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A nice family portrait…

But…, is there anybody out there? 

“The Earth is the cradle of humanity, but mankind cannot stay in the cradle forever.”
Konstantin Tsiolkovsky
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www.popchartlab.com
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Solar system is not alone!

Current estimates:
• ~50% of stars have planets;
• ~100 billion stars in our Galaxy, and 

1-10 planets per star;
• 50 billion to 5 trillion planets in our 

Galaxy (alone);
• There are ~10 new stars forming 

each year in our Galaxy…
• ~5 new planetary systems/year…
• ~5-50 new planets/year.

Exoplanet census (Oct 2019):
• 4,073 – confirmed;
• 4,495 – candidates; 
• 3,028 – planetary systems;
• 161 – terrestrial.

Finding Earth 2.0 is matter of time... 
– but what will we do once we find it?

https://exoplanets.nasa.gov/
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Our Stellar Neighborhood within 100 ly
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AFTA- C
Exo-Coronagraph,
Exo-Starshade,
LUVOIR, AT-LAST,
HDST

Demographics
Characterization
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The size does matter…

…and so does the distance: the tyranny of the diffraction limit…
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Our Challenge
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1-pixel direct image of an exo-Earth…

The tyranny of  the diffraction limit: To make a 1-pixel image of an exo-Earth 
at 100 light years, one needs a telescope with a diameter of ~90 km… 

The altitude of  the Kármán line

JPL

90 km

Dana Point
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A (10k×10k)-pixels image of our Earth

This 2002 Blue Marble image features land surfaces, clouds, topography, 
and city lights at a maximal resolution of  1 km per pixel. 

Composed from 4 months data from NASA’s Terra satellite by R.Simmon, R.Stöckli.
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1,000-pixel direct image of an exo-Earth…

Diameter of 90,000 km is ~7 diameters of the Earth

The tyranny of  the diffraction limit: To make a 1,000-pixel image of an exo-Earth 
at 100 light years, a telescope with a diameter of ~90,000 km is needed… 

~90,000 km
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Largest telescopes to date…

But…, is there anybody out there? European Extremely Large Telescope
39 meters, Chile (est. 2022)

The largest telescopes for the last 125 years 
to date, both on the ground and in space
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Largest telescopes in space

Kepler
1.4 m
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The Solar Gravitational Lens (KISS study, 2015)

4 light days
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Earth-like Source Image
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The image within the Einstein ring

Credit: ESA, Hubble & NASA Wikimedia

Not to scale
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Properties of the Solar Gravity Lens

• Important features of the SGL (for 𝜆 = 1 𝜇m):
– Major brightness amplification: a factor of 1011 (on the optical axis);
– High angular resolution:  ~0.5 nano-arcsec. A 1-m telescope at the SGL 

collects light from a ~(10km × 10km) spot on the surface of the planet, 
bringing this light to one 1-m size pixel in the image plane of the SGL;

– Extremely narrow “pencil” beam: entire image of an exo-Earth (~13,000 km) 
at 100 l.y. is included within a cylinder with a diameter of ~1.3 km. 21
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FIG. 6: Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric
distance of z = 600 AU. The solid line represents λ = 1.0 µm, the dotted line is for λ = 2.0 µm. Right: a three-dimensional
representation of the Airy pattern in the image plane of the SGL for λ = 1.0 µm with the peak corresponding to direction
along the optical axis.

Given the fact that in the focal region of the SGL, the ratio rg/r ! 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:

S̄z =
c

8π
E2

0
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

, (134)

with S̄ρ = S̄φ = 0 for any practical purposes. Note that in the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 = (0, 0, (c/8π)E2

0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL TELESCOPE

We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

"/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by

µz =
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

. (135)

As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern

(i.e., the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.

3-D Airy pattern 
of the SGL

Turyshev & Toth, Phys. Rev. D 96, 024008  (2017)
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FIG. 7: Comparison of PSFs normalized to 1: the solid
line represents the PSF of the SGL, ∝ J2

0 (2
√
x); the

dotted line is for the traditional PSF, ∝ J2
1 (2

√
x)/x2.

Note that the first zero of the PSF of the SGL much
closer in, but it falls out slower than the traditional PSF.

Furthermore, the light amplification µ weakly depends on
the distance from the Sun. For practical purposes, it is easier
to show this property by plotting the gain of the SGL, g, which
is related to light amplification as g(λ, z) = 10 log10 µ(λ, z).
Figure 8 plots the gain of the SGL at two heliocentric distances
z = 600 AU and 1, 000 AU for two wavelengths λ = 1.0 µm
and 2.0 µm.
We may express the argument of the Bessel function in (135)

in terms of the quantities of interest, namely the heliocentric
distance along the optical axis z, the distance in the image
plane ρ (as measured from the optical axis), and the impact
parameter b0. With the help of (122) we have:

2
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√

2rg
z

→ 2
√
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ρ

λ

√

z0
z

= 2πα0
ρ

λ

R!

b0
, (136)

where α0 = 2rg/R! = 8.490× 10−6 rad = 1.751′′ is the angle of deflection by the SGL for the light rays just grazing
the Sun. Given numerical values of various quantities involved, we obtain

2
√
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)

√
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z
, (137)

or, equivalently,

2
√
x = 53.34

(1 µm

λ

)( ρ

1 m

)R!

b0
. (138)

This result clearly shows the dependence of the SGL’s light amplification on the observing wavelength, λ, the
distance along the focal line, z, and the distance from the focal line in the image plane, ρ. The value of maximum
amplification of the SGL, µ0 = 4π2rg/λ, is independent of z. For optical wavelengths, this amounts to µ0 ∼ 1.2×1011,
giving the SGL its enormous light amplification. For small deviations from the optical axis, the light amplification
(135) drops sharply, as seen in Fig. 6, but the overall envelope decreases more slowly than that of a traditional PSF
(Fig. 7).
The ability of a lens to resolve detail is ultimately limited by diffraction. Light coming from a point source diffracts

through the lens aperture, forming a diffraction pattern in the image plane known as an Airy pattern (see Fig. 6).
The angular radius of the central bright lobe, called the Airy disk, is measured from the center to the first null.
Therefore, we define the resolution of the SGL using the location where J0(2

√
x) = 0, which is satisfied for the value

of the argument of 2
√
x ≈ 2.40483. We can then solve (136) for θSGL = ρ/z:
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z
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λ

D!

R!

b0
, (139)

where D! = 2R! is the solar diameter. For the wavelength λ = 1 µm, the resolution of the SGL at z0 = 547.8 AU is
θ0 ≈ 5.50× 10−16 rad = 0.11 nas. The resolution increases with z as θ0

√

z0/z as

θSGL & 0.11
( λ
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)

√

z0
z

nas, or, equivalently, θSGL & 0.11
( λ
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)R!

b0
nas. (140)

For an exoplanet situated at the distance zp from the Sun, the angular resolution (139) translates into resolvable
surface features of δρSGL = θSGLzp, which improves with heliocentric distance as

δρSGL & 510
( zp
30 pc

)( λ

1 µm

)

√

z0
z

m, or, equivalently, δρSGL & 510
( zp
30 pc

)( λ

1 µm

)R!

b0
m. (141)

Depending on the impact parameter, the deflection angle of the SGL is given as α = 2rg/b0 = α0(R!/b0). Rays
with impact parameter b0 will intersect the optical axis at the distance of z = b0/α = 547.8 (b0/R!)2 AU. In the
pencil-sharp region along the focal line the amplification (135) of the SGL stays nearly constant well beyond 2,500
AU, while its angular resolution (140) increases by a factor of ∼ 1/

√
5 in the same range of heliocentric distances.
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where E[a, x] is the incomplete elliptic integral [12]. The behavior of β(r0) is shown in the center plot in Fig. 3. The
combined behavior of ε(r0) and β(r0) in the relevant range of distances is shown in the right-hand side plot of the
same figure.
Equation (38) describes the light from the source that is present in the image plane outside the direct image of

the exoplanet. The existence of this signal is due to the specific optical properties of the SGL given by its PSF (3)
which, as a function of the distance to the optical axis on the image plane, falls out much more slowly than the PSF
of a regular telescope (4). This fact provides valuable insight for image recovery and the relevant work on prospective
mission planning and development [7, 10].

IV. AMPLIFICATION AND ANGULAR RESOLUTION

If the receiving telescope’s aperture is small, comparable in size to the width of the central peak of the SGL’s PSF
(2), the resulting observations are conducted in the wave optical regime, where the SGL possesses remarkable optical
properties. In this case, the SGL’s magnification and its diffraction pattern are given as

µ0
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The angular resolution in this case is determined from the size of that largest peak of (40) [3]:

δθ0SGL = 0.38
λ

√
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z

)
1
2

nas. (41)

However, given the fact that the Sun must be blocked by a coronagraph, using a small telescope that lacks the
angular resolution to resolve the Sun’s disk from the distance of the SGL’s focal region is unpractical. Instead, systems
with 1 m-class apertures are required for this purpose. Such a telescope averages many lobes of the diffraction pattern
[3]. This averaging erases the wave optical behavior of the SGL. Light amplification and angular resolution are
determined by the geometry of the problem. To demonstrate this we note that, in the absence of the SGL, the power
received from an object is given by the following expression:

P 0
exo = Bsπ(

1
2d)

2
(R⊕

z0

)2
. (42)

To evaluate the amplification of the SGL when observing extended resolved sources, in (32), we factor out P 0
exo

given
by (42), and present (32) as

Pexo(r0) = P 0
exo

ASGL(r0), (43)

where ASGL(r0) is the SGL’s light amplification for extended resolved sources:
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z
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We note that the result is independent on the wavelength and is determined in full by the geometry of the problem,
the size of the object and position of the telescope in the image plane.
Angular resolution in this case is also determined by geometric considerations and the procedure of image sampling.

Clearly, the maximal resolution is achieved when we can sample the entire surface of the source, namely when the
number of linear pixels across the surface is given as N0 = 2r⊕/d. In this case, we achieve the highest angular
resolution, δθ0, given as
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2R⊕

N0

1
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z

)

nas. (45)

However, it is hard to achieve such a sampling and thus to obtain such a resolution. It is more realistic to consider
that we will be able to sample the image with N ≤ N0 linear pixels. In this, more conservative case, the angular
resolution, δθN , is

δθN =
2R⊕

N

1

z0
=

2.84

N

(30 pc

z0

)

µas. (46)

Although the realistic light amplification factor of the SGL (44) and the angular resolution (46) that are achievable
using a meter-scale observing telescope in the SGL’s focal region are smaller than the theoretical maxima calculated
in the wave optical regime, the values are still very impressive. These results provide realistic insight into the potential
use of the SGL for imaging of faint distant objects, such as exoplanets.
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Mission to the Gravity Lens of the Sun
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Original gravity lens derivation (Einstein c.1911) 

Precision alignment between a Lens and the Earth is very unlikely…
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Gravitational deflection of light before GR

• In 1913 Einstein wrote to Hale:
– “Is eclipse necessary to test this prediction?” 
– Hale replied:  “Yes, an eclipse is necessary, as stars 

near the Sun would then be visible, and the bending 
of light from them would show up as an apparent 
displacement of the stars from their normal positions.” 

• In 1914, the first attempt - a German expedition
– A German astronomer Finley-Freundlich led an 

expedition to test the Einstein's prediction during a 
total solar eclipse on Aug. 21, 1914 (in Russia); 

– However, the First World War (July 28, 1914) 
intervened, and no observations could be made.

Albert Einstein 
c.1913

George Ellery Hale
(1868-1938)

Erwin Finlay-Freundlich
(1885-1964)

The Huntington Library, Pasadena, CA



THE SOLAR GRAVITATIONAL LENS
The First Test of  

General Theory of  Relativity

Einstein and Eddington, Cambridge, 1930

Gravitational Deflection of  Light:

Campbell’s telegram to Einstein, 1923 

Deflection = 0;
Newton =  0.87 arcsec;   
Einstein = 2 x Newton = 1.75 arcsec 

Solar Eclipse 1919:
possible outcomes
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Gravitational Deflection of Light
is a Well-Known Effect Today

THE SOLAR GRAVITATIONAL LENS
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Our solar system and tests of gravity
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50+ Years of Solar System Gravity Tests

General relativity is now well tested. Can we use it to build something?

New Engineering Discipline –
Applied General Relativity:

Radar Ranging:
−Planets:  Mercury, Venus, Mars
−s/c: Mariners, Vikings, Pioneers, 

Cassini, Mars Global Surveyor, 
Mars Orbiter, etc.

−VLBI, GPS, etc.

Laser:
−SLR, LLR, interplanetary, etc.

Techniques for Gravity Tests:

Dedicated Gravity Missions:

Non-linearity
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1

0.998 10.999 1.001 1.002

1.002

1.001

0.999

0.998

b

g

Cassini ‘03

Mercury Ranging ‘93

LLR ’04
g -- £ ± ´ 51 (2.1 2.3) 10

General Relativity

Mars Ranging ‘76 g -- £ ´ 31 2 10

Astrometric VLBI ‘09
g -- £ ´ 41 3 10

b g -- £ ´- 43 4.3 104

Spacecraft tracking ‘10
𝛽 − 1 ≤ 8×10*+

"for decisive contributions to the LIGO detector 
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FIG. 5: The SGL focusing light from a point source located at a finite distance. As in Fig. 1, we show two rays of light
on opposite sides of the Sun, with the same impact parameter b as before. The rays are no longer parallel. The diagram is
arranged such that the top incident ray appears horizontal, as in Fig. 1. Consequently, the optical axis (which connects the
point source and the center of the Sun) is now inclined by the angle β = b/z0 and it is intersected by the ray of light at
z = (b2/2rg)(1 + b2/2rgz0). (x′, y′) (x, y)

which describes hyperbolae representing the geodesic trajectories of light rays in the post-Newtonian gravitational
field of a mass monopole [2]. For an impact parameter b ≥ R!

!, these trajectories are outside the Sun, crossing
from the geometric optics region behind the Sun into the interference region. In essence, (25) is a classical thin lens
equation that is familiar from geometric optics [2, 17, 18]. Note that, similarly to the approach demonstrated in [3],
the validity of this expression may be extended to higher powers of the small angle θ, yielding complete trigonometric
identities.
Result (25) is different from a similar expression given in [2, 3] where the source was assumed to be at the infinite

distance from the Sun. The finiteness of the distance to the source is captured in (25) by the term (see also Fig. 5):

β =
b

r0
. (26)

To understand the meaning of this result, we note that any given impact parameter, b, specifies a particular point on
the source with heliocentric coordinates of (b, r0). Therefore, (26) represents an effective rotation of the coordinate
axis by the angle β needed to align that point and the center of the Sun on the same line, defining a specific optical
axis for that particular point. Below we will study the impact of this rotation on the optical properties of the SGL.
In this new coordinate system, rotated by angle β, we can easily see that light rays intersect the optical axis at a

slightly larger heliocentric distances. Specifically, for any given impact parameter, the focal point of the SGL, located
at r = b2/2rg for a source at infinity (β = 0), is shifted to larger distances, given as r = b2/(2rg)(1 + b2/(2rgz0)).
The extra distance is δr = (b2/2rg)2/z0, which, for nominal values of the parameters, is computed to be δr =
0.05 (b/R!)4(30 pc/z0) AU. The extra distance is small but nonvanishing. Therefore, it must be accounted for in the
imaging campaign and related mission design. The heliocentric distance to the focal point associated with a source
at a finite distance, calculated as r in the rotated coordinate system, is related to the heliocentric distance r to the
focal point associated with a source at infinity, computed in the non-rotated coordinate system, by the following
expression:

r = r(1 + r/r0), (27)

valid to order of O(r3/r20). Eq. (27), essentially, represents a rescaling all the relevant results by an extra a factor
that depends on the distance to the source. This mapping between the distances in the two coordinate systems is
important, as it provides an interpretation of the results that we obtain below.
We now continue to investigate (25). For small but finite angles angles, θ "

√

2rg/r > 0, and large impact
parameters, b ≥ R!

! " rg , equation (25) yields two families of solutions for the points of stationary phase:

bin = ∓
(

r̃θ +
2rg
θ

)

+O(θ3, r2g), and bs = ±
2rg
θ

+O(θ3, r2g), (28)

The family bin represents the incident wave with light ray trajectories bent towards the Sun, obeying the eikonal
approximation of geometric optics. The family bs describes the scattered wave: light rays that extend incident rays
beyond the point of their intersection with the optical axis. (In essence, these two families of solutions represent the
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point source and the center of the Sun) is now inclined by the angle β = b/z0 and it is intersected by the ray of light at
z = (b2/2rg)(1 + b2/2rgz0). (x′, y′) (x, y)

which describes hyperbolae representing the geodesic trajectories of light rays in the post-Newtonian gravitational
field of a mass monopole [2]. For an impact parameter b ≥ R!

!, these trajectories are outside the Sun, crossing
from the geometric optics region behind the Sun into the interference region. In essence, (25) is a classical thin lens
equation that is familiar from geometric optics [2, 17, 18]. Note that, similarly to the approach demonstrated in [3],
the validity of this expression may be extended to higher powers of the small angle θ, yielding complete trigonometric
identities.
Result (25) is different from a similar expression given in [2, 3] where the source was assumed to be at the infinite

distance from the Sun. The finiteness of the distance to the source is captured in (25) by the term (see also Fig. 5):
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To understand the meaning of this result, we note that any given impact parameter, b, specifies a particular point on
the source with heliocentric coordinates of (b, r0). Therefore, (26) represents an effective rotation of the coordinate
axis by the angle β needed to align that point and the center of the Sun on the same line, defining a specific optical
axis for that particular point. Below we will study the impact of this rotation on the optical properties of the SGL.
In this new coordinate system, rotated by angle β, we can easily see that light rays intersect the optical axis at a

slightly larger heliocentric distances. Specifically, for any given impact parameter, the focal point of the SGL, located
at r = b2/2rg for a source at infinity (β = 0), is shifted to larger distances, given as r = b2/(2rg)(1 + b2/(2rgz0)).
The extra distance is δr = (b2/2rg)2/z0, which, for nominal values of the parameters, is computed to be δr =
0.05 (b/R!)4(30 pc/z0) AU. The extra distance is small but nonvanishing. Therefore, it must be accounted for in the
imaging campaign and related mission design. The heliocentric distance to the focal point associated with a source
at a finite distance, calculated as r in the rotated coordinate system, is related to the heliocentric distance r to the
focal point associated with a source at infinity, computed in the non-rotated coordinate system, by the following
expression:

r = r(1 + r/r0), (27)

valid to order of O(r3/r20). Eq. (27), essentially, represents a rescaling all the relevant results by an extra a factor
that depends on the distance to the source. This mapping between the distances in the two coordinate systems is
important, as it provides an interpretation of the results that we obtain below.
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FIG. 1: Imaging of extended resolved sources with the SGL. [Also with imaging detector...]

This expression implies that the lens focuses light in the opposite quadrant in the image plane by also compressing
the physical size of the source by a factor of z/z0 ∼ 1.0 × 10−4 (z/650 AU)(30 pc/z0). Thus, the diameter of an
Earth-like exoplanet at those distances would be only r⊕ = R⊕(z/z0) = 1.34(z/650 AU)(30 pc/z0) km.
f
Consider the process of imaging of an extended, resolved source. In the most widely considered, practical scenario,

the kilometer-scale image plane is sampled by a meter-scale telescope that, while it has the resolution required to
employ a coronagraph, is otherwise used as an imaging detector, collecting light from the Einstein ring forming around
the Sun from light originating from the exoplanet. First, we recognize that the telescope’s aperture is much smaller
than the image size, d # 2r⊕. This leads us to separate the received signal in two parts: the signal received from
the directly imaged region, blurred by light received from the rest of the planet. Based on the SGL’s mapping (3)
for a given point (x0, y0) in the image plane (see Fig. 1), the directly imaged region will be in the vicinity of the
point (x′

0, y
′
0) = −(z0/z)(x0, y0) on the source plane. Furthermore, given the telescope aperture d, the directly imaged

region in the source plane has the diameter

D =
z0
z
d, (4)

centered at (x′
0, y

′
0). The signal that is received from the exoplanet from areas outside D is causing the blur.

B. Image formation by an optical telescope at the image plane

To produce images with the SGL, we represent an imaging telescope by a convex lens with focal distance f and
position the telescope in the interference region [2–6]. The amplitude of the EM wave from (1) just in front of the
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The presence of a convex lens with focal distance f is equivalent to a Fourier transform of the wave (5). We position
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FIG. 1: Imaging of extended resolved sources with the SGL. [Also with imaging detector...]

This expression implies that the lens focuses light in the opposite quadrant in the image plane by also compressing
the physical size of the source by a factor of z/z0 ∼ 1.0 × 10−4 (z/650 AU)(30 pc/z0). Thus, the diameter of an
Earth-like exoplanet at those distances would be only r⊕ = R⊕(z/z0) = 1.34(z/650 AU)(30 pc/z0) km.
d
Consider the process of imaging of an extended, resolved source. In the most widely considered, practical scenario,

the kilometer-scale image plane is sampled by a meter-scale telescope that, while it has the resolution required to
employ a coronagraph, is otherwise used as an imaging detector, collecting light from the Einstein ring forming around
the Sun from light originating from the exoplanet. First, we recognize that the telescope’s aperture is much smaller
than the image size, d # 2r⊕. This leads us to separate the received signal in two parts: the signal received from
the directly imaged region, blurred by light received from the rest of the planet. Based on the SGL’s mapping (3)
for a given point (x0, y0) in the image plane (see Fig. 1), the directly imaged region will be in the vicinity of the
point (x′

0, y
′
0) = −(z0/z)(x0, y0) on the source plane. Furthermore, given the telescope aperture d, the directly imaged

region in the source plane has the diameter

D =
z0
z
d, (4)

centered at (x′
0, y

′
0). The signal that is received from the exoplanet from areas outside D is causing the blur.

B. Image formation by an optical telescope at the image plane

To produce images with the SGL, we represent an imaging telescope by a convex lens with focal distance f and
position the telescope in the interference region [2–6]. The amplitude of the EM wave from (1) just in front of the
telescope aperture, is given as

A(x,x0,x
′) =

√
µ0 E

s
0(x

′)J0
(

k

√

2rg
z

|x+ x0 +
z

z0
x′|
)

. (5)

The presence of a convex lens with focal distance f is equivalent to a Fourier transform of the wave (5). We position
a detector array at the focal distance. Then, using the Fresnel–Kirchhoff diffraction formula, the wave’s amplitude in
the detector plane at location p = (xi, yi) is given by
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′) =

i

λ

∫∫
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A(x,x′)e−i k
2f |x|2 e

iks

s
d2x. (6)

The function e−i k
2f |x|2 = e−i k

2f (x2+y2) represents the action of the convex lens that transforms incident plane waves
to spherical waves focusing at the focal point. Assuming that the focal length is sufficiently larger than the radius of
the lens, we may approximate the optical path s as s =

√

(x− xi)2 + (y − yi)2 + f2 ∼ f +
(

(x− xi)2 +(y− yi)2
)

/2f .
This allows us to present (6) as
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The second case is interesting, but difficult to study analytically. If needed, this case can be studied using numerical
evaluation of the integral in (12). We also note that this case is of limited limited practical importance for imaging
with the SGL, where we plan to use telescopes with meter-class apertures [4]
Fortunately, given the fact that the spatial frequency α is rather large, for a very small displacement ρ0 from the

optical axis, there is a rapid transition between the regimes of the first and third case. Therefore, without a significant
loss of generality we can restrict our study to these two cases: that is, i) the case when the telescope is positioned at a
very small distance with respect to the optical axis or ρ0 ! d and ii) the case when the displacement of the telescope
is large or ρ0 ≥ d. To be more specific, the relevant regimes are given by the relationships αr0 ! 1 and αρ0 # 1.
Based on the analysis of the point-spread function (PSF) in [2], to satisfy the condition αρ0 ! 1, the displacement
from the optical axis must be very small, 0 < ρ0 ! 2 cm, all within the central peak of the PSF. Starting form
ρ0 ! 0.5 m, we enter the regime of αρ0 # 1.
In the next two subsections, we develop approximate solutions to (12) for these two regimes with their distinct

behavior.

B. Small displacements from the optical axis

We first consider the situation of small telescope displacements from the optical axis, |x0| ! d, also preserving the
inequality, αρ0 ! 1. To evaluate the integral (12), utilizing the fact that ρ0 ! |x|, we expand |x + x0| to first order
in x0 in the argument of the Bessel function:

|x+ x0| = ρ+O(ρ0). (14)

This allows us to evaluate the resulting integral:
∫ d/2

0
ρdρ

∫ 2π

0
dφJ0(αρ)e

−iηiρ cos(φ−φi) = π
(d

2

)2
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2
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1
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(
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1
2d)J1(α

1
2d)− ηiJ0(α

1
2d)J1(ηi

1
2d)

)

+O
(

αρ0
)

)

.(15)

Substituting this result in (12), we obtain the following amplitude of the EM wave in the optical telescope’s image
plane:
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1
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(
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1
2d)

)

+O
(

αρ0
)

)

eikf(1+p
2/2f2). (16)

To evaluate the energy of the EM signal deposited in the optical telescope’s image plane, we use (16) in (4). After
averaging over time, we get the time-averaged Poynting vector (i.e., intensity) in the image plane of the optical
telescope, given to O

(

α2ρ20
)

as:

Sz(xi) =
c
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µ0Es2
0
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(
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(
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1
2d)

)

)2

. (17)

Expression (17) is always finite and reaches its maximum at the Einstein ring where ηi = α, as shown in Fig. 4 (left).
Taking the limit of rg → 0 (or, equivalently α → 0) in (17), and remembering the definitions of µ0 from (6) and

of α and ηi from (13), we obtain the Poynting vector that shows the classic Airy pattern characterizing the optical
telescope:

S0
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8π

Es2
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)2
(2J1

(

1
2kd
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. (18)

We note that (17) is also finite when ρi = 0 (or, equivalently, ηi = 0), with the corresponding value computed as
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From (19), for rg '= 0 and αρ0 ! 1, the amplification factor at the center of the detector is evaluated to be (with an
approximation offered for d = O(1 m)):

µ0
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2
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The second case is interesting, but difficult to study analytically. If needed, this case can be studied using numerical
evaluation of the integral in (12). We also note that this case is of limited limited practical importance for imaging
with the SGL, where we plan to use telescopes with meter-class apertures [4]
Fortunately, given the fact that the spatial frequency α is rather large, for a very small displacement ρ0 from the

optical axis, there is a rapid transition between the regimes of the first and third case. Therefore, without a significant
loss of generality we can restrict our study to these two cases: that is, i) the case when the telescope is positioned at a
very small distance with respect to the optical axis or ρ0 ! d and ii) the case when the displacement of the telescope
is large or ρ0 ≥ d. To be more specific, the relevant regimes are given by the relationships αr0 ! 1 and αρ0 # 1.
Based on the analysis of the point-spread function (PSF) in [2], to satisfy the condition αρ0 ! 1, the displacement
from the optical axis must be very small, 0 < ρ0 ! 2 cm, all within the central peak of the PSF. Starting form
ρ0 ! 0.5 m, we enter the regime of αρ0 # 1.
In the next two subsections, we develop approximate solutions to (12) for these two regimes with their distinct

behavior.
0.5m " ρ0 " rg

B. Small displacements from the optical axis

We first consider the situation of small telescope displacements from the optical axis, |x0| ! d, also preserving the
inequality, αρ0 ! 1. To evaluate the integral (12), utilizing the fact that ρ0 ! |x|, we expand |x + x0| to first order
in x0 in the argument of the Bessel function:

|x+ x0| = ρ+O(ρ0). (14)

This allows us to evaluate the resulting integral:
∫ d/2

0
ρdρ

∫ 2π

0
dφJ0(αρ)e

−iηiρ cos(φ−φi) = π
(d

2

)2
(

2
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1
2d

(
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1
2d)J1(α

1
2d)− ηiJ0(α

1
2d)J1(ηi

1
2d)

)

+O
(

αρ0
)

)

.(15)

Substituting this result in (12), we obtain the following amplitude of the EM wave in the optical telescope’s image
plane:

A(xi) = i
√
µ0

(kd2

8f

)

(

2

(α2 − η2i )
1
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(
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1
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1
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1
2d)J1(ηi

1
2d)

)

+O
(
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)

)

eikf(1+p
2/2f2). (16)

To evaluate the energy of the EM signal deposited in the optical telescope’s image plane, we use (16) in (4). After
averaging over time, we get the time-averaged Poynting vector (i.e., intensity) in the image plane of the optical
telescope, given to O

(

α2ρ20
)

as:

Sz(xi) =
c

8π

µ0Es2
0

(z + z0)2
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)2
(
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1
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(
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1
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1
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1
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1
2d)

)

)2

. (17)

Expression (17) is always finite and reaches its maximum at the Einstein ring where ηi = α, as shown in Fig. 4 (left).
Taking the limit of rg → 0 (or, equivalently α → 0) in (17), and remembering the definitions of µ0 from (6) and

of α and ηi from (13), we obtain the Poynting vector that shows the classic Airy pattern characterizing the optical
telescope:

S0
z (xi) =
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We note that (17) is also finite when ρi = 0 (or, equivalently, ηi = 0), with the corresponding value computed as

Sz(0) =
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From (19), for rg '= 0 and αρ0 ! 1, the amplification factor at the center of the detector is evaluated to be (with an
approximation offered for d = O(1 m)):
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The second case is interesting, but difficult to study analytically. If needed, this case can be studied using numerical
evaluation of the integral in (12). We also note that this case is of limited limited practical importance for imaging
with the SGL, where we plan to use telescopes with meter-class apertures [4]
Fortunately, given the fact that the spatial frequency α is rather large, for a very small displacement ρ0 from the

optical axis, there is a rapid transition between the regimes of the first and third case. Therefore, without a significant
loss of generality we can restrict our study to these two cases: that is, i) the case when the telescope is positioned at a
very small distance with respect to the optical axis or ρ0 ! d and ii) the case when the displacement of the telescope
is large or ρ0 ≥ d. To be more specific, the relevant regimes are given by the relationships αr0 ! 1 and αρ0 # 1.
Based on the analysis of the point-spread function (PSF) in [2], to satisfy the condition αρ0 ! 1, the displacement
from the optical axis must be very small, 0 < ρ0 ! 2 cm, all within the central peak of the PSF. Starting form
ρ0 ! 0.5 m, we enter the regime of αρ0 # 1.
In the next two subsections, we develop approximate solutions to (12) for these two regimes with their distinct

behavior.
ρ0 ! R!

B. Small displacements from the optical axis

We first consider the situation of small telescope displacements from the optical axis, |x0| ! d, also preserving the
inequality, αρ0 ! 1. To evaluate the integral (12), utilizing the fact that ρ0 ! |x|, we expand |x + x0| to first order
in x0 in the argument of the Bessel function:

|x+ x0| = ρ+O(ρ0). (14)

This allows us to evaluate the resulting integral:
∫ d/2

0
ρdρ

∫ 2π

0
dφJ0(αρ)e

−iηiρ cos(φ−φi) = π
(d

2

)2
(

2

(α2 − η2i )
1
2d

(

αJ0(ηi
1
2d)J1(α

1
2d)− ηiJ0(α

1
2d)J1(ηi

1
2d)

)

+O
(

αρ0
)

)

.(15)

Substituting this result in (12), we obtain the following amplitude of the EM wave in the optical telescope’s image
plane:

A(xi) = i
√
µ0

(kd2

8f

)

(

2

(α2 − η2i )
1
2d

(

αJ0(ηi
1
2d)J1(α

1
2d)− ηiJ0(α

1
2d)J1(ηi

1
2d)

)

+O
(
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)

)

eikf(1+p
2/2f2). (16)

To evaluate the energy of the EM signal deposited in the optical telescope’s image plane, we use (16) in (4). After
averaging over time, we get the time-averaged Poynting vector (i.e., intensity) in the image plane of the optical
telescope, given to O

(

α2ρ20
)

as:

Sz(xi) =
c

8π

µ0Es2
0

(z + z0)2

(kd2
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. (17)

Expression (17) is always finite and reaches its maximum at the Einstein ring where ηi = α, as shown in Fig. 4 (left).
Taking the limit of rg → 0 (or, equivalently α → 0) in (17), and remembering the definitions of µ0 from (6) and

of α and ηi from (13), we obtain the Poynting vector that shows the classic Airy pattern characterizing the optical
telescope:
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We note that (17) is also finite when ρi = 0 (or, equivalently, ηi = 0), with the corresponding value computed as
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From (19), for rg '= 0 and αρ0 ! 1, the amplification factor at the center of the detector is evaluated to be (with an
approximation offered for d = O(1 m)):
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The second case is interesting, but difficult to study analytically. If needed, this case can be studied using numerical
evaluation of the integral in (12). We also note that this case is of limited limited practical importance for imaging
with the SGL, where we plan to use telescopes with meter-class apertures [4]
Fortunately, given the fact that the spatial frequency α is rather large, for a very small displacement ρ0 from the

optical axis, there is a rapid transition between the regimes of the first and third case. Therefore, without a significant
loss of generality we can restrict our study to these two cases: that is, i) the case when the telescope is positioned at a
very small distance with respect to the optical axis or ρ0 ! d and ii) the case when the displacement of the telescope
is large or ρ0 ≥ d. To be more specific, the relevant regimes are given by the relationships αr0 ! 1 and αρ0 # 1.
Based on the analysis of the point-spread function (PSF) in [2], to satisfy the condition αρ0 ! 1, the displacement
from the optical axis must be very small, 0 < ρ0 ! 2 cm, all within the central peak of the PSF. Starting form
ρ0 ! 0.5 m, we enter the regime of αρ0 # 1.
In the next two subsections, we develop approximate solutions to (12) for these two regimes with their distinct

behavior.
ρ0 = 0

B. Small displacements from the optical axis

We first consider the situation of small telescope displacements from the optical axis, |x0| ! d, also preserving the
inequality, αρ0 ! 1. To evaluate the integral (12), utilizing the fact that ρ0 ! |x|, we expand |x + x0| to first order
in x0 in the argument of the Bessel function:

|x+ x0| = ρ+O(ρ0). (14)

This allows us to evaluate the resulting integral:
∫ d/2

0
ρdρ

∫ 2π

0
dφJ0(αρ)e

−iηiρ cos(φ−φi) = π
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1
2d)

)
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)

.(15)

Substituting this result in (12), we obtain the following amplitude of the EM wave in the optical telescope’s image
plane:

A(xi) = i
√
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(kd2

8f

)

(
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1
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(
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1
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1
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2d)

)
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(
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)

)

eikf(1+p
2/2f2). (16)

To evaluate the energy of the EM signal deposited in the optical telescope’s image plane, we use (16) in (4). After
averaging over time, we get the time-averaged Poynting vector (i.e., intensity) in the image plane of the optical
telescope, given to O

(

α2ρ20
)

as:

Sz(xi) =
c

8π
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0
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Expression (17) is always finite and reaches its maximum at the Einstein ring where ηi = α, as shown in Fig. 4 (left).
Taking the limit of rg → 0 (or, equivalently α → 0) in (17), and remembering the definitions of µ0 from (6) and

of α and ηi from (13), we obtain the Poynting vector that shows the classic Airy pattern characterizing the optical
telescope:
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We note that (17) is also finite when ρi = 0 (or, equivalently, ηi = 0), with the corresponding value computed as
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From (19), for rg '= 0 and αρ0 ! 1, the amplification factor at the center of the detector is evaluated to be (with an
approximation offered for d = O(1 m)):
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Image formation process with the SGL
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3-D description of imaging 

Turyshev & Toth, Phys. Rev. D 100, 084018 (2019), arXiv:1908.01948



THE SOLAR GRAVITATIONAL LENS

Modeling the signal from an extended source

Power from directly imaged region:

Total power received by the telescope:

Power from the rest of the planet (blur):

Averaged SGL amplification 
is wavelength independent!

… after re-arranging terms

Interesting observation:

“Shadow imaging”: the image is reconstructed from variations of blur. 
To do that we need high SNR!
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d (0, 0) + P blur

d (0, 0) (19)

{x, y} → {ρ,φ}, d {x′, y′} → {r′, θ′}, D (20)

P dir

d (0, 0) =

∫ 2π

0

dφ

∫ d
2

0

ρdρ

∫ 2π

0

dθ′
∫ D

2

0

r′dr′B(x′, y′)J2
0

(2π

λ

√

2rg
z

∣

∣

r+
z

z0
r
′
∣

∣

)

(21)

P blur

d (0, 0) =

∫ 2π

0

dφ

∫ d
2

0

ρdρ

∫ 2π

0

dθ′
∫ R⊕

D
2

r′dr′B(x′, y′)J2
0

(2π

λ

√

2rg
z

∣

∣r+
z

z0
r
′
∣

∣

)

(22)

B(x′, y′) = 1
4
πD2Bs δ(r

′) (23)

P dir

d (0, 0) = 1
4
π2D2Bs

∫ d
2

0

ρdρ J2
0

(2π

λ

√

2rg
z

ρ
)

(24)

P blur

d (0, 0) = 1
4
π2d2Bs

∫ R⊕

D
2

r′dr′J2
0

(2π

λ

√

2rg
z

z

z0
r′
)

(25)

P dir

d (0, 0) = aI!
πd2

4

d

2z

√

2rg
z

(26)

P blur

d (0, 0) = aI!
πd2

4

d

2z

√

2rg
z

(2R⊕

d

z

z0
− 1

)

(27)

P blur

d (0, 0)

P dir

d (0, 0)
≈

(2R⊕

d

z

z0
− 1

)

=
(2r⊕

d
− 1

)

=
(2R⊕

D
− 1

)

(28)
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To simplify the integration of (25), we use approximations of the Bessel functions (11), which are valid in this
region. This allows us to express the integrand as

ρ2⊕
2

(

J2
0

(

αηρ⊕
)

+ J2
1

(

αηρ⊕
)

)

−
D2

8

(

J2
0

(

αη 1
2D

)

+ J2
1

(

αη 1
2D

)

)

=
ρ⊕(φ′′)− 1

2D

παη
. (26)

With these results, (25) is evaluated as

Pblur(x0) = Bsπ(
1
2d)

2 µ0

4πz20

D

2παη

∫ 2π

0
dφ′′

(2ρ⊕(φ′′)

D
− 1

)

. (27)

Expression (27) indicates that for a source with uniform surface brightness, there is no azimuthal dependence of
blur on the telescope’s position within the image and the received power depends only on the separation from the
optical axis. Taking into account expressions for µ0 from (2), for D from (15), for η from (17), and for α from (9),
we can express (27) as

Pblur(r0) = Bsπ(
1
2d)

2 d

4z

√

2rg
z

(2R⊕

d

z

z0
ε(r0)− 1

)

, (28)

where the factor ε(r0) is given by the following expression:

ε(r0) =
1

2π

∫ 2π

0
dφ′′

√

1−
( r0
r⊕

)2
sin2 φ′′ =

2

π
E

[( r0
r⊕

)2]

, (29)

where E[x] is the elliptic integral [12]. The behavior of ε(r0) for the values of r0 ∈ [0, r⊕] is shown in the left-side plot
in Fig. 3.
As a result, expression (28) may be given as

Pblur(r0) = Bsπ(12d)
2 d

4z

√

2rg
z

(2R⊕

d

z

z0
ε(r0)− 1

)

. (30)

We can see that for a telescope with modest aperture size, d # 2r⊕ = 2R⊕(z/z0), the blur contribution is much larger
than the power received from the directly imaged region:

Pblur(r0) = Pdir(r0)
(2R⊕

d

z

z0
ε(r0)− 1

)

. (31)

The total signal received from the exoplanet is computed by summing up the two contributions as given by (18).
Then, using (21) and (30) we have, to O

(

z/z0
)

:

Pexo(r0) = Pdir(r0) + Pblur(r0) = Bsπ(
1
2d)

2R⊕

2z0

√

2rg
z

ε(r0), 0 ≤ r0 ≤ r⊕. (32)

Expression (32) is our main result for the case of photometric imaging. It shows that at every pixel, the signal for
the directly imaged region is overwhelmed by the blur. Also, for various pixels, the amount of blur is different. It
is highest for the central region of the image and is about 2/π ≈ 0.64 times smaller when considering pixels close to
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To simplify the integration of (25), we use approximations of the Bessel functions (11), which are valid in this
region. This allows us to express the integrand as

ρ2⊕
2

(
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0

(

αηρ⊕
)
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1

(
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)

)

−
D2
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)

)

=
ρ⊕(φ′′)− 1

2D
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. (26)

With these results, (25) is evaluated as

Pblur(x0) = Bsπ(
1
2d)

2 µ0

4πz20

D

2παη

∫ 2π

0
dφ′′

(2ρ⊕(φ′′)

D
− 1

)

. (27)

Expression (27) indicates that for a source with uniform surface brightness, there is no azimuthal dependence of
blur on the telescope’s position within the image and the received power depends only on the separation from the
optical axis. Taking into account expressions for µ0 from (2), for D from (15), for η from (17), and for α from (9),
we can express (27) as

Pblur(r0) = Bsπ(
1
2d)

2 d

4z

√

2rg
z

(2R⊕

d

z

z0
ε(r0)− 1

)

, (28)

where the factor ε(r0) is given by the following expression:

ε(r0) =
1

2π

∫ 2π

0
dφ′′

√

1−
( r0
r⊕

)2
sin2 φ′′ =

2

π
E

[( r0
r⊕

)2]

, (29)

where E[x] is the elliptic integral [12]. The behavior of ε(r0) for the values of r0 ∈ [0, r⊕] is shown in the left-side plot
in Fig. 3.
As a result, expression (28) may be given as

Pblur(r0) = Bsπ(12d)
2 d

4z

√

2rg
z

(2R⊕

d

z

z0
ε(r0)− 1

)

. (30)

We can see that for a telescope with modest aperture size, d # 2r⊕ = 2R⊕(z/z0), the blur contribution is much larger
than the power received from the directly imaged region:

Pblur(r0) = Pdir(r0)
(2R⊕

d

z

z0
ε(r0)− 1

)

. (31)

The total signal received from the exoplanet is computed by summing up the two contributions as given by (18).
Then, using (21) and (30) we have, to O

(

z/z0
)

:

Pexo(r0) = Pdir(r0) + Pblur(r0) = Bsπ(
1
2d)

2R⊕

2z0

√

2rg
z

ε(r0), 0 ≤ r0 ≤ r⊕. (32)

Expression (32) is our main result for the case of photometric imaging. It shows that at every pixel, the signal for
the directly imaged region is overwhelmed by the blur. Also, for various pixels, the amount of blur is different. It
is highest for the central region of the image and is about 2/π ≈ 0.64 times smaller when considering pixels close to
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where the integration of over the source is done within the size of the directly imaged region, namely |x′−x′
0| ∈ [0, 1

2D].
To evaluate (19), we introduce a polar coordinate system in the image plane, given by {x} = (ρ,φ) and {(x′−x0)} =

(r′,φ′). Next, we recognize that within the directly imaged region ηr′ ≤ ρ. Therefore, we may express the Bessel
function in terms of the small parameter η|x′−x′

0|/|x| ≡ ηr′/ρ % 1, again keeping only the leading term. Remembering
α from (9) and assuming that the density of the source brightness within this region is uniform, B(x′, y′) = Bs, allows
to integrate (19), thus expressing the power received from the directly imaged region as

Pdir(x0) =
µ0

4πz20

∫ 2π

0
dφ

∫ d
2

0
ρdρ

∫ 2π

0
dφ′

∫ D
2

0
r′dr′B(ρ′,φ′)J2

0

(

αρ
)

=
µ0

4πz20
π(12d)

2Bsπ(
1
2D)2

(

J2
0

(

α 1
2d

)

+ J2
1

(

α 1
2d

)

)

.(20)

Using the approximations for the Bessel functions (11), taking into account expressions for µ0 from (2), for D from
(15), and for α from (9), we can express (20) as

Pdir(r0) = Bsπ(
1
2d)

2 d

4z

√

2rg
z

. (21)

The power received from the directly imaged region does not depend on the distance to the exoplanet or position of
the telescope in the image plane (as we assumed that the planet has uniform brightness), but it strongly depends on
the telescope aperture, d, and also on the heliocentric distance to the image plane, z. These properties are consistent
with the imaging of unresolved sources [11].

2. Power from the rest of the planet

The power of the blur from the rest of the planet, Pblur(x0), is given by (17), where the integration in the source
plane is done over the rest of the planet that falls outside the directly imaged region. This is a much larger part of the
planet within the boundary |x′ − x′

0| ∈ [ 12D, ρ⊕(φ′)], where ρ⊕(φ′) is the radial coordinate of the edge of the source,
as seen from the center of the directly imaged region:

Pblur(x0) =
µ0

4π(z + z0)2

∫ 2π

0
dφ

∫ d
2

0
ρdρ

∫∫

|x′−x
′
0|∈[

1
2D,ρ⊕(φ′)]

dx′dy′ B(x′, y′)J2
0

(

α
∣

∣x+ η(x′ − x
′
0)
∣

∣

)

. (22)

To evaluate the blur component (22), we recognize that in most of the area outside the directly imaged region the
following equality is valid: |x| % η|x′−x′

0|. With this, we can expand the vessel function in (22) in terms of the small
parameter |x|/(η|x′ − x′

0|) ≡ ρ/(ηr′) % 1. Keeping only the leading term, we integrate (22) over the image plane as

Pblur(x0) =
µ0

4πz20

∫ 2π

0
dφ

∫ d
2

0
ρdρ

∫∫

|x′−x
′
0|∈[

1
2D,ρ⊕(φ′)]

dx′dy′ B(x′, y′)J2
0

(

αηr′
)

=
µ0

4πz20
π(12d)

2

∫∫

|x′−x
′
0|∈[

1
2D,ρ⊕(φ′)]

dx′dy′ B(x′, y′)J2
0

(

αηr′
)

. (23)

Next, we introduce a new coordinate system on the source plane, x′′, with the origin at the center of the directly
imaged region: x′ − x′

0 = x′′. As the vector x′
0 is constant, dx′dy′ = dx′′dy′′. Next, in the new coordinate system, we

use polar coordinates (x′′, y′′) → (r′′,φ′′). We can see that, in these coordinates, the circular edge of the source, R⊕,
is a curve, ρ⊕(φ′′), the radial distance of which is given by the following relation:

ρ⊕(φ
′′) =

√

R2
⊕ − r′0

2 sin2 φ′′ − r′0 cosφ
′′. (24)

With this, and assuming that the source in this region may be characterized by a uniform surface brightness density,
B(x′, y′) = Bs, we evaluate (23) as

Pblur(x0) =
µ0

4πz20
π(12d)

2Bs

∫ 2π

0
dφ′′

∫ ρ⊕

D
2

r′′dr′′J2
0

(

αηr′′
)

=

=
µ0

4πz20
π(12d)

2Bs

∫ 2π

0
dφ′′

{ρ2⊕
2

(

J2
0

(

αηρ⊕
)

+ J2
1

(

αηρ⊕
)

)

−
D2

8

(

J2
0

(

αη 1
2D

)

+ J2
1

(

αη 1
2D

)

)}

, (25)

where ρ⊕ = ρ⊕(φ′′) and D as given by (24) and (15), correspondingly.

2

Pd(0, 0) =
µ0I!
2πz20

∫∫

|x|,|y|≤1
2
d

dxdy

+∞
∫∫

−∞

dx′dy′ a(x′, y′)J2
0

(2π

λ

√

2rg
z

√

(

x+
z

z0
x′
)2

+
(

y +
z

z0
y′
)2
)

(15)

D =
z0
z
d (16)

B(x′, y′) =
µ0I!
2πz20

a(x′, y′) |x′|, |y′| ≤ R⊕ (17)

Pd(0, 0) =

∫∫

|x|,|y|≤1
2
d

dxdy

∫∫

|x′|,|y′|≤R⊕

dx′dy′ B(x′, y′)J2
0

(2π

λ

√

2rg
z

∣

∣

r+
z

z0
r
′
∣

∣

)

(18)

Pexo(0, 0) = P dir

d (0, 0) + P blur

d (0, 0) (19)

{x, y} → {ρ,φ}, d {x′, y′} → {r′, θ′}, D (20)

P dir

d (0, 0) =

∫ 2π

0

dφ

∫ d
2

0

ρdρ

∫ 2π

0

dθ′
∫ D

2

0

r′dr′B(x′, y′)J2
0

(2π

λ

√

2rg
z

∣

∣

r+
z

z0
r
′
∣

∣

)

(21)

P blur

d (0, 0) =

∫ 2π

0

dφ

∫ d
2

0

ρdρ

∫ 2π

0

dθ′
∫ R⊕

D
2

r′dr′B(x′, y′)J2
0

(2π

λ

√

2rg
z

∣

∣r+
z

z0
r
′
∣

∣

)

(22)

B(x′, y′) = 1
4
πD2Bs δ(r

′) (23)

P dir

d (0, 0) = 1
4
π2D2Bs

∫ d
2

0

ρdρ J2
0

(2π

λ

√

2rg
z

ρ
)

(24)

P blur

d (0, 0) = 1
4
π2d2Bs

∫ R⊕

D
2

r′dr′J2
0

(2π

λ

√

2rg
z

z

z0
r′
)

(25)

P dir

d (0, 0) = aI!
πd2

4

d

2z

√

2rg
z

(26)

P blur

d (0, 0) = aI!
πd2

4

d

2z

√

2rg
z

(2R⊕

d

z

z0
− 1

)

(27)

P blur

d (0, 0)

P dir

d (0, 0)
≈

(2R⊕

d

z

z0
− 1

)

=
(2r⊕

d
− 1

)

=
(2R⊕

D
− 1

)

(28)
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where E[a, x] is the incomplete elliptic integral [12]. The behavior of β(r0) is shown in the center plot in Fig. 3. The
combined behavior of ε(r0) and β(r0) in the relevant range of distances is shown in the right-hand side plot of the
same figure.
Equation (38) describes the light from the source that is present in the image plane outside the direct image of

the exoplanet. The existence of this signal is due to the specific optical properties of the SGL given by its PSF (3)
which, as a function of the distance to the optical axis on the image plane, falls out much more slowly than the PSF
of a regular telescope (4). This fact provides valuable insight for image recovery and the relevant work on prospective
mission planning and development [7, 10].

IV. AMPLIFICATION AND ANGULAR RESOLUTION

If the receiving telescope’s aperture is small, comparable in size to the width of the central peak of the SGL’s PSF
(2), the resulting observations are conducted in the wave optical regime, where the SGL possesses remarkable optical
properties. In this case, the SGL’s magnification and its diffraction pattern are given as

µ0
SGL

=
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

= 1.12× 1011 J2
0

(

48.98
( ρ

1m

)(1µm

λ

)(650AU

z

)
1
2
)

. (40)

The angular resolution in this case is determined from the size of that largest peak of (40) [3]:

δθ0SGL = 0.38
λ

√

2rgz
= 0.10

( λ

1µm

)(650AU

z

)
1
2

nas. (41)

However, given the fact that the Sun must be blocked by a coronagraph, using a small telescope that lacks the
angular resolution to resolve the Sun’s disk from the distance of the SGL’s focal region is unpractical. Instead, systems
with 1 m-class apertures are required for this purpose. Such a telescope averages many lobes of the diffraction pattern
[3]. This averaging erases the wave optical behavior of the SGL. Light amplification and angular resolution are
determined by the geometry of the problem. To demonstrate this we note that, in the absence of the SGL, the power
received from an object is given by the following expression:

P 0
exo = Bsπ(

1
2d)

2
(R⊕

z0

)2
. (42)

To evaluate the amplification of the SGL when observing extended resolved sources, in (32), we factor out P 0
exo

given
by (42), and present (32) as

Pexo(r0) = P 0
exo

ASGL(r0), (43)

where ASGL(r0) is the SGL’s light amplification for extended resolved sources:

ASGL(r0) =
z0

2R⊕

√

2rg
z

ε(r0) = 5.65× 105 ε(r0)
( z0
30 pc

)(650AU

z

)
1
2

. (44)

We note that the result is independent on the wavelength and is determined in full by the geometry of the problem,
the size of the object and position of the telescope in the image plane.
Angular resolution in this case is also determined by geometric considerations and the procedure of image sampling.

Clearly, the maximal resolution is achieved when we can sample the entire surface of the source, namely when the
number of linear pixels across the surface is given as N0 = 2r⊕/d. In this case, we achieve the highest angular
resolution, δθ0, given as

δθ0 =
2R⊕

N0

1

z0
≡

d

z
= 2.12

( d

1m

)(650AU

z

)

nas. (45)

However, it is hard to achieve such a sampling and thus to obtain such a resolution. It is more realistic to consider
that we will be able to sample the image with N ≤ N0 linear pixels. In this, more conservative case, the angular
resolution, δθN , is

δθN =
2R⊕

N

1

z0
=

2.84

N

(30 pc

z0

)

µas. (46)

Although the realistic light amplification factor of the SGL (44) and the angular resolution (46) that are achievable
using a meter-scale observing telescope in the SGL’s focal region are smaller than the theoretical maxima calculated
in the wave optical regime, the values are still very impressive. These results provide realistic insight into the potential
use of the SGL for imaging of faint distant objects, such as exoplanets.
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where E[a, x] is the incomplete elliptic integral [12]. The behavior of β(r0) is shown in the center plot in Fig. 3. The
combined behavior of ε(r0) and β(r0) in the relevant range of distances is shown in the right-hand side plot of the
same figure.
Equation (38) describes the light from the source that is present in the image plane outside the direct image of

the exoplanet. The existence of this signal is due to the specific optical properties of the SGL given by its PSF (3)
which, as a function of the distance to the optical axis on the image plane, falls out much more slowly than the PSF
of a regular telescope (4). This fact provides valuable insight for image recovery and the relevant work on prospective
mission planning and development [7, 10].

IV. AMPLIFICATION AND ANGULAR RESOLUTION

If the receiving telescope’s aperture is small, comparable in size to the width of the central peak of the SGL’s PSF
(2), the resulting observations are conducted in the wave optical regime, where the SGL possesses remarkable optical
properties. In this case, the SGL’s magnification and its diffraction pattern are given as
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However, given the fact that the Sun must be blocked by a coronagraph, using a small telescope that lacks the
angular resolution to resolve the Sun’s disk from the distance of the SGL’s focal region is unpractical. Instead, systems
with 1 m-class apertures are required for this purpose. Such a telescope averages many lobes of the diffraction pattern
[3]. This averaging erases the wave optical behavior of the SGL. Light amplification and angular resolution are
determined by the geometry of the problem. To demonstrate this we note that, in the absence of the SGL, the power
received from an object is given by the following expression:

P 0
exo = Bsπ(

1
2d)

2
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. (42)

To evaluate the amplification of the SGL when observing extended resolved sources, in (32), we factor out P 0
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given
by (42), and present (32) as
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1
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√
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z
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exoASGL(r0), (43)

where ASGL(r0) is the SGL’s light amplification for extended resolved sources:
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√
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We note that the result is independent on the wavelength and is determined in full by the geometry of the problem,
the size of the object and position of the telescope in the image plane.
Angular resolution in this case is also determined by geometric considerations and the procedure of image sampling.

Clearly, the maximal resolution is achieved when we can sample the entire surface of the source, namely when the
number of linear pixels across the surface is given as N0 = 2r⊕/d. In this case, we achieve the highest angular
resolution, δθ0, given as

δθ0 =
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N0

1
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≡

d

z
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( d
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)(650AU

z

)

nas. (45)

However, it is hard to achieve such a sampling and thus to obtain such a resolution. It is more realistic to consider
that we will be able to sample the image with N ≤ N0 linear pixels. In this, more conservative case, the angular
resolution, δθN , is

δθN =
2R⊕

N

1

z0
=

2.84

N

(30 pc

z0

)

µas. (46)
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To simplify the integration of (25), we use approximations of the Bessel functions (11), which are valid in this
region. This allows us to express the integrand as
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1
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−
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8
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=
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. (26)

With these results, (25) is evaluated as

Pblur(x0) = Bsπ(
1
2d)

2 µ0

4πz20
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∫ 2π

0
dφ′′

(2ρ⊕(φ′′)

D
− 1

)

. (27)

Expression (27) indicates that for a source with uniform surface brightness, there is no azimuthal dependence of
blur on the telescope’s position within the image and the received power depends only on the separation from the
optical axis. Taking into account expressions for µ0 from (2), for D from (15), for η from (17), and for α from (9),
we can express (27) as

Pblur(r0) = Bsπ(
1
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2 d
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where the factor ε(r0) is given by the following expression:

ε(r0) =
1

2π

∫ 2π

0
dφ′′

√

1−
( r0
r⊕

)2
sin2 φ′′ =

2

π
E

[( r0
r⊕

)2]
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where E[x] is the elliptic integral [12]. The behavior of ε(r0) for the values of r0 ∈ [0, r⊕] is shown in the left-side plot
in Fig. 3.
As a result, expression (28) may be given as

Pblur(r0) = Bsπ(12d)
2 d
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. (30)

We can see that for a telescope with modest aperture size, d # 2r⊕ = 2R⊕(z/z0), the blur contribution is much larger
than the power received from the directly imaged region:

Pblur(r0) = Pdir(r0)
(2R⊕

d

z

z0
ε(r0)− 1

)

. (31)

The total signal received from the exoplanet is computed by summing up the two contributions as given by (18).
Then, using (21) and (30) we have, to O

(

z/z0
)

:

Pexo(r0) = Pdir(r0) + Pblur(r0) = Bsπ(
1
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ε(r0), 0 ≤ r0 ≤ r⊕. (32)

Expression (32) is our main result for the case of photometric imaging. It shows that at every pixel, the signal for
the directly imaged region is overwhelmed by the blur. Also, for various pixels, the amount of blur is different. It
is highest for the central region of the image and is about 2/π ≈ 0.64 times smaller when considering pixels close to
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We can see that for a telescope with modest aperture size, d # 2r⊕ = 2R⊕(z/z0), the blur contribution is much larger
than the power received from the directly imaged region:
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The total signal received from the exoplanet is computed by summing up the two contributions as given by (18).
Then, using (21) and (30) we have, to O

(
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)

:

Pexo(r0) = Pdir(r0) + Pblur(r0) = Bsπ(
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Expression (32) is our main result for the case of photometric imaging. It shows that at every pixel, the signal for
the directly imaged region is overwhelmed by the blur. Also, for various pixels, the amount of blur is different. It
is highest for the central region of the image and is about 2/π ≈ 0.64 times smaller when considering pixels close to
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Amplified signal from distant exoplanets may be used for imaging
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THE SOLAR GRAVITATIONAL LENS

Convolving BW source with the SGL

The convolved image of an exo-Earth at 30pc, 
formed by the SGL at z = 650 AU, with 𝜆 = 500 nm

Some source features 
are still recognizable

An image of the Earth with 
1024 x 1024 pixels

Credit: Toth, 2019



THE SOLAR GRAVITATIONAL LENS

SGL Image Deconvolution

Right: Deconvolution at different resolutions and bit depths. Columns: 
resolutions of (256x256), (512x512), (1024x1024) pixels. Rows: “low quality” (4, 
6, 8 bits), “medium quality'' (6, 8, 10 bits), “high quality” (8, 10, 12 bits) samples.

An image of the Earth with 
1024 x 1024 pixels

Credit: Toth, 2019



THE SOLAR GRAVITATIONAL LENS

Convolving source with the SGL (color)

As the telescope aperture is much larger than the first minimum of the 
PSF, the actual SGL’s magnification is wavelength independent!

Major features are clearly visible. Spatially resolved spectroscopy is possible.

Original Convolved Credit: Toth, 2019
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Deconvolving broadband images

Initial convolution/deconvolution results are promising. Further work is needed.

Original De-convolved 

As the telescope aperture is much larger than the first minimum of the 
PSF, the actual SGL’s magnification is wavelength independent!

Credit: Toth, 2019
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Do not point at the Sun!!!!

Granulation 
of solar surface

A solar flare
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mass ejection
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Plasma contribution to SGL

Sun Shadow

Incident plane wave

Pure gravity

Sun Shadow

Incident plane wave

Gravity + Plasma

Sun Shadow

Incident plane wave

Plasma only

Sun Shadow

Incident plane wave

Spherical obscuration

Plasma pushes the focal area of the SGL outward to higher heliocentric ranges 

For SGL-relevant geometry, wave effects on light propagation are negligible
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Effect of solar corona on light amplification
Turyshev & Toth, Phys. Rev. D 99, 024044  (2019)
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FIG. 1: The electron number density model (4) (thick blue line) given by [5–7]. The leftmost part of the curve, at short
heliocentric distances dominated by terms with higher powers of (R!/r) corresponds to the visible solar corona [29, 33], The
thin dotted line shows the contribution of the inverse square term, which dominates beyond a few solar radii. The lightly shaded
region on the left represents the solar interior. The approximate location of the termination shock is also marked, beyond which
the radial dependence disappears, leaving only an approximately homogeneous interstellar background (not shown). Diagram
adapted from [20], with the horizontal axis extended beyond the termination shock.

For the heliocentric regions of interest in the context of the SGL, 650–900 AU [26], the corresponding range of
the impact parameters is b ∼ (1.1–1.3)R", where R" is the solar radius. This region, ∼ (0.1–0.3)R" from the solar
surface, is the most violent region of the solar corona, characterized by significant fluctuations of the electron content
density.
Consequently, we may reasonably expect that the deflection of a light ray for a given impact parameter b due to

spatial and temporal fluctuations will be of the same order as the deflection due to the mean solar atmosphere. This
is certainly the case for microwave frequencies [10, 19].
As these deviations are unpredictable in nature, their contributions must be treated as noise (e.g., as a stochastic

component to the convolution matrix that characterizes how the SGL forms an image in the image plane, see [26] for
discussion.) In contrast, the steady-state component of the solar corona is well understood, and the magnitude of its
contribution can be estimated. These results can also be used to characterize the noise component due to fluctuations,
making it possible to understand the extent to which such contributions will reduce the effective resolution of the
SGL, and to devise effective data analysis strategies.
As a result, in the present paper, we focus on the contribution of the steady-state, spherically symmetric compo-

nent of the electron plasma density and its effect on the SGL. We therefore ignore any dependence on heliographic
latitude and any additional spatial and temporal variations. The spherically symmetric, steady-state plasma may be
parameterized in the following generic form:

ne(r) =



















0, 0 ≤ r < R",
∑

i

αi

(R"

r

)βi

, R" ≤ r ≤ R",

n0, r > R",

(3)

where βi > 1 (to match the properties of the solar wind at large heliocentric distances that behaves as ∝ 1/r2) and
R" is the heliocentric distance to the termination shock, which we take to be R" $ 100 AU [30–32]. The termination
shock is an intermediate border situated before the heliopause, which is the last frontier of the solar wind. It is the
boundary at ∼ 130 AU, where the solar wind fades and the interstellar medium begins [35]. It is, of course true (as
evidenced by, for instance, the findings of Voyager 1 and 2) that the actual distance to the termination shock varies
with time and direction. However, as we find below, our main results are not sensitive to the numerical value of R"

so long as it is of O(100 AU); contributions from the plasma to the propagation of EM waves comes mostly from the
region within a few solar radii from the solar surface.
Finally, n0 is the electron number density in the interstellar medium, which is assumed to be homogeneous. The
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FIG. 2: Schematic of the solar system using an approximate log-square scale. Shading indicates the solar plasma density that is
traversed by an incident plane wave. The termination shock at ∼ 100 AU is where the solar plasma collides with the interstellar
medium, the density of which is constant and does not contribute to the scattering of light. The spherical (r, θ, φ) coordinate
system (with φ suppressed) and the cylindrical z coordinate used in this paper are indicated. Diagram adapted from [20], with
the heliocentric distance range extended beyond the termination shock.

presence of this term is for completeness only. As it does not influence the scattering of light, it may be safely assumed
to be that of a vacuum, namely n0 = 0. Note that the model (3) neglects the variability in the electron number density
within the heliosheath. Any variability, if it exists, does not contribute an observable effect to scattering of light by
the SGL.
The steady-state behavior is reasonably well known, and we can use one of the several plasma models found in the

literature [5–7, 11]. To be more specific, we make use of the following steady-state, spherically symmetric model of
electron distribution (see [19, 36] and references therein):

ne(r) =
[

2.99× 108
(R!

r

)16
+ 1.55× 108

(R!

r

)6
+ 3.44× 105

(R!

r

)2]

cm−3. (4)

At a large distance from the source, the model replicates the expected 1/r2 behavior of the solar wind. Other
existing models are somewhat different from (4). Such models may account for the non-sphericity of the electron
plasma density and offer a slightly different distance power law (for discussion, [11]). These additional features of
these plasma models are not important for our purposes, as their effects are below the detection accuracy. Also, any
inhomogeneities of the plasma distribution in the interplanetary medium are small and, thus, they are not expected
to yield a significant mechanism of refraction for light propagating through the solar system.
We emphasize that the model (4) was developed using the tracking data for interplanetary spacecraft, which was

conducted at multiple radio frequencies [5–7]. Astronomical observations conducted on the solar background at optical
wavelengths also support this model [3, 33]. When studying light propagation in the immediate vicinity of the solar
photosphere, the model (4) may have to be augmented by terms containing higher powers of (R!/r). However, even
in extreme proximity to the Sun, the electron number density would be at most ne(r) ! 6× 108 cm−3 [11, 37].
The plasma frequency ω2

p in Eq. (1), in the case of the spherically symmetric plasma distribution model (3), in the
range of heliocentric distances, R! ≤ r ≤ R!, has the form

ω2
p =

4πe2

me

∑

i

αi

(R!

r

)βi

. (5)

This generic spherically symmetric model for the plasma frequency in the extended solar corona allows us to study
the influence of solar plasma on the propagation of EM waves throughout the solar system in the range of heliocentric
distances given by R! ≤ r ≤ R!. Clearly, the model (5) may be further extended, for instance, to include known
(non-random) effects due to non-sphericity, such as dependence on the solar latitude. If needed, such effects may be
treated using the same approach as presented in this paper.

B. Maxwell’s equations in three-dimensional form

We now focus on solving Maxwell’s equations on the solar system’s background set by gravity and plasma. We rely
heavily on [18, 21, 24] (that were inspired by [38, 39]), which the reader is advised to consult first.
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The radial component of the EM field (275) is negligibly small compared to the other two components, which is
consistent with the fact that while passing through the solar plasma the EM wave preserves its transverse structure.
Expressions (275)–(277) describe the EM field in the interference region of the SGL in the spherical coordinate

system. To study this field on the image plane, we need to transform (275)–(277) to a cylindrical coordinate system
[21, 39]. To do that, we follow the approach demonstrated in [21], where instead of spherical coordinates (r, θ,φ),
we introduced a cylindrical coordinate system (ρ,φ, z), more convenient for these purposes. In the region r " rg,
this was done by defining R = ur = r + rg/2 + O(r2g) and introducing the coordinate transformations ρ = R sin θ,
z = R cos θ, which, from (13), result in the following line element:

ds2 = u−2c2dt2 − u2
(

dr2 + r2(dθ2 + sin2 θdφ2)
)

= u−2c2dt2 −
(

dρ2 + ρ2dφ2 + nu2dz2
)

+O(r2g). (278)

As a result, using (275)–(277), for a high-frequency EM wave (i.e., neglecting terms ∝ (kr)−1) and for r " rg, we
derive the field near the optical axis, which up to terms of O(ρ2/z2), takes the form

(

Ez

Hz

)
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(ρ

z

)

, (279)
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where r =
√

z2 + ρ2 = z(1 + ρ2/2z2) = z + O(ρ2/z)) and θ = ρ/z + O(ρ2/z2). Note that these expressions were
obtained using the approximations (254) and are valid for forward scattering when θ ≈ 0, or when ρ ≤ rg.

E. Plasma contribution to image formation

Using the result (279)–(281), we may now compute the energy flux at the image region of the SGL. The relevant
components of the time-averaged Poynting vector for the EM field in the image volume, as a result, may be given in
the following form (see [21] for details):

S̄z =
c

8π
E2

0
4π2

1− e−4π2rg/λ

rg
λ

(

1−
δθp

√

2rg/z

)2
J2
0

(

2π
ρ

λ

(

√

2rg
z

− δθp
))

, (282)

with S̄ρ = S̄φ = 0 for any practical purposes. Also, we recognized that the following convenient expression is valid

k
√

2rgr θ = 2π
ρ

λ

√

2rg
z

+O(ρ2/z). (283)

Therefore, the non-vanishing component of the amplification vector µ, defined as µ = S̄/|S̄0| where |S̄0| = (c/8π)E2
0

is the time-averaged Poynting vector of the wave propagating in empty spacetime, takes the form

µ̄z =
4π2

1− e−4π2rg/λ

rg
λ

(
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δθp

√
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)2
J2
0

(

2π
ρ
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√

2rg
z

(

1−
δθp

√

2rg/z

))

, (284)

where the argument of the Bessel function to first order in δθp is from (243) with δθp itself is given by (166).
At this point, it is instructive to reinstate the full dependence of the critical partial momenta '0 from (243) on the

plasma deflection angle δθp and, by repeating some of the plasma-related derivations given in Secs. VIB–VIC, to
present the result (284) in the following more informative form:

µ̄z =
4π2

1− e−4π2rg/λ

rg
λ

F2
pgJ

2
0

(

2π
ρ

λ

√

2rg
z

Fpg

)

, where Fpg =
(

1 +
δθ2p
δθ2g

)
1
2 −

δθp
δθg

≥ 0, (285)
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with δθg =
√

2rg/z = 2rg/b being the Einstein deflection angle due to the gravitational monopole. This result, to
first order, is valid for any values of δθp and δθg and is very helpful to understand the impact of plasma on the optical
properties of the SGL. While Eqs. (284) and (285) yield similar results when δθp ! δθg, reinstating the dependence,
from (243), on δθ2p/δθ

2
g , helps better understand the behavior of the amplification factor, µ̄z, at longer wavelaengths.

As we can see from (285), the plasma contribution to the optical properties of the SGL is governed by the factor Fpg,
which, in the absence of plasma, is Fpg = 1. For estimation purposes, we rely on (167), which is the result of evaluating
the generic expression for the plasma deflection angle δθp (166) for the values given by the phenomenological model
(4). Then, by using δθg = 2rg/b = 8.49× 10−6 (R"/b), we estimate the ratio of the two deflection angles as:

δθp
δθg

=
{

7.80× 10−8
(R"

b

)15
+ 2.41× 10−8

(R"

b

)5
+ 2.85× 10−11

(R"

b

)}( λ

1 µm

)2
. (286)

Examining (286) as a function of the impact parameter, we see that for sungrazing rays passing by the Sun with

impact parameter b # R", this ratio reaches its largest value of δθp/δθg = 1.02×10−7
(

λ/1 µm
)2
, which may be quite

significant for microwave and longer wavelengths [19]. For a wave with λ # 3 mm passing that close to the Sun, the
plasma contribution approaches that due to the gravitational bending, δθp/δθg ∼ 0.92. As a result, the factor Fpg from
(285) decreases to Fpg ∼ 0.44, which, as seen from (285), leads to reducing the light amplification of the SGL to only
F2
pg ∼ 0.19 compared to its value for the plasma-free case and broadening the PSF by a factor of F−1

pg ∼ 2.28, thus,
reducing the angular resolution of the SGL in this case by the same amount. For the wavelength λ # 3 cm, the ratio
(286) increases to δθp/δθg ∼ 91.8, which reduces the light amplification by a factor of F2

pg ∼ 2.97 × 10−5 compared
to the plasma-free case and degrading the resolution by F−1

pg ∼ 184 times. Further increasing the wavelength to
λ # 30 cm leads to an obliteration of the optical properties of the SGL, where light amplification is reduced by a
factor of 2.97× 10−9 compared to the plasma-free case, with angular resolution degraded by 1.84× 105 times.
At the same time, one can clearly see from (286) that for optical or IR bands, say for λ # 1 µm or less, the ratio

(286) is exceedingly small and may be neglected which results in Fpg = 1 for waves in this part of the EM spectrum.
This conclusion opens the way for using the SGL for imaging and spectroscopic applications of faint, distant targets.

VII. DISCUSSION AND CONCLUSIONS

Conceptually, the direct imaging of exoplanets is quite straightforward: we simply seek to detect photons from a
planet that moves on the background of its parent star. Emissions from an exoplanet can generally be separated into
two sources: stellar emission reflected by the planet’s surface or its atmosphere, and thermal emission, which may
be either intrinsic thermal emission or emission resulting from heating by the parent star. The reflected light has a
spectrum that is broadly similar to that of the star, with additional features arising from the planetary surface or
atmosphere. Therefore, for sunlike stars, this reflected emission generally peaks at optical or near optical wavelengths,
which are the focus of our present paper.
Although exoplanets are quite faint, it is the proximity of the much brighter stellar source that presents the most

severe practical obstacle for direct observation. In the case of the SGL, light from the parent star is typically focused
many tens of thousands of kilometers away from the focal line that corresponds to the instantaneous position of the
exoplanet. Therefore, light contamination due to the parent star is not a problem when imaging with the SGL [26].
We studied the propagation of a monochromatic EM wave on the background of a spherically symmetric gravita-

tional field produced by a gravitational mass monopole described in the first post-Newtonian approximation of the
general theory of relativity taken in the harmonic gauge [23] and the solar corona represented by the free electron
plasma distribution described by a generic, spherically symmetric power law model for the electron number density
(3). We used a generalized model for the solar plasma, which covers the entire solar system from the solar photosphere
to the termination shock (i.e., valid for heliocentric distances of 0 ≤ r ≤ R!, first introduced in [20]). We considered
the linear combination of gravity and plasma effects, neglecting interaction between the two. This approximation is
valid in the solar system environment. Our results, within the required accuracy, do not depend on the actual value
of R!, and as such, deviations from spherical symmetry by the termination shock boundary bear no relevance.
In Sec. II, we solved Maxwell’s equations on the background of the solar system, which includes the static gravi-

tational field of the solar monopole and the presence of solar plasma. We used the Mie approach to decompose the
Maxwell equations and to present the solution in terms of Debye potentials. We were able to carry out the variable
decomposition of the set of the relevant Maxwell equations and reduce the entire problem to solving the radial equation
in the presence of an arbitrary power law potential, representing the plasma.
In Sec. III we used the eikonal approximation, valid for all the regions of interest, to solve for the radial function.

We established the solution for the EM wave in the exterior region of the solar system (i.e., the region beyond
the termination shock, r > R!) given by (82) and also in the interior region (0 ≤ r ≤ R!), given by (81). We
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The radial component of the EM field (275) is negligibly small compared to the other two components, which is
consistent with the fact that while passing through the solar plasma the EM wave preserves its transverse structure.
Expressions (275)–(277) describe the EM field in the interference region of the SGL in the spherical coordinate

system. To study this field on the image plane, we need to transform (275)–(277) to a cylindrical coordinate system
[21, 39]. To do that, we follow the approach demonstrated in [21], where instead of spherical coordinates (r, θ,φ),
we introduced a cylindrical coordinate system (ρ,φ, z), more convenient for these purposes. In the region r " rg,
this was done by defining R = ur = r + rg/2 + O(r2g) and introducing the coordinate transformations ρ = R sin θ,
z = R cos θ, which, from (13), result in the following line element:

ds2 = u−2c2dt2 − u2
(

dr2 + r2(dθ2 + sin2 θdφ2)
)

= u−2c2dt2 −
(

dρ2 + ρ2dφ2 + nu2dz2
)

+O(r2g). (278)

As a result, using (275)–(277), for a high-frequency EM wave (i.e., neglecting terms ∝ (kr)−1) and for r " rg, we
derive the field near the optical axis, which up to terms of O(ρ2/z2), takes the form
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where r =
√

z2 + ρ2 = z(1 + ρ2/2z2) = z + O(ρ2/z)) and θ = ρ/z + O(ρ2/z2). Note that these expressions were
obtained using the approximations (254) and are valid for forward scattering when θ ≈ 0, or when ρ ≤ rg.

E. Plasma contribution to image formation

Using the result (279)–(281), we may now compute the energy flux at the image region of the SGL. The relevant
components of the time-averaged Poynting vector for the EM field in the image volume, as a result, may be given in
the following form (see [21] for details):

S̄z =
c

8π
E2

0
4π2

1− e−4π2rg/λ

rg
λ

(

1−
δθp

√

2rg/z

)2
J2
0

(

2π
ρ

λ

(

√

2rg
z

− δθp
))

, (282)

with S̄ρ = S̄φ = 0 for any practical purposes. Also, we recognized that the following convenient expression is valid
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Therefore, the non-vanishing component of the amplification vector µ, defined as µ = S̄/|S̄0| where |S̄0| = (c/8π)E2
0

is the time-averaged Poynting vector of the wave propagating in empty spacetime, takes the form
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where the argument of the Bessel function to first order in δθp is from (243) with δθp itself is given by (166).
At this point, it is instructive to reinstate the full dependence of the critical partial momenta '0 from (243) on the

plasma deflection angle δθp and, by repeating some of the plasma-related derivations given in Secs. VIB–VIC, to
present the result (284) in the following more informative form:
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Solar corona electron content density (Muhleman et al., 1977): 

4

0.1 AU
1 AU

10 AU
Termination shock

1000 AU

z

r

θ

FIG. 2: Schematic of the solar system using an approximate log-square scale. Shading indicates the solar plasma density that is
traversed by an incident plane wave. The termination shock at ∼ 100 AU is where the solar plasma collides with the interstellar
medium, the density of which is constant and does not contribute to the scattering of light. The spherical (r, θ, φ) coordinate
system (with φ suppressed) and the cylindrical z coordinate used in this paper are indicated. Diagram adapted from [20], with
the heliocentric distance range extended beyond the termination shock.

presence of this term is for completeness only. As it does not influence the scattering of light, it may be safely assumed
to be that of a vacuum, namely n0 = 0. Note that the model (3) neglects the variability in the electron number density
within the heliosheath. Any variability, if it exists, does not contribute an observable effect to scattering of light by
the SGL.
The steady-state behavior is reasonably well known, and we can use one of the several plasma models found in the

literature [5–7, 11]. To be more specific, we make use of the following steady-state, spherically symmetric model of
electron distribution (see [19, 36] and references therein):

ne(r) =
[

2.99× 108
(R!

r

)16
+ 1.55× 108

(R!

r

)6
+ 3.44× 105

(R!

r

)2]

cm−3. (4)

At a large distance from the source, the model replicates the expected 1/r2 behavior of the solar wind. Other
existing models are somewhat different from (4). Such models may account for the non-sphericity of the electron
plasma density and offer a slightly different distance power law (for discussion, [11]). These additional features of
these plasma models are not important for our purposes, as their effects are below the detection accuracy. Also, any
inhomogeneities of the plasma distribution in the interplanetary medium are small and, thus, they are not expected
to yield a significant mechanism of refraction for light propagating through the solar system.
We emphasize that the model (4) was developed using the tracking data for interplanetary spacecraft, which was

conducted at multiple radio frequencies [5–7]. Astronomical observations conducted on the solar background at optical
wavelengths also support this model [3, 33]. When studying light propagation in the immediate vicinity of the solar
photosphere, the model (4) may have to be augmented by terms containing higher powers of (R!/r). However, even
in extreme proximity to the Sun, the electron number density would be at most ne(r) ! 6× 108 cm−3 [11, 37].
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p in Eq. (1), in the case of the spherically symmetric plasma distribution model (3), in the
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This generic spherically symmetric model for the plasma frequency in the extended solar corona allows us to study
the influence of solar plasma on the propagation of EM waves throughout the solar system in the range of heliocentric
distances given by R! ≤ r ≤ R!. Clearly, the model (5) may be further extended, for instance, to include known
(non-random) effects due to non-sphericity, such as dependence on the solar latitude. If needed, such effects may be
treated using the same approach as presented in this paper.

B. Maxwell’s equations in three-dimensional form

We now focus on solving Maxwell’s equations on the solar system’s background set by gravity and plasma. We rely
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FIG. 2: Schematic of the solar system using an approximate log-square scale. Shading indicates the solar plasma density that is
traversed by an incident plane wave. The termination shock at ∼ 100 AU is where the solar plasma collides with the interstellar
medium, the density of which is constant and does not contribute to the scattering of light. The spherical (r, θ, φ) coordinate
system (with φ suppressed) and the cylindrical z coordinate used in this paper are indicated. Diagram adapted from [20], with
the heliocentric distance range extended beyond the termination shock.
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This generic spherically symmetric model for the plasma frequency in the extended solar corona allows us to study
the influence of solar plasma on the propagation of EM waves throughout the solar system in the range of heliocentric
distances given by R! ≤ r ≤ R!. Clearly, the model (5) may be further extended, for instance, to include known
(non-random) effects due to non-sphericity, such as dependence on the solar latitude. If needed, such effects may be
treated using the same approach as presented in this paper.

B. Maxwell’s equations in three-dimensional form

We now focus on solving Maxwell’s equations on the solar system’s background set by gravity and plasma. We rely
heavily on [18, 21, 24] (that were inspired by [38, 39]), which the reader is advised to consult first.

SGL’s point-source magnification in the 
presence of  plasma in the solar corona

For impact parameters                   , wavelengths               are severely affected,
wavelengths                are completely blocked by the plasma, obliterating SGL.  
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Propagation of visible/IR wavelengths practically is not affected by the solar plasma
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Large format imaging detector
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– Detector receives light from an exoplanet and that from the solar corona
– We image the disk centered at the Einstein ring having thickness of 𝜆/d
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Brightness of the solar corona
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Model for the solar corona brightness from November & Koutchumi (1996) 
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• As the heliocentric distance increases, the Einstein ring (together with the entire 
imaged region) further separates from the Sun. Fewer detector pixels used. 

• Coronagraph may have to be able to compensate for decreasing angular sizes.
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Noise from the solar corona is ~103 times stronger than the signal. 
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Fluxes from the solar corona and an exoplanet
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Detection sensitivity estimates

Impact of the solar corona on the detection sensitivity (SNR). 
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To image exo-Earth at 10pc with N = 100 pixels: telescope diameter ~ 3,000 km is needed.
To image exo-Earth at 30pc with N = 100 pixels: telescope diameter ~ 8,850 km is needed.

Heliocentric distance, AU
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Achieving High Solar System Exit Velocity

All have features 
that have high risk, 
too costly and do 
not meet desired 
approach (e.g. 
share-rides, etc.)

Propulsion Options Considered:

Arora, N., et. al., “Trajectories for a Near 
Term Mission to the Interstellar Medium” 

Alkalai, L., et. al., “A Vision for Planetary and Exoplanets Science: 
Exploration of the Interstellar Medium – The Space Between Stars”, 2017

Arora, N., et. al., “Trajectories 
for a Near Term Mission to the 
Interstellar Medium” 

• Chemical: < 15 AU/year
– Requires large 𝛥V close to the Sun, and larger SV 

• Solar Thermal: 22 AU/year
– Needs 2-3R⊙ flyby requiring a heat shield of >1,000 kg;
– JPL/MSFC point design was 500 kg spacecraft with 

8,000 kg (dry) propulsion stage;
• Nuclear Electric: 20 AU/year

– 2-stage 30kW SEP/20 kW reaches 20 AU/yr, but 
maximum 40 year trip time;

• Electric Sail: 12-23 AU/year
– 20 tethers, each 10 km length ⇒ 23 AU/yr (P. Januhen)
– 500 kg to ~12 AU/yr (L. Johnson)

0.2 AU

0.1 AU

10 SOLAR RADII

5 SOLAR RADII
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Baseline Propulsion: Solar Sails for Solar System Exit

Would like V ~25 AU/yr, to enable 
a 22 year journey to 550 AU

SunVane Sail Design 
NXTRAC, L⋅GARDE
• for 10 kg s/c unit, 

400 m2/kg, vane 
length ~ 100 m

Central portion of the 
JPL Starshade (not 
as a coronagraph)
• for 10 kg s/c unit, 

400 m2/kg, dia of 
sharshade ~ 71m

Solar Sail-driven spiral trajectory 
controls Perihelion time to match
• exo-star’s right ascension and 

orbit plane Inclination, and 
• exo-star’s celestial elevation

Solar System Exit Velocity 
vs Perihelion Distance 

and Sail Area/Mass Ratio

Parker Solar Probe 
closest approach ~ 9 R⊙
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Current Sails

IKAROS
A/M: 1.3
SIDE LENGTH: 14M

LIGHTSAIL 2
A/M: 1.3
SIDE LENGTH: 5.6M

NANOSAIL D
A/M: 2.2
SIDE LENGTH: 3.1M

NEASCOUT
A/M: 
SIDE LENGTH: 9.2M
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SunVane: A Scalable Approach to Sail Architectures

SIMPLIFIED DEPLOYMENT

ARTICULATED VANES ENABLE CONTROL

SIGNIFICANT POWER GENERATION

SCALES TO 400 A/M RATIO WITH
CURRENT TECHNOLOGY

LEVERAGES TRUSS ADVANCES (< 10 g/m)

VANES PROVIDE MULTIFUNCTIONAL 
CABILITIES FOR COMMUNICATION AND
POWER GENERATION
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Mission CONOPS in Overview

TIME

Ride-share

Rendezvous orbit

Containerized s/c, 
secondary payloads

A Pearl leaves 
Rendezvous 
orbit

Pearl ~10-20 s/c 
released and 
solar sail deploy 

Solar sail s/c undergo 
near circular trajectory 
to solar perihelion 

On perihelion exit dispose 
extra thermal shielding 

Near Jupiter, where solar pressure 
is minimal, dispose some solar sails 22 year cruise, reconfiguration 

(e.g. adding fuel modules)

@ 550 AU find & 
track the bright 
and broad Exo-
Sun optical line

Form cooperative 
constellations of Science 
s/c (that collect data) and 
Support s/c that perform 
ancillary functions 
(power, fuel, navigation, 
communications). From 
optical line for Exo-Sun 
shift to the exo-planet’s 
optical line.
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Conclusions

• The knowledge of the physical properties of the SGL much evolved
– Analytical models for SGL magnification for extended sources
– Models confirmed with numerical simulations
– Solar corona is now fully accounted for in the SNR analysis
– Studied many scenarios of image reconstruction with the SGL

• Improved set of mission-relevant parameters 
– Detection sensitivity; Instrument size and performance; Per pixel integration time;
– Duration of imaging mission phase; Number of spacecraft; Navigational precision;
– Formulated mission requirements to deliver a spacecraft beyond 700 AU, to form 

an imaging system that could exploit the unique optical properties of the SGL. 
• Investigated several possible mission architectures

– Considered: single large s/c, cluster of mid-size s/c, and cluster of solar sail s/c;
– Baseline architecture: “string of pearls”, based on solar sail propulsion 
– CONOPS for s/c at the SGL to detect, track, and study the Einstein ring
– Developed a Technology Roadmap and a set of flight demonstrations

• Summary
– No major showstoppers have been identified 
– Imaging with the SGL is challenging, but feasible



THE SOLAR GRAVITATIONAL LENS

SGL may yield an image an exo-Earth

Image of  Our Earth in Physical Colors


