Some aspects of Higher-Order Topological Phases of Matter

Apoorv Tiwari @

Outline

Constructing (free-fermionic) models of HOTPs:

• Symmetric surface topological order for HOTPs:

Collaborators

Reference: arXiv 1905.11421

Ming-Hao Li ETH Zurich

B.A Bernevig Princeton

Titus Neupert Univ. of Zurich

S.A Parmeswaran Oxford

Classification of gapped phases (without crystalline symmetries)

- At long distances, gapped systems described by TQFTs.
- TQFTs can be enriched by other properties eg. global symmetries, fermionic/bosonic, long/short-range entanglement etc.
- {Classification of (★)-gapped phases}={Classification of (★) TQFTs}
- There has been progress in classifying (★) TQFTs. In comparison, much less known about "crystalline"-TQFTs.

Short-range entangled gapped phases (without crystalline symmetries)

- Equivalence classes of gapped, (symmetric, fermionic/bosonic) systems with unique ground state.
- Described by invertible (★)- TQFTs:

$$|\mathcal{Z}(M,A,\ldots)|=1$$
.

Can be `diagnosed' by topological response action:

$$\mathcal{Z}(M,A,\dots) = e^{2\pi i \int_M \omega(A,\dots)}$$
.

Mathematically classified by group cohomology and (★)-cobordism group.

^{*} Freed-Hopkins, Kapustin, Wen,...

Short-range entangled gapped phases (without crystalline symmetries)

 SRE Topological Phases: Path connected components in the space of (symmetric) short-range entangled gapped systems.

- Path: Adiabatic deformation or codimension-1 boundary.
- Anomalous surface theories: Labelled precisely by bulk topological response.

Bulk-Boundary correspondence

Bulk-Boundary correspondence

• Anomalous surface theories: Labelled precisely by bulk topological response.

$$\frac{\mathcal{Z}_{\partial}(\partial M, A + \delta A, B + \delta B)}{\mathcal{Z}_{\partial M}(\partial M, A, B)} = e^{2\pi i \int_{\partial M} \nu(A, \delta A; B, \delta B)}$$

where,
$$\int_{M} \left[\omega(A+\delta A,B+\delta B) - \omega(A,B) \right] = \int_{\partial M} \nu(A,\delta A;B,\delta B).$$

- Anomaly D-1 edge cannot be simultaneously gapped, short-range entangled and symmetric.
- Three minimal options:
 - 1. Symmetry broken.
 - 2. Symmetric and gapless.
 - 3. Symmetric and long-range entangled.

3+1d Electronic Topological Insulators

Symmetry: $U(1) \rtimes \mathbb{Z}_2^T$

Classification: \mathbb{Z}_2

Bulk topological response: $S_{\text{em-resp}}[A] = \frac{\theta}{8\pi^2} \int_{\mathcal{M}} F \wedge F$,

 $\theta = 0 \text{ or } \pi$

Boundary terminations for TIs:

(I) Gapless:

Partition function of a single gapless Dirac fermion cannot be made both real and gauge invariant without including a `bulk' contribution!

^{*} Taylor Hughes, X-L Qi, SC Zhang (2008); Witten RMP (2016); Alvarez-Gaume Della Pietra, Moore (1985)

Boundary terminations for TIs (contd.):

(II) Symmetry broken:

(III) Anomalous Surface Topological Order (STO):

- → By physical requirements the topological order needs to have:
 - A local fermion.
 - Chiral central charge $c_{-}=1/2$.
 - Hall conductance $\sigma_{xy} = 1/2$.
- → Minimal realization known as T-Pfaffian: $\text{T-Pfaffian} = \left[\mathsf{U}(1)_8 \times \overline{\text{Ising}} \right] / \mathbb{Z}_2$

* Fu-Kane, Bonderson-Nayak-Qi; Chen-Fidkoski-Vishwanath; Metlitski et al; Tachikawa-Yonekura

Crystalline topological phases; General strategy:

 Reduce real space wavefunction into elementary building (cells) with only onsite symmetry.

Can always add blocks related by spatial symmetry.

Classification of (spatial)-symmetric (cell)-decompositions.
 (e.g Generalized Homology theory)

* Shiozaki-Xiong-Gomi, Sao-Huang-Fu-Hermele, Else-thorngren, Freed-Hopkins

Crystalline topological phases; A 2D example:

• Point group D₄:

A single 0-cell at the origin with $\mathbb{Z}_2 \times \mathbb{Z}_2$ onsite symmetry.

No non-trivial 1-cells.

$$H^1(\mathbb{D}_4,\mathsf{U}(1))=\mathbb{Z}_2 imes\mathbb{Z}_2$$
. Classification is $\mathbb{Z}_2 imes\mathbb{Z}_2$.

• Point group C_n :

$$H^1(\mathbb{Z}_n, \mathsf{U}(1)) = \mathbb{Z}_n \Rightarrow \text{ classification is } \mathbb{Z}_n.$$

Crystalline topological phases; A 3D example:

ullet Point group ${\sf D}_{2h}$: Generated by three mutually perpendicular mirrors, ${\sf M}_x, {\sf M}_y, {\sf M}_z$.

- A single 0-cell at the origin classified by $H^1(D_{2h}, U(1)) = \mathbb{Z}_2^3$.
- Three (x two) 1-cells along the coordinate axis, each classified by:

$$H^2(\mathbb{Z}_2 \times \mathbb{Z}_2, \mathsf{U}(1)) = \mathbb{Z}_2$$
 (Haldane chain)

• Three (x four) 2-cells perpendicular to coordinate axis, each classified by:

$$H^3(\mathbb{Z}_2,\mathsf{U}(1))=\mathbb{Z}_2$$

• Classification of crystalline SPTs with D_{2h} symmetry is \mathbb{Z}_2^9 .

Higher-Order Topological Phases: Bulk Boundary correspondence

pth Order Topological phases

• 1st Order Topological Phases:

eg. TIs, TSCs, SPTs

• 2nd Order Topological Phases*:

• 3rd Order Topological Phases*:

p>1 require spatial symmetries that map one surface to another.

Gapless

Gapped

^{*} Benalcazar et al; Schindler et al; Brouwer et al; Khalaf; ...

• 1st Order Topological Phases: Path connected components in the space of (symmetric) short-range entangled gapped systems.

 2nd Order Topological Phases: Obstructed paths between paths. First (equivariant) Homotopy.

(Real space)

Path $2 = g \triangleright (Path 1)$, i.e related by spatial symmetry.

* Shiozaki-Xiong-Gomi, Gaiotto-Freyd

Free-fermion Higher-Order Topological Phases:

- A simple construction: use spatial symmetries to localize topological defects on high-symmetry corners or hinges.
- Known classification of point and line defects in Altland-Zirnbauer classes.

Classification of point defects

AZ class	Type	Classification
AIII	Dirac zero-mode	$\mathbb Z$
BDI	Majorana zero-mode	\mathbb{Z}
CII	Chiral Maj. Kramers doublet	$2\mathbb{Z}$
D	Majorana zero-mode	\mathbb{Z}_2
DIII	Majorana Kramers doublet	\mathbb{Z}_2

Classification of line defects

AZ class	Type	Classification
A	Chiral Dirac	$\mathbb Z$
D	Chiral Majorana	\mathbb{Z}
DIII	Helical Majorana	\mathbb{Z}_2
AII	Helical Dirac	\mathbb{Z}_2
С	Chiral Dirac	$2\mathbb{Z}$

^{*} Teo-Kane, ...

Free-fermion Higher-Order Topological Phases:

$$S = \int_{M \times \mathbb{R}_{\tau}} \Psi^{\dagger} \left[i \partial_{\tau} - i \sum_{\mathbf{i}} \alpha^{i} \partial_{i} - \mathcal{M}(x) \right] \Psi.$$
 Symmetric Dirac Mass

Boundary conditions (codimension-1):

$$i\Psi^{\dagger}\alpha^{i}\delta\Psi\Big|_{M_{i}\times\mathbb{R}_{\tau}}=0$$
 $\Rightarrow\Psi\Big|_{M_{i}\times\mathbb{R}_{\tau}}\in\mathrm{im}(\mathcal{P}_{i})$

- where $\bullet \mathcal{P}_i \alpha^i \mathcal{P}_i = 0.$
 - $[g, \mathcal{P}_i] = 0$ for all $g \in G$ such that $g \triangleright M_i = M_i$.
 - $g\mathcal{P}_x g^{-1} = \mathcal{P}_y$ if $g \triangleright M_x = M_y$.

Boundary conditions (codimension-2): $\Psi\big|_{M_{xy}\times\mathbb{R}_{\tau}}\in\mathrm{im}(\mathcal{P}_x)\cap\mathrm{im}(\mathcal{P}_y).$

Observables can be restricted to various boundaries and corners, for example $\mathcal{H}_{M_i}=\mathcal{P}_i\mathcal{H}_M\mathcal{P}_i$.

Classification of topological defects in Dirac models — Classification of hinge and corner modes.

* Po-Watanabe-Khalaf-Vishwanath, Teo-Kane, ... * In preparation: AT-Grushin-Hughes-Neupert

A simple example:

• Consider the π -flux model in 2D and 3D (Class AIII).

$$H_0 = -\sum_{\langle ss' \rangle} \left[t_{ss'} c_s^{\dagger} c_{s'} + \text{h.c.} \right] = \sum_k c_k^{\dagger} H_k^0 c_k$$

where,

$$H_k^0 = -2t \sum_{i=1}^{D} \cos(k_i) \Gamma^i.$$

Which describes a Dirac semi-metal with chiral (sublattice) symmetry.

• The Dirac point can be gapped by Valence-bond mass terms:

$$\triangle H_k = -t' \sum_{i=1}^{D} \sin(k_i) \Gamma^{i+D}$$
.

• Low energy Dirac model:

$$H_k \simeq \sum_{i=1}^{\mathrm{D}} \left[k_i \Gamma^i + \mathsf{m}_i \Gamma^{i+\mathrm{D}} \right],$$

with chiral symmetry $\{H_k, \Gamma^{2D+1}\} = 0$.

- Low energy Dirac model: $H_k \simeq \sum_{i=1}^D \left[k_i\Gamma^i + \mathsf{m}_i\Gamma^{i+\mathrm{D}}\right], \text{ with chiral symmetry }\left\{H_k,\Gamma^{2\mathrm{D}+1}\right\} = 0.$
- $\mathcal{M}:=\sum_i \mathsf{m}_i \Gamma^{i+\mathrm{D}}$ transforms as an $\mathsf{O}(\mathrm{D})$ vector.
- What spatial symmetries can localize defects at high-symmetry corners?

D=2:

- Two anti commuting mirrors: $\mathsf{M}_{(1,\pm 1)}: \Psi(x,y,t) \to \widehat{\mathsf{M}}_{(1,\pm 1)} \Psi(\pm y,\pm x,t)$ where $\widehat{\mathsf{M}}_{(1,\pm 1)}: (\Gamma^3,\Gamma^4) \to (\pm \Gamma^4,\pm \Gamma^3)$.
- Let $\mathcal{M}(x) = \mathbf{m} \left[\cos(\Theta) \Gamma^3 + \sin(\Theta) \Gamma^4 \right]$,

$$N_{\rm w}^{(++)} := \frac{1}{2\pi} \int_{\gamma^{(++)}} d\Theta = (2n+1) \in \mathbb{Z}_{\rm odd}$$

- \bullet Alternating winding number (charges): $\mathbf{N}_{\mathrm{w}}^{(++)} + \mathbf{N}_{\mathrm{w}}^{(-+)} = 0$.
- Topological response theory: $S_{\rm eff}[A] = \frac{1}{4\pi} \int {\rm d}\Theta \wedge {\rm d}A$. \longrightarrow Vortex traps 1/2 quantum charge.

D=3:

- ullet Space of chiral symmetric masses is $\mathbb{R}^3-\{0\}\simeq S^2$.
- Spatial symmetries can localize a topological defect at the corners.
- Example: C_3 -rotation about the (111)-body diagonal such that $\widehat{C}_3: \begin{pmatrix} \Gamma^4 \\ \Gamma^5 \\ \Gamma^6 \end{pmatrix} \longmapsto \begin{pmatrix} \Gamma^6 \\ \Gamma^4 \end{pmatrix}$.

- Non-trivial winding number at the corners $N_w^{(+++)} = 3n + 1$.
- Topological response action: $S_{\text{resp}} = \frac{q}{\text{Vol}(S^2)} \int \mathrm{d}\mu_{S^2} \wedge \mathrm{d}A$, where q=1/3.
- More generally, one can follow a similar strategy to construct models within various Altland-Zirnbauer classes.

Surface Topological Order for Hinge Higher-Order Topological Phases

What are the other possible symmetric surface terminations of hinge HOTPs?

 $C_{2n}\mathcal{T}$ symmetric second-order topological phases:

Higher-order phase	Symmetry	Chiral Hinge mode	Surface pasting	
Fermionic HOTI	$C_{2n}\mathcal{T}\ltimesU(1)$	Dirac $q=1;\ c=1$	IQHE	
Fermionic HOTSC	$C_{2n}\mathcal{T}\times\mathbb{Z}_2^f$	Majorana $c=1/2$	$p\pm ip$	\mathbb{Z}_2 classified.
Bosonic HOSPT	$C_{2n}\mathcal{T}$	Bosonic $c=8$	\mathbb{E}_8 phase	

We ask the following questions:

- What are the possible surface terminations for HOTPs?
- Is there a generalized notion of anomalies for HOTPs?

In this work, we focus on hinge HOTPs.

General strategy to "unhinge" HOTPs

• Start from hinge HOTP.

• Introduce $C_{2n}\mathcal{T}$ symmetric topological order on the surface.

• Properties of surface topological order (STO) can be read-off from properties of hinge it needs to absorb.

Look for symmetric gapping channels.
 (Haldane gapping criteria and anyon condensation)

Unhinging the hinge HOTI

- ullet Properties of ${\cal A}$:
 - → Chiral central charge, $c_-=1/2$. Therefore non-abelian!
 - → Hall conductance, $\sigma_{xy} = 1/2$.
- Same constraints as STO for TI, therefore we can use T-Pfaffian.

$$\text{T-Pfaffian} = \left[\mathsf{U}(1)_8 \times \overline{\mathrm{Ising}} \right] / \mathbb{Z}_2$$

	c	$ \sigma_{xy} $
φ	1	1
$\phi^{A/\bar{A}}$	1	1/2
$\psi^{A/ar{A}}$	1/2	0
ϕ	1	0

• Effective model for Hinge + STO, multicomponent chiral Tomonaga-Luttinger liquid.

Unhinging the hinge HOTI

• Effective model for Hinge + STO:

$$\mathcal{L}_{\text{Hinge}} = \frac{1}{4\pi} \partial_x \Phi^T K \partial_t \Phi - \frac{V}{4\pi} \partial_x \Phi^T \partial_x \Phi + \sum_I \lambda_I \cos[\ell_I^T \Phi + \alpha_I]$$

$$\Phi^T = [\phi, \phi^{\mathsf{A}}, \phi^{\bar{\mathsf{A}}}, \varphi]; \quad K = \text{diag}[1, -2, -2, 1]; \qquad q = [0, 1, 1, 1].$$

Haldane gapping criteria:

- → Condensability: $\ell_I^T K^{-1} \ell_I = 0$.
- → Mutual locality: $\ell_I^T K^{-1} \ell_J = 0$.
- → No Spontaneous symmetry breaking: $\ell_I^T K^{-1} q = 0$.
- → Non-fractional: $\ell_i \in K\mathbb{Z}^4$

Unhinging other hinge HOTPs....

• Reformulation in terms of chiral Tomonaga-Luttinger liquid isn't always possible.

• Can use CFT techniques such as edge condensation.

Algebraic formulation of A as a **Modular Tensor Category (MTC)**:

- → Particle types, a,b,c...i.e Anyon types in the bulk TQFT and conformal blocks in edge CFT.
- **→ Fusion rules** a x b =
- → Braiding phases and topological spins (`S' and `T' matrices).

Several consistency conditions between this data.

→ Can compute Ribbon diagrams using MTC:

Ribbon diagram

MTC computation sketch

Unhinging via edge condensation

Edge condenation between
$$\underset{\mathcal{A}}{\mathcal{A}}$$
 and $\bar{\mathcal{A}}$. $\overset{\sim}{}$ Anyon condenation in $\underset{\mathcal{A}}{\mathcal{A}} \times \mathcal{A}$.

Anyon/edge condensation: Theoretical tool to study possible phase transitions. More powerful than K-matrix Tomonaga-Luttinger liquid approach.

Procedure:

- ightharpoonup Identify a set ${\mathcal B}$ of bosonic mutually local anyons that may condense.
- riangle Two anyons a_1 and a_2 identified if $a_1 \in \mathcal{B} imes a_2$.
- riangled An anyon a splits if $a \in \mathcal{B} imes a$.
- ightharpoonup Anyons that braid non-trivially with ${\cal B}$ get confined.

^{*} Bais-Slingerland, Kong-Wen, Neupert et al, ...

Unhinging the HOTI via edge condensation

$$A \equiv T$$
-Pfaffian

$$\{1_{j}^{A}, \psi_{j}^{A}, \sigma_{j}^{A}\} \times \{1_{j}^{\bar{A}}, \psi_{j}^{\bar{A}}, \sigma_{j}^{\bar{A}}\} \longrightarrow \text{anyons in } \mathcal{A} \times \mathcal{A}$$
 $\mathbf{j=0,2,4,6}$
 $\mathbf{j=1,3,5,7}$

Other surface terminations

HOTI surface with no topological order.

Completely gapped surface.

Only side-surfaces gapped.

Higher-Order surface as a beam splitter

Anomaly: two equivalent statements

- The surface of a 3D HOTI cannot be gapped while preserving symmetry unless we introduce STO.
- The hinge pattern cannot be introduced in a purely 2D "hollow" theory, but will always involve fractionalized quasiparticles.

Unhinging the HOTSC and HOSPT

HOTSC

$$\mathcal{A} \equiv \mathsf{SO}(3)_6$$
 anyon model

Single Majorana mode

Bosonic HOSPT

$$A \equiv SO(8)_1$$
 anyon model

c=8 chiral Boson

Unhinging the HOTSC

• HOTSc hinge mode: Single chiral Majorana (c=1/2).

$$\mathcal{A} \equiv \mathsf{SO}(3)_6$$
 anyon model $\subset \mathsf{SU}(2)_6$ anyon model

- $SO(3)_6$ Is obtained from $SU(2)_6$ by discarding the half-integral representation.
- Anyon types: $j=\{0,1,2,3\}$. `3' is a local fermion!
- Can condense $(00) \oplus (12) \oplus (21) \oplus (33)$ to obtain $\{1, \mathfrak{f}\}$.
- Lifting map: $1 \mapsto (00) + (33) + (12) + (21),$ $\mathfrak{f} \mapsto (03) + (30) + (11) + (22).$
- Consequently, an HOTSC can be unhinged.

Inversion-symmetric HOTPs

Inversion-symmetric HOTP with chiral hinge

Inversion-symmetric STO

Inversion-symmetric HOTP with fully gapped surface

Unhinging helical HOTPs

HOTP with helical hinges may appear in systems with inversion and time reversal symmetry.

- gapless helical modes.

Time reversal symmetry required to prevent helical hinges from gapping out.

Inversion+Time reversal symmetric HOTP with fully gapped surfaces.

^{*} Po-Watanabe-Vishwanath, Khalaf; Levin-Stern,...

Future directions

- → Building Hamiltonians from cell-decomposition data. Crystalline quantum lego!
- → Making sense of higher homotopy for the space of gapped phases.
- → Generalized notion of anomalies for hinge HOTPs.
- → Surface topological order for 3rd-order topological phases?

→ Topological order enriched by spatial symmetries. Fractionalized higher-order topological phases.

Thank you for your attention!