Modelling Polarized Foregrounds

Andrei Frolov

Kavli Institute for the Physics and Mathematics of the Universe Kashiwanoha, Japan

14 November 2019

Planck before Launch

Planck Focal Plane

Planck Focal Plane Schematics

Planck 2018 CMB Maps

 \circ Intensity T \circ Polarization Q \circ Polarization U \circ

Planck 2018 CMB Maps :

 \sim Intensity T \circ Polarization Q \circ Polarization U \circ

Planck 2018 CMB Maps

Planck 2018 Constraints on Inflation

Primordial Scalar Fluctuations are now Nailed

The target now is B-modes!

CMB vs. Astrophysical Foregrounds

• Intensity • Polarization • Atmospheric Transmission • •

CMB vs. Astrophysical Foregrounds

Intensity

 Polarization
 Atmospheric Transmission
 Atmospheric Transmission

CMB vs. Astrophysical Foregrounds

Intensity

 Polarization
 Atmospheric Transmission
 Atmospheric Transmission

Temperature Component Maps

Polarization Component Maps

- Two main foregrounds, synchrotron emission and thermal dust
- Amplitude of CMB polarization is less than foregrounds
- Dust emission is highly polarized (polarization fraction is up to 20%)

Synchrotron Polarization Amplitude

Polarization Direction and Total Intensity

The colours represent intensity. The "drapery" pattern indicates the orientation of magnetic field projected on the plane of the sky, orthogonal to the observed polarization.

Dust Polarization Amplitude

Polarization Direction and Total Intensity

The colours represent intensity. The "drapery" pattern indicates the orientation of magnetic field projected on the plane of the sky, orthogonal to the observed polarization.

Planck View of BICEP2 Field

CMB Emission Stacks

OGHz Emission Stacks

Т

353GHz Emission Stacks

-15.5 0.030 -16.00.015 -16.5∞ sin φ 0.000 0 -17.0-17.5-0.015-18.0-18.5-0.030 -0.030 -0.015 0.000 0.015 0.030 -2° $\varpi \cos \phi$ 2°

В

Modelling Polarized Dust Emission

Polarized Dust Emission

Polarization is caused by magnetic field alignment:

$$I = \int S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu} \left[1 - p_0 \left(\cos^2 \gamma - \frac{2}{3} \right) \right]$$
$$\begin{cases} Q \\ U \end{cases} = \int S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu} \left\{ \begin{array}{c} \cos 2\psi \\ \sin 2\psi \end{array} \right\} p_0 \cos^2 \gamma$$

(p_0 is intrinsic polarization fraction ~ 0.21)

For a single layer, P/I determines magnetic field orientation:

$$\frac{I-P}{I+P} = 1 - \frac{6p_0}{2p_0 + 3}\cos^2\gamma$$

Polarization Fraction Tensor

Transform polarization tensor into polarization fraction tensor:

$$\begin{bmatrix} i+q & u \\ u & i-q \end{bmatrix} = \ln \begin{bmatrix} I+Q & U \\ U & I-Q \end{bmatrix}$$

This is an invertible transformation on IQU maps:

$$i = \frac{1}{2}\ln(I^2 - P^2), \quad q = \frac{1}{2}\frac{Q}{P}\ln\frac{I+P}{I-P}, \quad u = \frac{1}{2}\frac{U}{P}\ln\frac{I+P}{I-P}$$
$$I = e^i\cosh p, \qquad Q = \frac{q}{p}e^i\sinh p, \qquad U = \frac{u}{p}e^i\sinh p$$

Polarization Fraction Tensor [Dust]

Polarization Fraction Tensor [Dust]. olnio E o Boilo e o bo Image: Comparison of the second seco

Polarization Fraction Tensor [Dust].

Polarization Fraction Tensor [Dust].

Polarization Fraction Tensor [Dust]. • In 1 • E • B • 1 • g • b • •

Polarization Fraction Tensor [Dust].

Parity-Violating Correlations Disappear!

o polarization o polarization fraction o

Parity-Violating Correlations Disappear!

o polarization o polarization fraction o real

Geometric Factors in Emission Integral

$$\mathfrak{p} \equiv \frac{B_{\phi}^2 + B_{\theta}^2}{B^2} = \cos^2 \gamma$$
$$\mathfrak{q} \equiv \frac{B_{\phi}^2 - B_{\theta}^2}{B^2} = \cos^2 \gamma \cos 2\psi$$
$$\mathfrak{u} \equiv -\frac{2B_{\phi}B_{\theta}}{B^2} = \cos^2 \gamma \sin 2\psi$$

These get averaged along the line of sight with weighting:

$$\langle X \rangle = \frac{1}{s_{\nu}} \int S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu} X, \quad s_{\nu} = \int S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}$$

Magnetic Field Model

Split magnetic field into large-scale and random components:

$$\mathbf{B} = \bar{\mathbf{B}} + \delta \mathbf{B}$$

To first order, intensity and polarizations components are:

$$I = s_{\nu} \left(1 + \frac{2}{3} p_{0} \right) - s_{\nu} p_{0} \left[\mathfrak{p}[\bar{\mathbf{B}}] + \frac{\partial \mathfrak{p}}{\partial \mathbf{B}} \Big|_{\bar{\mathbf{B}}} \langle \delta \mathbf{B} \rangle + \dots \right]$$

$$Q = s_{\nu} p_{0} \left[\mathfrak{q}[\bar{\mathbf{B}}] + \frac{\partial \mathfrak{q}}{\partial \mathbf{B}} \Big|_{\bar{\mathbf{B}}} \langle \delta \mathbf{B} \rangle + \dots \right]$$

$$U = s_{\nu} p_{0} \left[\mathfrak{u}[\bar{\mathbf{B}}] + \frac{\partial \mathfrak{u}}{\partial \mathbf{B}} \Big|_{\bar{\mathbf{B}}} \langle \delta \mathbf{B} \rangle + \dots \right]$$

They split into large-scale pattern and random component!

Reconstruct Large-Scale Magnetic Field

Estimator of dust column depth:

$$I + P = s_{\nu} \left(1 + \frac{2}{3} p_0 \right) + O(\delta B^2),$$

Estimators of magnetic field geometry:

$$\begin{split} \tilde{q} &\equiv \frac{Q}{I+P} &= & \frac{3p_0}{3+2p_0} \left[\mathfrak{q}[\bar{\mathbf{B}}] + \frac{\partial \mathfrak{q}}{\partial \mathbf{B}} \Big|_{\bar{\mathbf{B}}} \left\langle \delta \mathbf{B} \right\rangle + \dots \right], \\ \tilde{u} &\equiv \frac{U}{I+P} &= & \frac{3p_0}{3+2p_0} \left[\mathfrak{u}[\bar{\mathbf{B}}] + \frac{\partial \mathfrak{u}}{\partial \mathbf{B}} \Big|_{\bar{\mathbf{B}}} \left\langle \delta \mathbf{B} \right\rangle + \dots \right]. \end{split}$$

Reconstruct large-scale magnetic field using least square fit:

$$\chi_{\bar{\mathbf{B}}}^2 = \left(\tilde{q} - \varepsilon \mathfrak{q}[\bar{\mathbf{B}}]\right)^2 + \left(\tilde{u} - \varepsilon \mathfrak{u}[\bar{\mathbf{B}}]\right)^2, \quad \varepsilon = \frac{3p_0}{3 + 2p_0}.$$

Magnetic Field Lines $\circ \ell_{\max} = 1 \circ \ell_{\max} = 5 \circ \ell_{\max} = 10 \circ \ell_{\max} = 20 \circ$

Magnetic Field Lines

Magnetic Field Lines

Magnetic Field Lines

· · Sky · Large Scale Component · Random Component · ·

Sky
 Large Scale Component
 Random Component
 A

Sky . Large Scale Component . Random Component .

Random Residual is Quite Gaussian

• 1-point PDF • Tails • Local non-Gaussianity corrected •

Random Residual is Quite Gaussian

• 1-point PDF • Tails - Local non-Gaussianity corrected •

Random Residual is Quite Gaussian

• 1-point PDF • Tails • Local non-Gaussianity corrected • .*

Where to Stop?

Polarized Dust Emission is Actually Very Simple! Model It!

Polarized Dust Emission is Actually Very Simple! Model It!

• Polarization Angle Dispersion • Sky Correlations • Random Realization •

Random Realizations Reproduce Sky Statistics

Random Realizations Reproduce Sky Statistics

Modelling Synchrotron Emission

Polarization Fraction Tensor [Synchrotron].

Polarization Fraction Tensor [Synchrotron]

Polarization Fraction Tensor [Synchrotron]

Polarization Fraction Tensor [Synchrotron]

Polarization Fraction Tensor [Synchrotron].

Polarization Fraction Tensor [Synchrotron].

Synchrotron Polarization

Rybicki & Lightman (1979)

$$P_{\perp}(\omega) = \frac{\sqrt{3}}{4\pi} \frac{q^3 B_{\perp}}{m c^2} [F(x) + G(x)]$$
$$P_{\parallel}(\omega) = \frac{\sqrt{3}}{4\pi} \frac{q^3 B_{\perp}}{m c^2} [F(x) - G(x)]$$

$$F(x) = x \int_{x}^{\infty} K_{\frac{5}{3}}(\xi) d\xi, \quad G(x) = x K_{\frac{2}{3}}(x), \quad x = \frac{\omega}{\omega_c}$$

$$\omega_c = \frac{3}{2} \frac{q B_\perp}{m c} \gamma^2$$

Synchrotron Polarization

Rybicki & Lightman (1979)

 $N(\gamma)d\gamma \propto \gamma^{-p}d\gamma$

$$P \propto \frac{q^3 B_{\perp}}{mc^2} \left(\frac{q B_{\perp}}{mc \omega}\right)^{\frac{1}{2}(p-1)}$$

$$\Pi(\omega) = \frac{P_{\perp}(\omega) - P_{\parallel}(\omega)}{P_{\perp}(\omega) + P_{\parallel}(\omega)} = \frac{G(x)}{F(x)} \quad \longrightarrow \quad \Pi = \frac{p+1}{p+\frac{7}{3}}$$

But polarization fraction varies on the sky!

Synchrotron Polarization

Rybicki & Lightman (1979)

 $N(\gamma)d\gamma \propto \gamma^{-p}d\gamma$

$$P \propto \frac{q^3 B_{\perp}}{m c^2} \left(\frac{q B_{\perp}}{m c \omega}\right)^{\frac{1}{2}(p-1)}$$

$$\Pi(\omega) = \frac{P_{\perp}(\omega) - P_{\parallel}(\omega)}{P_{\perp}(\omega) + P_{\parallel}(\omega)} = \frac{G(x)}{F(x)} \quad \longrightarrow \quad \Pi = \frac{p+1}{p+\frac{7}{3}}$$

But polarization fraction varies on the sky!

What are we looking at here?

Spatial dependence of spectral index?

And why is it correlated to magnetic features?

– The End –