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Scattering Amplitudes

Our ability to calculate scattering amplitudes directly impacts our ability
to make predictions in particle physics experiments

◦ Difficult to calculate amplitudes to the desired levels of precision
using Feynman diagrams

◦ Many of the amplitudes
relevant for hard scattering
processes at the LHC not known
analytically to two loops

We still don’t understand much of the mathematical structure
underlying scattering amplitudes

◦ Scattering amplitudes aren’t as complicated as the Feynman
diagrams traditionally used to compute them [Parke, Taylor]∣∣An(p−1 , p

−
2 , p

+
3 , . . . , p

+
n )
∣∣2 ∝ ∑

σ∈Sn

(p1 · p2)4

(pσ1 · pσ2)(pσ2 · pσ3) · · · (pσn · pσ1)

◦ At loop level, the coaction proves an important simplification tool
[Goncharov, Spradlin, Vergu, Volovich] [Duhr, Gangl, Rhodes]
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...Abundant with Mathematical Structure

Nontrivial connections have been made between scattering
amplitudes and diverse areas of mathematics in recent years

◦ Polylogarithms and their
generalizations

◦ Symbols and Coactions

◦ Motivic Galois Theory

◦ Positroids,
Grassmannians, and
Cluster Algebras

◦ Simplicial Volumes

◦ Twisted de Rham
Theory

◦ Graph theory
...
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Bootstrapping Amplitudes in Planar N = 4
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Scattering Amplitudes

This hidden structure is easiest to first discover in planar N = 4 SYM

SUSY Ward identities ⇒ relate amplitudes with
different helicity structure

Conformal symmetry ⇒ no running of the coupling
or UV divergences

Planar limit ⇒ trivial color structure

AdS/CFT ⇒ dual to string theory
on AdS5 × S5

Much of what we learn here also augments our understanding of QCD
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Planar Limit and Dual Conformal Symmetry

An additional simplification occurs in the planar limit,
where Nc →∞ for fixed g2 = g2

YMNc/(16π2)

◦ The suppression of non-planar graphs allows us to endow the
scattering particles with an ordering

◦ This ordering gives rise to a natural set of dual coordinates

pµi = xµi − x
µ
i+1

◦ The coordinates xµi can be thought of
as labelling the cusps of a light-like
polygonal Wilson loop in the dual
theory, which respects a superconformal
symmetry in this dual space
[Alday, Maldacena] [Drummond, Korchemsky, Sokatchev]

◦ This strongly constrains the kinematic
dependence of the amplitude

p1

p2
p3

p4

p5x1

x2

x3

x4

x5
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Helicity and Infrared Structure

◦ The infrared-divergent part of these amplitudes is accounted for at
all particle multiplicity by the ‘BDS ansatz’ [Bern, Dixon, Smirnov]

◦ In the dual theory, the BDS ansatz solves an anomalous conformal
Ward identity that determines the Wilson loop up to a function of
dual conformal invariants [Drummond, Henn, Korchemsky, Sokatchev]

◦ Dual conformal invariants can first be formed in six-particle
kinematics, so the four- and five-particle amplitudes are entirely
described by the BDS ansatz

A4 = ABDS
4 A5 = ABDS

5

An =
∣∣∣ABDS

n︸ ︷︷ ︸
IR structure

× exp(Rn)×

helicity structure︷ ︸︸ ︷(
1 + PNMHV

n + PN2MHV
n + · · ·+ PMHV

n

)
︸ ︷︷ ︸

finite function of dual conformal invariants

◦ In certain cases, enough is known about Rn and PNkMHV
n to

‘bootstrap’ these functions to high loop order
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The functions R6 and PNMHV
6

◦ In general, we can construct dual conformally invariant cross
ratios out of combinations of Mandelstam invariants

x2
ij ≡ (xi − xj)2 = (pi + pi+1 + · · ·+ pj−1)2 ≡ si,...,j−1

that remain invariant under the dual inversion generator

I(xαα̇i ) =
xαα̇i
x2
i

⇒ I(x2
ij) =

x2
ij

x2
ix

2
j

◦ For six particles, three dual conformal invariants can be formed

u =
x2

13x
2
46

x2
14x

2
36

, v =
x2

24x
2
51

x2
25x

2
41

, w =
x2

35x
2
62

x2
36x

2
52

x1

x2x3

x4

x5 x6
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Physical Branch Cuts

◦ Massless scattering amplitudes in the Euclidean region only have
branch cuts where one of the Mandelstam invariants si,...,k
vanishes

◦ At six points, this immediately implies that R6 and PNMHV
6 can

only develop branch cuts where u, v, and w vanish or become
infinite

◦ However, after analytically continuing out of the Euclidean region,
further discontinuities can appear—this turns out to happen where
u, v, or w approach 1, or where yu, yv, or yw vanish, where

yu =
1 + u− v − w −

√
(1− u− v − w)2 − 4uvw

1 + u− v − w +
√

(1− u− v − w)2 − 4uvw
,

yv = [yu]u→v→w→u , yw = [yu]u→w→v→u

◦ This is believed to be true to all loop orders, and is consistent
with all known six-particle amplitudes and an all-loop analysis of
the Landau equations [Prlina, Spradlin, Stanojevic]
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The Steinmann Relations

◦ Additional restrictions come from the Steinmann relations, which
tell us that amplitudes cannot have double discontinuities in
partially overlapping channels [Steinmann] [Cahill, Stapp]

1

2

3 4

5

6

vs.

1

2

3 4

5

6

Discs234(Discs345(An)) = 0

◦ It turns out this strongly constrains the form of the six-point
amplitude [Caron-Huot, Dixon, von Hippel, AJM]

◦ However, to see this one must normalize the amplitude
appropriately. . .
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Infrared Subtraction

◦ Steinmann-satisfying functions don’t form a ring—products of
functions with incompatible branch cuts break this property

ABDS
n ∼ exp(A(1)

n )

◦ Therefore, we instead normalize by a ‘BDS-like’ ansatz that
depends on only two-particle Mandelstam invariants

ABDS
n × exp(Rn)→ ρ×ABDS-like

n × EMHV
n

ABDS
n × exp(Rn)× PNkMHV

n → ρ×ABDS-like
n × ENkMHV

n

where a transcendental constant ρ can also appear

◦ This only scrambles the Steinmann relations involving two-particle
invariants, which are obfuscated in massless kinematics anyways
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Q̄ Constraint

◦ The derivative of the amplitude is also heavily constrained by dual
superconformal symmetry [Caron-Huot, He]

◦ For instance, in the MHV sector, we have that

coeff 1
u

(dR6) + coeff 1
1−u

(dR6) = 0

◦ This follows from the action of the dual superconformal group on
the n-point BDS-subtracted NkMHV component amplitude

Rn,k≡ANkMHV
n /ABDS

n :

Q̄AaRn,k =
n∑
i=1

χAi
∂

∂Zai
Rn,k

∝ g2 Resε=0

∫ τ=∞

τ=0

(
d2|3Zn+1

)A
a

[
Rn+1,k+1 −Rn,kRtree

n+1,k

]
+ cyclic
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Thus, the kinematic dependance and analytic structure
of the amplitude is highly constrained. . .

. . . but how do we put this all together?



Galois Theory in
Gauge Theory

Andrew McLeod

Scattering
Amplitudes

Bootstrap Method

· PlanarN = 4 sYM

· Analytic Properties

· Kinematic Limits

The Coaction and
Galois Theory

· The Coaction

· Extended Steinmann

· The Coaction Principle

· Seven Loops

· Double Pentaladders

Conclusion

Polylogarithms

◦ Loop-level contributions to MHV and NMHV amplitudes are
conjectured to be generalized polylogarithms of uniform
transcendental weight 2L—namely, functions satisfying

dF =
∑
i

F sid log si

for some set of ‘symbol letters’ {si}, where F si is a generalized
polylogarithm of weight 2L− 1

◦ The symbol letters {si} are algebraic functions of
kinematic invariants

◦ Examples of such functions (and their special values) include
log(z), iπ, Lim(z), and ζm. The classical polylogarithms Lim(z)
involve only the symbol letters {z, 1− z}

Li1(z) = − log(1− z), Lim(z) =

∫ z

0

Lim−1(t)

t
dt
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Polylogarithms

◦ The discontinuity structure of the six-particle amplitude tells us its
symbol alphabet should be given by

S = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw}

Thus, the L-loop amplitude ought to exist within the space of all
weight-2L polylogarithms that can be built out of these symbol letters

◦ By sequentially imposing these known properties of the amplitude,
we find a function space of increasingly small size. For instance,
at four loops:

Imposed Constraints Number of Functions

Generalized polylogarithms with
the correct kinematic dependence 1,675,553

That have branch cuts
only in physical channels 6,916

That satisfy the Steinmann
relations 839
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Kinematic Limits as Boundary Data

We can then match a general ansatz of such polylogarithms to the
amplitude’s known behavior in various kinematic limits

◦ Collinear Factorization

◦ Multi-Regge Limits

◦ Near-Collinear OPE Expansion

◦ Multi-Particle Factorization

◦ Self-Crossing Limit

These constraints are sufficient to uniquely determine the six-particle
amplitude through seven loops

◦ Through five loops, collinear factorization and multi-Regge
factorization are sufficient

◦ At six loops and seven loops, the near-collinear OPE is needed to
fix a single residual ambiguity in the MHV sector

◦ There is a computational barrier (not a principled one) to going to
higher loops
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The Coaction and Cosmic Galois Theory
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The Coaction on Polylogarithms

◦ Generalized polylogarithms are endowed with a coaction that
maps functions to a tensor space of lower-weight functions

Hw
∆−→

⊕
p+q=w

Hp ⊗Hdr
q

◦ The location of branch cuts is encoded in the first component of
the coaction

◦ The derivatives of a function are encoded in the second
component of the coaction

◦ If we iterate this map w − 1 times we arrive at a function’s
‘symbol’, in terms of which all identities reduce to familiar
logarithmic identities

∆1,...,1Lim(z) = − log(1− z)⊗ log z ⊗ · · · ⊗ log z
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The Coaction on Polylogarithms

The branch-cut conditions and Steinmann relations can be succinctly
phrased using this formalism

◦ In the Euclidean region, only the symbol letters u, v, and w can
appear in the first entry

∆1,w−1F = log u⊗ uF + log v ⊗ vF + logw ⊗ wF

◦ The symbol of the amplitude cannot involve first and second
symbol letters that correspond to disallowed branch cuts

log
(
u
vw

)
⊗ log

(
w
uv

)
⊗ · · · log

(
u
vw

)
⊗ log

(
v
uw

)
⊗ · · ·

u

vw
∼ s2

234,
v

wu
∼ s2

345,
w

uv
∼ s2

123

◦ The last entry of the coproduct is restricted by the Q̄ constraint

∆w−1,1F = Fu ⊗ log

(
u

1− u

)
+ . . .
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The Extended Steinmann Relations

In fact, the symbols of BDS-like normalized amplitudes exhibit an even
more surprising property: the Steinmann relations are obeyed by all
adjacent entries of the symbol [Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou]

· · · ⊗log
(
u
vw

)
⊗ log

(
w
uv

)
⊗ · · · · · · ⊗log

(
u
vw

)
⊗ log

(
v
uw

)
⊗ · · ·

u

vw
∼ s2

234,
v

wu
∼ s2

345,
w

uv
∼ s2

123

◦ The same constraint can also be seen to hold in the seven-particle
amplitude through four loops, and all two-loop MHV amplitudes
[Dixon, Drummond, Harrington, AJM, Papathanasiou, Spradlin]

[Caron-Huot] [Golden, AJM, Spradlin, Volovich]

◦ This restriction (and the symbol letters in planar N = 4) have an
intriguing interpretation in terms of cluster algebras
[Golden, Goncharov, Spradlin, Vergu, Volovich] [Drummond, Foster, Gürdoǧan]
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The Extended Steinmann Relations

In fact, the symbols of BDS-like normalized amplitudes exhibit an even
more surprising property: the Steinmann relations are obeyed by all
adjacent entries of the symbol [Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou]
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Cosmic Galois Theory

The coaction on generalized polylogarithms is also dual to the action of
the ‘cosmic Galois group’

◦ The cosmic Galois group extends the classical Galois theory to the
study of periods—integrals of rational functions over rational
domains

◦ Thus, we can explore the stability of amplitudes and integrals
under the action of this Galois group

Specifically, we ask: does the space of Steinmann hexagon functions
Hhex satisfy a ‘coaction principle’? [Schnetz] [Brown]

∆Hhex ⊂ Hhex ⊗H

◦ This can be formulated in terms of the action of the cosmic Galois
group C as

C ×Hhex ?−−→ Hhex
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The Coaction Principle

∆Hhex ⊂ Hhex ⊗H,

◦ Part of the content of this statement is that the coaction
preserves the locations of branch cuts (which we already know is
the case from general physical principles)

◦ However, more general transcendental constants also appear in
this space

• multiple zeta values

• alternating sums

• transcendental constants involving higher roots of unity

◦ These constants exhibit nontrivial structure under the coaction,
which is not a priori constrained by physical principles

◦ This also relates back to the ambiguity in our infrared subtraction;
does there exist a constant factor ρ such that the amplitude
satisfies a coaction principle?
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The coaction on MZVs

◦ For instance, we can consider our function space at
(u, v, w) = (1, 1, 1), where everything evaluates to MZVs

◦ To study the behavior of the MZVs under the coaction, it’s
convenient to map to an f -alphabet [Brown]

◦ In this setting one has natural derivations ∂2m+1 that act on the
(f -alphabet representation of motivic) zeta values as

∂2m+1ζ2n+1 = δm,n

and that satisfy the Leibniz rule—for example,

∂3(ζ7ζ
2
3 ) = 2ζ7ζ3

◦ These operators act nontrivially on multiple zeta values, in a way
that is easy to calculate using the f -alphabet

◦ There is no ∂2, as the even zeta values are semi-simple elements
of the coaction
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The coaction principle at (1,1,1)

Weight Multiple Zeta Values Appear in Hhex
∣∣
u,v,w→1

0 1 1

1

2 ζ2 ζ2

3 ζ3

4 ζ4 ζ4

5 ζ5, ζ3ζ2 5ζ5 − 2ζ3ζ2

6 ζ2
3 , ζ6 ζ6

7 ζ7, ζ5ζ2, ζ3ζ4 ζ5ζ2 − 7ζ7 + 3ζ3ζ4

8 ζ5ζ3, ζ5,3, ζ8, ζ
2
3ζ2 ζ5,3 + 5ζ5ζ3 − ζ2

3ζ2, ζ8
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Weight Multiple Zeta Values Appear in Hhex
∣∣
u,v,w→1

0 1 1

1

2 ζ2 ζ2

X 3 ζ3

4 ζ4 ζ4

X 5 ζ5, ζ3ζ2 5ζ5 − 2ζ3ζ2

6 ζ2
3 , ζ6 ζ6

7 ζ7, ζ5ζ2, ζ3ζ4 ζ5ζ2 − 7ζ7 + 3ζ3ζ4

8 ζ5ζ3, ζ5,3, ζ8, ζ
2
3ζ2 ζ5,3 + 5ζ5ζ3 − ζ2

3ζ2, ζ8

1
2∂3



Galois Theory in
Gauge Theory

Andrew McLeod

Scattering
Amplitudes

Bootstrap Method

· PlanarN = 4 sYM

· Analytic Properties

· Kinematic Limits

The Coaction and
Galois Theory

· The Coaction

· Extended Steinmann

· The Coaction Principle

· Seven Loops

· Double Pentaladders

Conclusion

The coaction principle at (1,1,1)

Weight Multiple Zeta Values Appear in Hhex
∣∣
u,v,w→1

0 1 1

1

2 ζ2 ζ2

X 3 ζ3

4 ζ4 ζ4

X 5 ζ5, ζ3ζ2 5ζ5 − 2ζ3ζ2

X 6 ζ2
3 , ζ6 ζ6

7 ζ7, ζ5ζ2, ζ3ζ4 ζ5ζ2 − 7ζ7 + 3ζ3ζ4

8 ζ5ζ3, ζ5,3, ζ8, ζ
2
3ζ2 ζ5,3 + 5ζ5ζ3 − ζ2

3ζ2, ζ8



Galois Theory in
Gauge Theory

Andrew McLeod

Scattering
Amplitudes

Bootstrap Method

· PlanarN = 4 sYM

· Analytic Properties

· Kinematic Limits

The Coaction and
Galois Theory

· The Coaction

· Extended Steinmann

· The Coaction Principle

· Seven Loops

· Double Pentaladders

Conclusion

The coaction principle at (1,1,1)
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The coaction principle at (1,1,1)
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∂5

∂3
1
2∂3

∂3(ζ5,3) = 0, ∂5(ζ5,3) = −5ζ3

⇓
∂3(ζ5,3 + 5ζ5ζ3 − ζ2

3ζ2) = 5ζ5 − 2ζ3ζ2

∂5(ζ5,3 + 5ζ5ζ3 − ζ2
3ζ2) = 0
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The coaction principle at (1,1,1)

Weight Multiple Zeta Values Appear in Hhex
∣∣
u,v,w→1

0 1 1

1

2 ζ2 ζ2

X 3 ζ3

4 ζ4 ζ4

X 5 ζ5, ζ3ζ2 5ζ5 − 2ζ3ζ2

X 6 ζ2
3 , ζ6 ζ6

XX 7 ζ7, ζ5ζ2, ζ3ζ4 ζ5ζ2 − 7ζ7 + 3ζ3ζ4

XX 8 ζ5ζ3, ζ5,3, ζ8, ζ
2
3ζ2 ζ5,3 + 5ζ5ζ3 − ζ2

3ζ2, ζ8

◦ Unexplained dropouts were required at low weights for the
coaction principle to be nontrivial

◦ Each zeta value that drops out seeds an infinite tower of
constraints at higher loop orders, which we find are satisfied
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General Kinematics

◦ Different spaces of constants appear in different limits

• at (1⁄2,1,1⁄2) the space of alternating sums is saturated

• at (1⁄2,v → 0,1⁄2) dropouts are observed starting at weight 6

• at (u, v → 0, u)|u→∞ dropouts are observed starting at
weight 1 (log 2 doesn’t appear)

• fourth roots and sixth roots of unity also appear

Everywhere we have checked, the coaction principle is respected

◦ This requires choosing a nonzero value for ρ

ρ(g2) = 1 + 8(ζ3)2 g6 − 160ζ3ζ5 g
8

+
[
1680ζ3ζ7 + 912(ζ5)2 − 32ζ4(ζ3)2

]
g10

−
[
18816ζ3ζ9 + 20832ζ5ζ7 − 448ζ4ζ3ζ5 − 400ζ6(ζ3)2

]
g12

+ O(g14)

◦ It would be interesting to know if there is a ‘physical definition’ of
this constant. . .
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Polylogarithms

We can add the power of these constraints to our four-loop example:

Imposed Constraints Number of Functions

Generalized polylogarithms with
the correct kinematic dependence 1,675,553

That have branch cuts
only in physical channels 6,916

That satisfy the Steinmann
condition in the second entry 839

That satisfy extended Steinmann
and the coaction principle 372

After adding symmetries, the Q̄-bar constraint, and strict collinear
factorization, the MHV amplitude is completely fixed, while only two
free parameters remain in the NMHV amplitude

At five and six loops, we are left with (1,5) and (6,17) undetermined
coefficients, respectively, in the (MHV, NMHV) sector

All of these ambiguities can be fixed by boundary data from the
multi-Regge and near-collinear limits
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Status of Loops and Legs in Planar N = 4

Legs

∞
...
8
7
6
5
4

1 2 3 4 5 6 7 . . . ∞
Loops

MHV

NMHV

Ω

[Bern, Caron-Huot, Dixon, Drummond, Duhr, Foster, Gürdoğan, He, Henn, von Hippel, Golden,

Kosower, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, . . . ]

◦ Unexpected and striking structure exists in the the direction of
both higher loops and legs

L→∞: Cosmic Galois Coaction Principle

[Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou]

n →∞: Cluster-Algebraic Structure
[Golden, Goncharov, Spradlin, Vergu, Volovich] [Golden, Paulos, Spradlin, Volovich]

[Golden, AJM, Spradlin, Volovich]
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The Double Pentaladder Integrals

We also have some control over this space of functions to all loop orders
[Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou]

Ω(L) ≡

x3

x4

x5

x6

x1

x2

1

◦ Ω(L) contributes to the six-point amplitude in planar N = 4 at all
loops, as well as to non-supersymmetric amplitudes

◦ A related integral Ω̃(L) can also be defined using a different
numerator

◦ These integrals are related at adjacent loop orders by second-order
differential equations [Drummond, Henn, Trnka]
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The Double Pentaladder Integrals

◦ These differential equations can be solved at finite coupling in
terms of Mellin integrals over hypergeometric functions

Ω =
∑
L

(−g2)LΩ(L) Ω̃ =
∑
L

(−g2)LΩ̃(L)

◦ Ω and Ω̃ naturally complete to a space involving two new integrals

O =
1

g2
(x∂x − y∂y) Ω, W = (x∂x + y∂y) Ω,

which perturbatively evaluate to polylogarithms of odd weight

◦ The set of first-order differential equations that relate these four
functions can be rearranged into a coaction

∆•,1Vi = Vj ⊗Mji

where Vi = {W,Ω, Ω̃e,O, . . . }, and Mji is a matrix of logarithms

◦ Thus, these integrals satisfy a coaction principe by construction
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Beyond Planar N = 4

Coaction principles of this type have been observed in other settings

◦ Tree-level string theory amplitudes [Schlotterer, Stieberger]

◦ Feynman graphs in φ4 theory [Panzer, Schnetz]

◦ The electron anomalous magnetic moment [Schnetz]

It is tempting to believe these coaction principles point to some
(possibly graph-theoretic) symmetry respected by quantum field theory
more generally

◦ A coaction can also be defined on the more complicated types of
functions that appear in scattering amplitudes
[Brown] [Broedel, Duhr, Dulat, Penante, Tancredi]

◦ However, things become more complicated when one loses purity
and uniform transcendental weight. . .
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Conclusions

◦ A large amount of information is encoded in the formal structure
of amplitudes, much of which is still not well understood

◦ In particular, there exists surprising motivic structure in amplitudes
that remains to be explained in terms of physical principles

• a coaction principle seems to hold not only in the amplitudes
of planar N = 4 SYM theory, but also in other contexts

• does the factor ρ admit a physical definition?

◦ Hopefully, better understanding these structures will provide us
with new physical insights and calculational tools
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Thanks!
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The Steinmann Hexagon Space

weight n 0 1 2 3 4 5 6 7 8 9 10 11 12

L = 1 1 3 4

L = 2 1 3 6 10 6

L = 3 1 3 6 13 24 15 6

L = 4 1 3 6 13 27 53 50 24 6

L = 5 1 3 6 13 27 54 102 118 70 24 6

L = 6 1 3 6 13 27 54 105 199 269 181 78 24 6

The dimension of the space of coproduct weight-n first coproduct
entries of the MHV and NMHV amplitudes at a given loop order L
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Cosmic Galois Theory

In science you sometimes have to find a word that strikes, such
as “catastrophe”, “fractal”, or “noncommutative geometry”.
They are words which do not express a precise definition but
a program worthy of being developed.

- Pierre Cartier
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