University of Education), Masami Ouchi (University of Tokyo), James Rhoads (NASA/GSFC), Dan Scolnic (Duke University), Daisuke Suzuki (JAXA), Nao Suzuki (IPMU), Masaomi Tanaka (Tohoku University), Motohide Tamura (U. Tokyo and Astrobiology Center), Tsuyoshi Terai (NAOJ), David Weinberg (Ohio State), Ben Williams (University of Washington), Toru Yamada (JAXA), Funi Yoshida (PERC/Chitech)

Steering Group:

- Takahiro Sumi (Chair of WFIRST JAXA Working Group)
- Toru Yamada (JAXA WFIRST Representative)
- Yusei Koyama (Subaru Representative)
- Tadayuki Kodama (Chair of the Subaru Science Advisory Committee)
- David Spergel (WFIRST WFI Adjutant Scientist)
- Julie McEnery (WFIRST Deputy Project Scientist)
- Jason Rhodes (WFIRST Deputy Project Scientist)

Program	Instrument	Total nights
(S3) microlensing concurrent	HSC and ULTIMATE	17
(S3) microlensing NIR Spectroscopic ToO	Subaru IRD	11.2
(S3) microlensing concurrent	ULTIMATE	3.4
(S4) CGI follow-up and support	SCExAO/CHARIS/IRD	25
(S5) SN follow up	PFS	25
(S5) Live SN monitoring	PFS	20
(S6) Optical Imaging follow-up of SNe fields	HSC	8
(S6) Spectroscopic follow-up of SNe fields	PFS	8
(S6) Narrow band survey of SNe fields	HSC/PFS	6-10
(S6) Ultra Deep Fields	HSC	33
(S7) Spec-z follow-up for photo-z calibration*	PFS	25-50
(S7) Intermediate-band follow-up for photo-z*	HSC	60
calibration		
(S7)Lensing and structure growth	PFS/HSC	~Tens (TBD)
(S8) Galaxy Halo Pre-imaging	HSC	10
(S9) Bulge HVSs (characterization)	PFS	0.5
(S9) Bulge HVSs (characterization)	ULTIMATE (MOS)	0.5
(S9) Bulge HVSs (survey)	ULTIMATE- (Imaging)	2.5
(S9) Microlensed Bulge Objects	IRCS/IRD	15
(S10) TNOs	HSC	6
(S10) Other Minor Bodies	HSC	10
(S10) Irregular Satellites	HSC	6

JAXA/NAOJ/NASA

- Collaborative agreement is imminent
- Japanese scientists can become part of current (and future) Science Investigation Teams
- Want to enable collaboration on WFIRST
 - Especially with Subaru
 - Especially for early career scientists
- For further information and engagement contact (leads in red):
 - Toru Yamada (JAXA), Yas Murata (JAXA)
 - Cosmology: Hironao Miyatake (Nagoya), Masahiro Takada (IPMU)
 - Supernova: Takashi Moriya (NAOJ)
 - Exoplanet Microlensing: Takahiro Sumi (Osaka), Daisuke Suzuki (JAXA)
 - Coronagraph: Motohide Tamura (NAOJ), Naoshi Murakami (Hokudai)

Opportunities with WFIRST

- 2020 Decadal Survey will consider a separate Starshade mission to fly with WFIRST
- 25% General Observer (GO) in 5 year prime mission
- ~100% GO in extended mission
- All prime survey science teams will be competed in ~2021
- All data released immediately- no proprietary period
- CGI available via a Participating Scientists Program
- Baseline mission includes contributions from ESA (including EMCCD for CGI from e2v in UK), France (CNES), Germany (DLR), Japan (JAXA, NAOJ)

Additional Slides

Observing Program Overview

NOTIONAL OBSERVING PROGRAM LAYOUT

Assuming 09/11/2025 launch, 90-day commissioning and orbit insertion by 12/31/2025

			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
		HLS	ENAS	ENAC	HLS	EC	GO	HLS	ENAC		HLS	GO	HLS	
1112210	JN YEAR J	1 (2026)	GO	EIVIS	EIVIS	GO	HLS	DA (0	EC	EIVIS	EIVIS	EC	EC	GO
	1							PA/C						PA/C
								CNC	CNIC	CNIC	CNC	CNIC	CNIC	CNIC
			EC			HLS	HLS	2012	SINS	SINS	SINS	2012	SINS	SINS
MISSI	ON YEAR 2	2 (2027)		EMS	EMS		60	шс	60	ніс	60	GO	HLS	HLS
			GO			EC		HLS	60	пь	60			DA/C
	Ì	1					PA/C							PA/C
			SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS
			5145	5145	5145	60	60	5145	5145	5145	5145	60	60	5145
MISSI	ON YEAR 3	3 (2028)	ыс	60	ыс	<u> </u>	BA/C	шс	ніс	60	HLS	60	60	GO
			1125		1125	HLS	ніс	1125	1125			HLS	HLS	PA/C
							1123							14,0
			SNS	SNS	SNS	SNS	SNS							
			5115	5115	5115	60	HIS	HLS	GO		EMS	HLS	60	HLS
MISSI	ON YEAR 4	4 (2029)	нія	нія	60	00	1125			EMS				
						HLS	GO	ΡΔ/C	ніс				HIS	PA/C
MICCH		(2020)	HLS	EME	ENAC	HLS	HLS	GO	ше	EMS	EMAG	GO		GO
IVIISSI	JIN YEAR 5	5 (2030)	60	EIVIS	EMS EMS	60	60		HLS		EMS		HLS	
			60			GO	GO	PA/C				HLS		PA/C

LEGEND

• Notional Observing Program activities are represented in each month as a *percentage of time dedicated to that activity*

25%
25%
25%
25%

• Durations range from 1 week (25%) to 4 weeks (100%)

 Routine mission overheads (e.g. large slews between observing programs, momentum unloads, station-keeping) are interleaved with the observing program activities

DE SURVEY COMPLEMENTARITY AT A GLANCE

STAGE IV	LSST	WFIRST	Euclid	DESI
Start, duration	2022, 10 yr	~2025, 5 (-10) yr	2021, 6 yr	2019, 5 yr
Area (sq. deg.)	20,000 (S)	2,000 (S)	15,000 (N+S)	14,000 (N)
FOV (sq. deg.)	10	0.281	0.53	7.9
Diameter (m.)	6.7	2.4	1.3	4
Photometric Survey	6 bands (u,g,r,i,z,y)	6 bands (Z,Y,J,H,F,184,W149)	4 bands (VIS,Y,J,H)	
Photometric Galaxies (w/ shapes) (#/arcmin ²⁾	~30 in 6 bands (ugrizy)	~68 in 4 bands (YJHF184)	~30-35, in 1 band (VIS)	
SN1a	10 ⁴ -10 ⁵ /yr z=0-0.7 photometric	2700 z=0.1-1.5 IFC spectroscopy		
Spectroscopic Survey		Grism R=550-800 1-2 µm	Grism R=250 1.1-2 μm	Fibers R=4000 0.36-0.98 μm
Spectroscopic Galaxies		ELGs z=0.5-1.8 (Ha/ ~20M) z=0.9-2.8 (OIII/ ~2M)	ELGs, z~0.7-2.1 (20M)	LRGs+ELGs z~0.6-1.7 (20-30M) QSOs/Lya 1.9 <z<4 (1m)<="" td=""></z<4>
Olivier Doré Exploiting	Extra-galactic Svnergie	s between WFIRST and I	- Future Facilities - Pasade	ena. 02/18 16

WFIRST Surveys

- Multiple surveys:
 - High-Latitude Survey
 - Imaging, spectroscopy, supernova monitoring
 - Repeated Observations of Bulge Fields for microlensing
 - 25% Guest Observer Program
 - Coronagraph Observations
- Flexibility to choose optimal approach

Field of Regard (FOR

Observing Zone:

WEIRST

- 54°-126° off Sun Line
- 360° about Sun Line
- ±15° about line of sight (LOS) off max power roll angle

HLS/GO/Coronagraph observations can be optimized within the full Observing Zone

SNe fixed fields ±20° off of the ecliptic poles, located in continuous viewing zone

> Earth/Moon LOS avoidance angles are a minor sporadic constraint

Microlensing can observe inertially fixed fields in the Galactic Bulge (GB) for 72 days twice a year 47