Recent Advancements in Core-Collapse Supernova Observation Through the Global Supernova Project

PHYSICS

THE WORLD GETS CHANGED HERE.

Las Cumbres **Observatory**

2019/11/06

Kavli Institute for the Physics and Mathematics of the Universe

Daichi Hiramatsu University of California, Santa Barbara / Las Cumbres Observatory

Table of Contents

- 1. Why Study Core-Collapse Supernovae?
- 2. Core-Collapse Supernovae
- 3. Transient Surveys
- 4. Las Cumbres Observatory and the Global Supernova Project
- 5. Recent Advancements in Core-Collapse Supernova Observation
- 6. Summary and Future Prospects

Table of Contents

- 1. Why Study Core-Collapse Supernovae?
- 2. Core-Collapse Supernovae
- 3. Transient Surveys
- 4. Las Cumbres Observatory and the Global Supernova Project
- 5. Recent Advancements in Core-Collapse Supernova Observation
- 6. Summary and Future Prospects

Supernovae (SNe) are among the most influential events in the Universe because SNe:

- 1. Synthesize heavy elements
- 2. Trigger starbursts
- 3. Drive galactic outflows
- 4. Form compact objects: neutron stars and black holes
- 5. Produce neutrinos and gravitational waves
- 6. and blah blah blah

Chemical Evolution

The Origin of the Solar System Elements

1 H		big	bang t	fusion			cosi	mic ray	/ fissio	n [,]	-						2 He
3 Li	4 Be	mer	merging neutron stars				exploding massive stars 📓				5 B	6 C	7 N	8 O	9 F	10 Ne	
11 Na	12 Mg	dyir	dying low mass stars			exploding white dwarfs 🙋				13 Al	14 Si	15 P	16 S	17 Cl	18 Ar		
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 T a	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu

Astronomical Image Credits: ESA/NASA/AASNova

Graphic created by Jennifer Johnson

90

Th

89

Ac

91

Pa

92

U

Star Formation

Galactic Evolution

Galaxy NGC 3079 Hubble Space Telescope • WFPC2

NASA and G. Cecil (University of North Carolina) • STScI-PRC01-28

Neutron Stars

Hubble Space Telescope • Wide Field Planetary Camera 2

Neutron Stars and Black Holes

Neutrinos

Gravitational Wave

Table of Contents

- 1. Why Study Core-Collapse Supernovae?
- 2. Core-Collapse Supernovae
- 3. Transient Surveys
- 4. Las Cumbres Observatory and the Global Supernova Project
- 5. Recent Advancements in Core-Collapse Supernova Observation
- 6. Summary and Future Prospects

Type I for Hydrogen-Poor and Type II for Hydrogen-Rich SNe

Hydrogen-Rich Type II SNe

Subclass	Photometric properties	Spectroscopic properties	Prototypical example		
IIP	Plateau in light curve		SN 1999em		
IIL	Linear decline in light curve		SN 1979C?		
IIn		Narrow hydrogen lines			
IIb		H-dominated then He- dominated	SN 1993J		
87A-like	Long light curve rise		SN 1987A		

Pre-explosion Direct Imaging

NASA/ESA, Van Dyk, & Li

Arcavi 2016

Subclass	Progenitor	Direct evidence	Indirect evidence
IIP	RSG	Multiple progenitor detec- tions	Light curve plateau indicative of a thick H envelope
IIL	?		
IIn	LBV	Single progenitor detection ^a	Light curve and spectral fea- tures indicative of CSM inter- action
IIb	YSG (in a binary)	Few progenitor detections	Light curve and spectral fea- tures indicative of a H- deficient envelope
87A- like	BSG	Single progenitor detection ^b	Light curve shape indicative of a compact progenitor
A Carlos			

- Need to be nearby (< 30 Mpc) with pre-explosion highresolution images.
- ★ Rely on theoretical stellar evolution tracks.

Red Supergiant Problem

The observed RSG population lies in the mass range of 8-25 M_{\odot} . However, the upper limit from a sample of 26 pre-explosion detections/limits of Type IIP/L SN progenitors is ~ 18 M_{\odot} . Direct Collapse? Binary Evolution? Dust Extinction? Insufficient Statistics? \Rightarrow Need independent methods using SN observables.

Smartt 2015

Red Supergiant Problem

The observed RSG population lies in the mass range of 8-25 M_{\circ} . However, the upper limit from a sample of 26 pre-explosion detections/limits of Type IIP/L SN progenitors is ~ 18 M_{\circ} . Direct Collapse? Binary Evolution? Dust Extinction? Insufficient Statistics? \Rightarrow Need independent methods using SN observables.

Direct Collapse (e.g. Sukhbold+ 2016)?

Red Supergiant Problem

The observed RSG population lies in the mass range of 8-25 M_{\odot} . However, the upper limit from a sample of 26 pre-explosion detections/limits of Type IIP/L SN progenitors is ~ 18 M_{\odot} . Direct Collapse? Binary Evolution? Dust Extinction? Insufficient Statistics? \Rightarrow Need independent methods using SN observables.

Single vs Binary (e.g. Eldridge+ 2013)?

Red Supergiant Problem

The observed RSG population lies in the mass range of 8-25 M_{\circ} . However, the upper limit from a sample of 26 pre-explosion detections/limits of Type IIP/L SN progenitors is ~ 18 M_{\circ} . Direct Collapse? Binary Evolution? Dust Extinction? Insufficient Statistics? \Rightarrow Need independent methods using SN observables.

Type IIP Supernova Light Curve Scaling to Infer Explosion Properties

From Kasen & Woosley 2009 (see also Popov 1993, Sukhbold+ 2016, and Goldberg, Bildsten, & Paxton 2019),

$$\begin{split} L_{50} &\propto E_{exp}^{5/6} M_{ej}^{-1/2} R_{pro}^{2/3} X_{He}^{1} \\ t_{p,0} &\propto E_{exp}^{-1/4} M_{ej}^{1/2} R_{pro}^{1/6} X_{He}^{1/2} \\ t_{p} &= t_{p,0} \times (1 + C_{f} M_{Ni} E_{exp}^{-1/2} M_{ej}^{-1/2} R_{pro}^{-1})^{1/6} \end{split}$$

- ★ If Ni mass is high (> $0.03 M_{\odot}$), plateau duration is radius independent.
- ★ Three unknowns in two equations (assuming ~constant He fraction) => Degenerate solutions.

Nebular Spectrum to Infer Progenitor Core Mass

The strength of [OI] emission lines scale monotonically with the core mass of a progenitor.

Circumstellar Material (CSM) Interaction to Infer Pre-Explosion Mass Loss

In order to extract the progenitor and explosion properties from the supernova observables, early high-cadence and late continuous monitoring are required to capture the full evolution.

SN Progenitor Properties

Table of Contents

- 1. Why Study Core-Collapse Supernovae?
- 2. Core-Collapse Supernovae
- 3. Transient Surveys
- 4. Las Cumbres Observatory and the Global Supernova Project
- 5. Recent Advancements in Core-Collapse Supernova Observation
- 6. Summary and Future Prospects

Transient Surveys

3D Problem: Wider, Deeper, and/or Faster

Current transient surveys: >100 supernovae/night. LSST (2023~): >1,000 supernovae/night.

Table of Contents

- 1. Why Study Core-Collapse Supernovae?
- 2. Core-Collapse Supernovae
- 3. Transient Surveys
- 4. Las Cumbres Observatory and the Global Supernova Project
- 5. Recent Advancements in Core-Collapse Supernova Observation
- 6. Summary and Future Prospects

Las Cumbres Observatory and the Global Supernova Project

Las Cumbres Observatory and the Global Supernova Project

Daily Work:

- ★ Triggering: 100+ supernova discoveries every day by various surveys
 → Focus on nearby (< 100 Mpc) and young (< 5 days post explosion) transients.
- ★ Monitoring: 40+ supernovae followed at any time → Automate as many processes as possible to be managed by 5 members in the LCO supernova group.
- ★ Reducing: Dataflow from different telescopes, including non-LCO telescopes → Build and maintain customizable reduction pipelines.
- ★ SNEx

Table of Contents

- 1. Why Study Core-Collapse Supernovae?
- 2. Core-Collapse Supernovae
- 3. Transient Surveys
- 4. Las Cumbres Observatory and the Global Supernova Project
- 5. Recent Advancements in Core-Collapse Supernova Observation
- 6. Summary and Future Prospects

Numerical Shock-Cooling Light-Curve Modeling

SN 2016gkg: Double-Peak Type IIb $\Rightarrow 0.02 M_{\circ}$ of extended material at $\approx 180-260 R_{\circ}$

Numerical CSM Light-Curve Modeling

CSM Light Curve Modeling: ~ $le-1 M_{\circ}/yr$ (>> standard stellar evolution) is required to capture the early peaks

Morozova, Piro, & Valenti 2017 (see also Förster+ 2018 and Moriya+ 2018)

IIP vs IIL & Short-Plateau Supernovae

Type IIP/L SNe: Continuous Class or Distinct Classes? Why no short-plateau?

IIP vs IIL & Short-Plateau Supernovae: Numerical Light-Curve Modeling Total of 1,267 MESA+STELLA models: IIP - IIL - Short Plateau - IIb in decreasing order of MHenv

IIP vs IIL & Short-Plateau Supernovae: Numerical Light-Curve Modeling IIP [Shock cooling \Rightarrow Recombination (Rph const.) \Rightarrow Co tail]: MHenv > 4.00 M_o

IIP vs IIL & Short-Plateau Supernovae: Numerical Light-Curve Modeling IIL [Shock cooling \Rightarrow Recombination (Rph \downarrow) \Rightarrow Co tail]: 1.74 M_{\circ} < MHenv < 4.00 M_{\circ}

IIP vs IIL & Short-Plateau Supernovae: Numerical Light-Curve Modeling Short-plateau [Shock cooling \Rightarrow Recombination (Rph const.) \Rightarrow Co tail]: 1.48 M_{\circ} < MHenv < 1.74 M_{\circ}

IIP vs IIL & Short-Plateau Supernovae: Numerical Light-Curve Modeling IIb [Shock cooling \Rightarrow Ni heating \Rightarrow Co tail]: MHenv < 0.72 M.

IIP vs IIL & Short-Plateau Supernovae: Numerical Light-Curve Modeling IIL \Rightarrow Short-plateau \Rightarrow IIb in ~1.3 M_o difference in MHenv

Short-Plateau Supernovae: Numerical Light-Curve Modeling

Short-Plateau supernovae from massive red supergiants: $17.5 - 22.5 M_{\odot}$

SN 2006Y: He-core mass ~ $5.8 M_{\odot}$

SN 2016egz: He-core mass ~ $7.2 M_{\odot}$

Short-Plateau Supernovae: Numerical Nebular Spectral Modeling

Short-Plateau supernovae from massive red supergiants: $15 - 25 M_{\odot}$

Short-Plateau Supernovae: Numerical CSM Light-Curve Modeling

Requires enhanced mass-loss, ~2 orders of magnitude greater than the standard stellar evolution

SN 2006Y: Mass-loss rate ~ $3e-3 M_{\odot}/yr$

SN 2016egz: Mass-loss rate ~ $3e-3 M_{\odot}/yr$

Short-Plateau Supernovae: Implication to the RSG problem

Based on the agreement of light-curve and nebular-spectrum modelings that short-plateau SN progenitors are massive RSG stars (ZAMS mass > 17.5 M_{\circ}) that experience significant preexplosion mass-loss (high extinction), this rare class maybe a key to resolve the RSG problem.

Single vs Binary (e.g. Eldridge+ 2013)?

Direct Collapse (e.g. Sukhbold+ 2016)?

Dust (e.g. Walmswell & Eldridge 2012)?

Flash Spectroscopy Sample

Flash Spectroscopy: 18% of bright supernovae (<-17.6 mag) within 5 days of explosion $\Rightarrow >5e-4 M_{\odot}/yr$

Khazov+ 2017, Boian & Groh 2018

Flash Spectroscopy Sample

SN 2016bkv: First Faint (-16 mag) Type IIP with Flash Spectroscopy $\Rightarrow \sim 1e-3 M_{\odot}/yr$ may be common

Rest Wavelength (nm)

Hosseinzadeh+ 2018 (see also Nakaoka+ 2018)

Nebular Spectroscopy

SN 2016bkv: Weak [O I] & [Fe II] lines \Rightarrow likely a low-mass progenitor (~9 M_{\odot}), possibly an electron-capture SN?

#weird

iPTF14hls: Normal Type II spectra, but with the much slower evolution \Rightarrow a pulsation-pair instability supernova?

Table of Contents

- 1. Why Study Core-Collapse Supernovae?
- 2. Core-Collapse Supernovae
- 3. Transient Surveys
- 4. Las Cumbres Observatory and the Global Supernova Project
- 5. Recent Advancements in Core-Collapse Supernova Observation
- 6. Summary and Future Prospects

Summary and Future Prospects:

- ★ Supernovae are among the most influential events in the Universe.
- ★ Type II supernovae are hydrogen-rich core-collapse of massive stars (>8 M_{\circ}).
- ★ Current transient surveys discover >100 supernovae/night. LSST is expected to be online starting in 2023 and discover >1,000 supernovae/night.
- ★ The Global Supernova Project is a world-wide collaboration of 150+ astronomers with 3,000+ hours of the Las Cumbres Observatory time to follow 150+ supernovae per year, complemented with the world's largest ground-based and space telescopes.
- ★ Early high-cadence and late continuous follow-ups have revealed the progenitor structure and dense circumstellar material through shock-cooling and photospheric light curves and flash and nebular spectroscopy, as well as peculiar events, challenging our current understanding of massive star evolution and supernova explosion mechanism.
- ★ The future is bright; we will have the big picture through large samples and selfconsistent progenitor, light curve, and spectroscopy modeling.

Thank you! Please ask questions now and/or to <u>dhiramatsu@lco.global</u>