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Symmetric surface topological order for HOTPs:
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Classification of gapped phases (without crystalline symmetries)

uv/ lattice QFT Scale-invariant QFT

" A

TQFT CFT

* At long distances, gapped systems described by TQFTs.

« TQFTs can be enriched by other properties eg. global symmetries,
fermionic/bosonic, long/short-range entanglement etc.

* {Classification of (%)-gapped phases}={Classification of (%) TQFTs)

« There has been progress in classifying (%) TQFTs. In comparison,
much less known about “crystalline”-TQFTs.



Short-range entangled gapped phases
(without crystalline symmetries)

e Equivalence classes of gapped, (symmetric, fermionic/bosonic) systems with
unique ground state.

* Described by invertible (%)- TQFTs:
Z(M,A,...)| =1

* (Can be "diagnosed’ by topological response action:

Z(M,A, B ) _ 627‘(‘7;wa(14,...).

* Mathematically classified by group cohomology and (¥%)-cobordism group.

* Freed-Hopkins, Kapustin, Wen,...



Short-range entangled gapped phases
(without crystalline symmetries)

e SRE Topological Phases: Path connected components in the space of (symmetric)
short-range entangled gapped systems.

Phase 2

Phase 1
Vacuum Phase 3

(Real space) (Space of gapped SRE symmetric models)

e Path: Adiabatic deformation or codimension-1 boundary.

¢ Anomalous surface theories: Labelled precisely by bulk topological response.



Bulk-Boundary correspondence

D-1 dimensional surface:

Anomalous i.e
global symmetry cannot be
Implemented consistently.

D dimensional bulk:

Boundary

Characterized by
topological response/ index.

Bulk




Bulk-Boundary correspondence

e Anomalous surface theories: Labelled precisely by bulk topological response.

Za(aM7 A+ 5147 B + 5B) _ 6277@' S5 V(A0A;B,6B)
Z@M(aMaAv B) |

where, / w(A+6A, B +6B) —w(A, B)] = / v(A,5A; B,5B).
M oM

e Anomaly == D-1 edge cannot be simultaneously gapped, short-range entangled
and symmetric.

¢ [hree minimal options:

1. Symmetry broken.
2. Symmetric and gapless.
3.  Symmetric and long-range entangled.



3+1d Electronic Topological Insulators

Symmetry: U(1) x ZJ

Classification: Z, ;

Bulk topological response: Sem-resp|A] = = / FAF, O =0orm
M

Boundary terminations for Tls:

(I) Gapless:

Single Dirac Cone

Partition function of a single gapless Dirac fermion cannot be made both real and
gauge invariant without including a "bulk’ contribution!

* Taylor Hughes, X-L Qi, SC Zhang (2008); Witten RMP (2016); Alvarez-Gaume Della Pietra, Moore (1985)



Boundary terminations for Tis (contd.):

(1) Symmetry broken:
Opy = j:§

¥ Single Chiral
Dirac mode

Time reversal breaking
(ferromagnetic coating)

(Ill) Anomalous Surface Topological Order (STO):

= By physical requirements the topological order needs to have:

® A local fermion.
o Chiral central charge c— = 1/2.

o Hall conductance 04y = 1/2.

U(1) breaking
(s-wave pairing)

= Minimal realization known as T-Pfaffian: T-Pfaffian = [U(1)s x Ising| /Z

* Fu-Kane, Bonderson-Nayak-Qi; Chen-Fidkoski-Vishwanath; Metlitski et al; Tachikawa-Yonekura

pi flux vortex
with majorana
zero mode



Crystalline topological phases; General strategy:

e Reduce real space wavefunction into elementary building (cells) with only onsite
symmetry.

Finite depth
local unitary

Mirror symmetric

) Zo - Symmetric
topological state

topological state

e Can always add blocks related by spatial symmetry.

e Classification of (spatial)-symmetric (cell)-decompositions.
(e.g Generalized Homology theory)

* Shiozaki-Xiong-Gomi, Sao-Huang-Fu-Hermele, Else-thorngren, Freed-Hopkins



Crystalline topological phases; A 2D example:

e Point group Dy :
A single O-cell at the origin with Zg X Z.5 onsite symmetry:.

No non-trivial 1-cells.

H'(Dy,U(1)) = Zo X Zs. Classification is Zs x Zs .

¢ Point group C,:

HY(Z,,U(1)) = Z, = classification is Z,.

—— Reflection axis

|
f_ _
|




Crystalline topological phases; A 3D example:

e Point group Day, : Generated by three mutually perpendicular mirrors, Mg, M,,, M., .

y
X
Mz

e A single O-cell at the origin classified by H* (D, U(1)) = Z3.

V4

’ M, M.

e Three (x two) 1-cells along the coordinate axis, each classified by:
H?(Zo x Zo,U(1)) = Zs (Haldane chain)
e Three (x four) 2-cells perpendicular to coordinate axis, each classified by:
H%(Za,U(1)) = Zy

» Classification of crystalline SPTs with D2, symmetry is Z).

* Shiozaki-Xiong-Gomi, Sao-Huang-Fu-Hermele, Else-thorngren, Freed-Hopkins



Higher-Order Topological Phases: Bulk Boundary correspondence

pth Order Topological phases D=2 D=3

e 1st Order Topological Phases: O

eg. Tls, TSCs, SPTs

[ L
e 2nd Order Topological Phases*:
L L
[ [
e 3rd Order Topological Phases* : ] 1
[ |
[ L
p>1 require spatial symmetries that map one surface to another.
@ -Gapless
-Gapped

* Benalcazar et al; Schindler et al; Brouwer et al; Khalaf; ...



¢ 1st Order Topological Phases: Path connected components in the space of
(symmetric) short-range entangled gapped systems.

Phase 2

Phase 1
Vacuum Phase 3

(Real space) (Space of gapped SRE symmetric models)

e 2nd Order Topological Phases: Obstructed paths between paths. First (equivariant)
Homotopy.

/\ Vacuum

Path 2= g D (Path 1), i.e related by spatial symmetry.

° Path 1

(Real space)

* Shiozaki-Xiong-Gomi, Gaiotto-Freyd



Free-fermion Higher-Order Topological Phases :

e A simple construction: use spatial symmetries to localize topological defects on high-
symmetry corners or hinges.

e Known classification of point and line defects in Altland-Zirnbauer classes.

Classification of point defects

A7 class Type Classification
AIII Dirac zero-mode 7
BDI Majorana zero-mode 7
CII Chiral Maj. Kramers doublet 27,
D Majorana zero-mode ZLio
DIII Majorana Kramers doublet Zio

Classification of line defects

AZ class Type Classification
A Chiral Dirac Z
D Chiral Majorana Z
DIII Helical Majorana Lio
All Helical Dirac Zio
C Chiral Dirac 27,

* Teo-Kane, ...



Free-fermion Higher-Order Topological Phases :

S = al
MxR-

iaq- — 1 Zaz& — M(.’E) v.

> Symmetric Dirac Mass

Boundary conditions (codimension-1):

VAN 5\IJ|M7;><RT =0 = V|, «r. € im(P;)

where o P,a*P; = 0.
e |g,P;] =0 for all g € G such that g> M; = M;.
° ngg_l =P, if g M, = M, .

Boundary conditions (codimension-2): \IJ|M R € im(P,) Nim(P,).
Ty T

Observables can be restricted to various boundaries and corners, for example HMi = P;HyP;.

Classification of topological defects in Dirac models == Classification of hinge and corner modes.

* Po-Watanabe-Khalaf-Vishwanath, Teo-Kane, ...  * In preparation: AT-Grushin-Hughes-Neupert



A simple example:

e Consider the 7flux model in 2D and 3D (Class Alll). Ay B;
B A
B} Ay
HO — Z |:tSS,C:£CS/ _|_ h-C:| — ZC;;;H]?C]{: A B BQ A2
(ss’) k
Al Bl
where,

D
H) = -2t Z cos(k; )T
i=1
Which describes a Dirac semi-metal with chiral (sublattice) symmetry.

¢ The Dirac point can be gapped by Valence-bond mass terms:
D
AHp = —t") sin(k) TP
i=1
e | ow energy Dirac model:
D
Hy ~ Y [kl + m I 0]
i=1

with chiral symmetry { Hy,, P11 = 0.



D
e Low energy Dirac model: Hj ~ Z [kq;I’i + miI‘HD} , with chiral symmetry { H, T*PT1 = 0.
i=1

e M:= Z m,[* TP transforms as an O(D)veotor.
i
e \What spatial symmetries can localize defects at high-symmetry corners?
D=2:

* Two anti commuting mirrors: Mq 41y U(z,y,t) — M(l,il)@(iy, +x,t)

where I\A/I(Lil) (T2, T%) — (£*, 4177,

e Let M(z) = m [cos(©)I +sin(0©)[*],

N(—|——|—) - 1

W y %

/ dO = (ZTL + 1) € Zoad
fy(++)

e Alternating winding number (charges): N5V++) T N‘(N_“L) — 0.

* Topological response theory: S.g|A] = % /d@ A dA. == Vortex traps 1/2 quantum charge.
s



D=3:

e Space of chiral symmetric masses is R® — {0} ~ 2.

e Spatial symmetries can localize a topological defect at the corners.

4 [
e Example: Cg—rotation about the (111)-body diagonal such that C : (F5> — (F6>.
o r4

s 3

C?

e Non-trivial winding number at the corners NUF++) = 3p + 1.

e [opological response action: S

q
resp — duge A dA, where g=1/3.
P = Yol(S2) / Hs .

e More generally, one can follow a similar strategy to construct models within various
Altland-Zirnbauer classes.



Surface Topological Order for Hinge
Higher-Order Topological Phases

A



What are the other possible symmetric surface terminations of
hinge HOTPs?

Co,, T symmetric second-order topological phases:

Higher-order phase Symmetry Chiral Hinge mode | Surface pasting

Fermionic HOTI | C,,7 x U(1) [Dirac ¢=1; c- =1]| IQHE

Lo

Fermionic HOTSC | C,,7 x Zg Majorana ¢— = 1/2 ptp .
classified.

Bosonic HOSPT | C,7T Bosonic ¢— =8 Es phase




We ask the following questions:

- What are the possible surface terminations for HOTPs?

- Is there a generalized notion of anomalies for HOTPs?

AN

In this work, we focus on hinge HOTPs.



General strategy to “unhinge” HOTPs

e Start from hinge HOTP.

e Introduce Co, T symmetric topological order on the surface.

e Properties of surface topological order (STO) can be read-off
from properties of hinge it needs to absorb.

Equivalent to

. MR . HOTP hinge?
(Haldane gapping criteria and anyon condensation) >

¢ | ook for symmetric gapping channels.




Unhinging the hinge HOTI

e Properties of A :
= Chiral central charge, c_ = 1/2. Therefore non-abelian!

= Hall conductance, Oxzy — 1/2-

e Same constraints as STO for T, therefore we can use T-Pfaffian.

T-Pfaffian = [U(1)s x Ising] /Z

A A
—Q © O o lom|
I AR
é PMA 1| 1
qu w,& wA ¢A wA/A 1/2 O
() 6 | 1| o0
Bosonize

¢

e Effective model for Hinge + STO, multicomponent chiral Tomonaga-Luttinger liquid.




Unhinging the hinge HOTI

A ® 0

\ \ \
"o o
e A "

—~

- Effective model for Hinge + STO: 0

1 1%
Liinge = — 0,07 K8,® — —8,879,8 + Y Arcos[l] ® + ay]
S 47 47 7

A
g

o7 = [, ", oM, ;K =diag[l,-2,-2,1]; ¢=[0,1,1,1].

- Haldane gapping criteria:
= Condensability: /T K~1¢; = 0.
- v T yr—1p
Mutual locality: ¢; K~ "4; = 0. 0 = (074,4,4)T
- .ol =1
No Spontaneous symmetry breaking: ¢; K~ "q = 0. 0y = (2, 2 -2, O)T

-~ Non-fractional: ¢; € K72



Unhinging other hinge HOTPs....

Equivalent to
HOTP hinge?

>

e Reformulation in terms of chiral Tomonaga-Luttinger liquid isn’t always possible.

e Can use CFT technigues such as edge condensation.



Algebraic formulation of A as a Modular Tensor Category (MTC):

= Particle types, a,b,c...i.e Anyon types in the bulk TQFT and conformal blocks in edge CFT.

= Fusionrules axb=.... Several consistency
conditions between
= Braiding phases and topological spins ('S’ and T’ matrices). this data.
T i Topolqgical
Spin
abc...

= (Can compute Ribbon diagrams using MTC:
a
{C - Kk Hoe

Ribbon diagram MTC computation sketch

* Moore-Seiberg



Unhinging via edge condensation

Equivalent to

Folding HOTP hinge?

Edge condenation between Anyon condenation in
Aand A . A x A.

2

Anyon/edge condensation: Theoretical tool to study possible phase transitions.
More powerful than K-matrix Tommonaga-Luttinger liquid approach.
Procedure:

= |dentify a set 5 of bosonic mutually local anyons that may condense.

= Two anyons a; and azidentified if a1 € B X ag.

- An anyon a splitsif a € B X a.

- Anyons that braid non-trivially with 3 get confined.

* Bais-Slingerland, Kong-Wen, Neupert et al, ...



Unhinging the HOTI via edge condensation
A = T—Pfaffian

{12,975, 0%} x {1?, A O'A} —— anyons in A x A

\/ \ J’7a

j=0,2,4,6 j=1,3,5,7

condense A condense
>

> {17f}

1510, Y18, Yi1e, 1415, ot ol ol ol ‘e’ in Toric Code

Toric Code x {1, f} HOTI hinge



Other surface terminations

HOTI surface with no topological order. Only side-surfaces gapped.

C A >

—_— I

AT

R
m

Completely gapped surface. Higher-Order surface as a beam splitter

Anomaly: two equivalent statements

e The surface of a 3D HOTI cannot be gapped while preserving symmetry
unless we introduce STO.

e The hinge pattern cannot be introduced in a purely 2D "hollow" theory, but will
always involve fractionalized quasiparticles.



Unhinging the HOTSC and HOSPT

HOTSC Bosonic HOSPT

A = S0O(3)g anyon model A = SO(8); anyon model

Single Majorana mode c=8 chiral Boson




Unhinging the HOTSC

e HOTSc hinge mode: Single chiral Majorana (c=1/2).

A = S0(3)g anyon model C SU(2)s anyon model
e SO(3)g Is obtained from SU(2)g by discarding the half-integral representation.

e Anyon types: |={0,1,2,3}. "3’ is a local fermion!

e Can condense (00) & (12) @ (21) & (33) to obtain{1, f}.

e Lifting map: 1 — (00) + (33) + (12) + (21),

e Consequently, an HOTSC can be unhinged.



Inversion-symmetric HOTPs

Inversion-symmetric HOTP with chiral hinge

A
Inversion-symmetric STO i7 ! —

Inv> A Inve> A

A
Inversion-symmetric HOTP with +
fully gapped surface

Inv> A




Unhinging helical HOTPs

HOTP with helical hinges may appear in systems |
‘ with inversion and time reversal symmetry. | - 9apless helical

7 modes.
Ax AT

Ax AT

Time reversal symmetry required to
prevent helical hinges from gapping out.

7#

Inve (A x A7)

Ax AT

Inversion+Time reversal symmetric HOTP
with fully gapped surfaces.

L

Inve (A x A7)

* Po-Watanabe-Vishwanath, Khalaf; Levin-Stern,... * In preparation: Li-AT-Parmeswaran-Neupert



Future directions

= Building Hamiltonians from cell-decomposition data. Crystalline quantum lego!
= Making sense of higher homotopy for the space of gapped phases.

= Generalized notion of anomalies for hinge HOTPs.

= Surface topological order for 3rd-order topological phases?

= Topological order enriched by spatial symmetries. Fractionalized higher-order
topological phases.

Thank you for your attention!



