```
Kavli Institute for the Physics and Mathematics of the Universe (IPMU), APEC Seminar, November 6, 2019 - Kashiwa, Japan
```


Direct Multipixel Imaging of an exo-Earth with a Solar Gravitational Lens Telescope

Slava G. Turyshev
Jet Propulsion Laboratory, California Institute of Technology 4800 Oak. Grove Drive, Pasadena, CA 91009 USA

A nice family portrait...

"The Earth is the cradle of bumanity, but mankind cannot stay in the cradle forever." Konstantin Tsiolkovsky

Solar system is not alone!

Current estimates:

- $\sim 50 \%$ of stars have planets;
- ~100 billion stars in our Galaxy, and 1-10 planets per star;
- 50 billion to 5 trillion planets in our Galaxy (alone);
- There are ~ 10 new stars forming each year in our Galaxy...
- ~ 5 new planetary systems/year...
- ~5-50 new planets/year.

Exoplanet census (Oct 2019):

- 4,073 - confirmed;
- 4,495 - candidates;
- 3,028 - planetary systems;
- 161 - terrestrial.

Finding Earth 2.0 is matter of time...

- but what will we do once we find it?

Our Stellar Neighborhood within 100 ly

Exoplanet Missions

- JWST²
- TESS

The size does matter...

...and so does the distance: the tyranny of the diffraction limit...

Our Challenge

THE SOLAR GRAVITATIONAL LENS
 1-pixel direct image of an exo-Earth...

The tyranny of the diffraction limit: To make a 1-pixel image of an exo-Earth at 100 light years, one needs a telescope with a diameter of $\sim 90 \mathrm{~km} . .$.

A (10k×10k)-pixels image of our Earth

This 2002 Blue Marble image features land surfaces, clouds, topography, and city lights at a maximal resolution of 1 km per pixel.
Composed from 4 months data from NASA's Terra satellite by R.Simmon, R. Stöckeli.

1,000-pixel direct image of an exo-Earth...

The tyranny of the diffraction limit: To make a 1,000-pixel image of an exo-Earth at 100 light years, a telescope with a diameter of $\sim 90,000 \mathrm{~km}$ is needed...

Diameter of $90,000 \mathrm{~km}$ is ~ 7 diameters of the Earth

THE SOLAR GRAVITATIONAL LENS
 Largest telescopes to date...

European Extremely Large Telescope 39 meters, Cbile (est. 2022)

The largest telescopes for the last 125 years to date, both on the ground and in space

THE SOLAR GRAVITATIONAL LENS
 Largest telescopes in space

Telescope sizes compared
Webb will be the largest astronomical telescope ever put into space. Spitzer, the current infrared telescope, is tiny

THE SOLAR GRAVITATIONAL LENS
 The Solar Gravitational Lens (kISS study, 2015)

The Interstellar Medium

Interaction Zone

The Local Interstellar Cloud . Voyager 1 Spacecraft

As Veiwed from the Focal Line

Interstellar Medium

The G Cloud

Rogue
Planets
Planets

Interstellar Wind

Earth-like Source

shadow
geometric
optics
weak
interference

Not to scale

Properties of the Solar Gravity Lens

$$
\mu_{\mathrm{SGL}}^{0}=\frac{4 \pi^{2}}{1-e^{-4 \pi^{2} r_{g} / \lambda}} \frac{r_{g}}{\lambda} J_{0}^{2}\left(2 \pi \frac{\rho}{\lambda} \sqrt{\frac{2 r_{g}}{\bar{z}}}\right)=1.12 \times 10^{11} J_{0}^{2}\left(48.98\left(\frac{\rho}{1 \mathrm{~m}}\right)\left(\frac{1 \mu \mathrm{~m}}{\lambda}\right)\left(\frac{650 \mathrm{AU}}{\bar{z}}\right)^{\frac{1}{2}}\right)
$$

- Important features of the SGL (for $\lambda=1 \mu \mathrm{~m}$):
- Major brightness amplification: a factor of 10^{11} (on the optical axis);
- High angular resolution: ~0.5 nano-arcsec. A 1-m telescope at the SGL collects light from a $\sim(10 \mathrm{~km} \times 10 \mathrm{~km})$ spot on the surface of the planet, bringing this light to one 1-m size pixel in the image plane of the SGL;
- Extremely narrow "pencil" beam: entire image of an exo-Earth ($\sim 13,000 \mathrm{~km}$) at 100 I.y. is included within a cylinder with a diameter of $\sim 1.3 \mathrm{~km}$.

Turyshev \& Toth, Phys. Rev. D 96, 024008 (2017)

Eshleman V.R., Science 205, 1133 (1979)

Gravitational Lens of the Sun: Its Potential for
 Observations and Communications over Interstellar Distances

Abstract. The gravitational field of the sun acts as a spherical lens to magnify the intensity of radiation from a distant source along a semi-infinite focal line. A spacecraft anywhere on that line in principle could observe, eavesdrop, and communicate over interstellar distances, using equipment comparable in size and power with what is now used for interplanetary distances. If one neglects coronal effects, the maximum magnification factor for coherent radiation is inversely proportional to the wavelength, being 100 million at 1 millimeter. The principal difficulties are that the nearest point on the focal half-line is about 550 times the sun-earth distance, separate spacecraft would be needed to work with each stellar system of interest, and the solar corona would severely limit the intensity of coherent radiation while also restricting operations to relatively short wavelengths.

About 40 years ago, Einstein (I) published a short note in Science on the focusing of starlight by the gravitational field of another star. He emphasized the improbability of observing this phenomenon by the chance alignment of two stars and the earth. From concepts based on current technology and trends, however, it appears that gravitational focusing of electromagnetic radiation might be employed, by design, for highly directional observations and communications over interstellar distances.

In such use, the gravitational field of the sun could play several roles. First, it might be used to reduce fuel and time re-
$1+\nu$, where the refractivity $\nu=g / r$ at radius r. A ray is deflected through the angle $\alpha=2 g / a$, where a is the ray impact parameter and g is the gravitational radius $\left(g=2 G \mathrm{Gm} / \mathrm{c}^{2}\right.$, where G is the gravitational constant, m is the mass of the central body, and c is the speed of light). It is assumed throughout that $\alpha \lll 1$. An observer at position z behind the lens and x from the center line, as illustrated, would see an energy density lessened by defocusing in the plane of propagation, but increased by focusing due to the curved limb normal to this plane. The relative single-ray intensity $I=F_{\mathrm{h}}{ }^{2} F_{\mathrm{v}}{ }^{2}$, where in ray optics $F_{\mathrm{h}}{ }^{2}=$
nel scales along the circumference of a circle at the ray-impact radius. Using also the wave number $k=2 \pi / \lambda$, the maximum intensification of the coherent signal is simply

$$
\begin{equation*}
I_{\max }=2 \pi k g \tag{2}
\end{equation*}
$$

As an approximation, let the focal "spot" radius x_{s} be the value of x where I falls to $I_{\max } / 4$, so that $x_{\mathrm{s}}=$ $(2 / \pi k)(z / 2 g)^{1 / 2}$. Thus the angular resolution for distinguishing two adjacent coherent sources by a corresponding change in intensity is x_{s} / z radians. (The first null off the center line is at $x=\pi^{2}$ $x_{5} / 2$, and the first sidelobe is twice this distance with intensity $I_{\max } / \pi^{2}$.) The periapsis or minimum radius of the ray relative to the center of mass is $a-g$, or essentially a, and this must be greater than r_{0}, the physical radius of the spherical mass. Thus $\alpha_{\text {max }}=2 g / r_{0}$ and the focal line begins at $z_{\min }=r_{0}{ }^{2} / 2 g$.
Now consider the focusing at $z>z_{\text {min }}$ of incoherent radiation from a uniformly bright, circular, extended source of radius r_{p} and distance $z_{\mathrm{p}} \gg z$. This is the problem considered by Einstein (I) and more completely by others, notably Liebes (4). The gain factor A of the gravitational lens for the intensity observed tational lens for the intensity observed
from the two individual image com. Kraus J.D., Radio Astronomy, Cygnus-Quasar Books, Powell, Ohio, 6-115 (1986) Maccone C., many papers, 1999-present \quad Turyshev \& Andersson, MNRAS 341, 577 (2003)

Optical
wavelengths magnification ~1011

Precision alignment between a Lens and the Earth is very unlikely...
$\alpha_{\text {Newton }}(b)=\frac{2 G M_{\odot}}{c^{2} b}=0.877\left(\frac{\mathcal{R}_{\odot}}{b}\right) \operatorname{arcsec}$

- In 1913 Einstein wrote to Hale:
- "Is eclipse necessary to test this prediction?"
- Hale replied: "Yes, an eclipse is necessary, as stars near the Sun would then be visible, and the bending of light from them would show up as an apparent displacement of the stars from their normal positions."
- In 1914, the first attempt - a German expedition
- A German astronomer Finley-Freundlich led an expedition to test the Einstein's prediction during a total solar eclipse on Aug. 21, 1914 (in Russia);
- However, the First World War (July 28, 1914) intervened, and no observations could be made.

The Huntington Library, Pasadena, CA

THE SOLAR GRAVITATIONAL LENS The First Test of General Theory of Relativity

Gravitational Deflection of Light:

$$
\alpha_{\mathrm{GR}}(b)=\frac{2(1+\gamma) G M_{\odot}}{c^{2} b} \simeq 1.75\left(\frac{1+\gamma}{2}\right)\left(\frac{\mathcal{R}_{\odot}}{b}\right) \operatorname{arcsec}
$$

Campbell's telegram to Einstein, 1923

Deflection $=0$;
Solar Eclipse 1919:

Newton $=0.87$ arcsec;
Einstein $=2 \times$ Newton $=1.75 \mathrm{arcsec}$

Einstein and Eddington, Cambridge, 1930 is a Well-Known Effect Today

IPL
ـL Our solar system and tests of gravity

Techniques for Gravity Tests:

Radar Ranging:

-Planets: Mercury, Venus, Mars
-s/c: Mariners, Vikings, Pioneers, Cassini, Mars Global Surveyor, Mars Orbiter, etc.
-VLBI, GPS, etc.

Laser:

-SLR, LLR, interplanetary, etc.

Dedicated Gravity Missions:

- LLR (1969 - on-going!!)
- GP-A,'76; LAGEOS,'76,'92; GP-B,'04; LARES,'12; MicroSCOPE,'16, ACES, '20; LIGO,'16; eLISA, 2030+(?)

New Engineering Discipline Applied General Relativity:

The Nobel Prize in Physics 2017

© Nobel Media. III. N. Elmehed
Rainer Weiss
Prize share: 1/2

Q Nobel Media. Il. N. Elmehed
Barry C. Barish Prize share: $1 / 4$

© Nobel Media III. N. Emehed
Kip S. Thorne Prize share: $1 / 4$
"for decisive contributions to the LIGO detector and the observation of gravitational waves"

- Daily life: GPS, geodesy, time transfer;
- Precision measurements, deep-space navigation \& μ as-astrometry (Gaia)

General relativity is now well tested. Can we use it to build something?

Discovery of an exoplanet around a solar-type star

A Jupiter-mass companion to a solar-type star

Michel Mayor \& Didier Queloz

Genewa otasmator, 51 Chemin des Mailetoss, CH-12so Saurerry, Smitzeland
The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity. The companion lies only about eight million kilometres from the star, which would be well inside the orbit of Mercury in our Solar System. This object might be a gas-giant planet that has migrated to this location through orbital evolution, or from the radiative stripping of a brown dwarf.

For more than ten ycars, several groups have been examining the radial velocities of dooens of sturs, in an attewipt to identify strital motions indued by the presese of heavy planctary Dopplar ustios and currently in use is limited to ohoul 15 ms . As the reflex motion of the Sun due to Jupiter is $13 \mathrm{~m} 8^{-1}$, all current searches are limited to the detection of objects with at least the mass of Jupiter (M,) So far, all precies Doppler surveys have fraikd to detest any jovian planets or brown dwarfs.
Since A poil l 1994 we have monitored the radial velocity of 142 G and K dwarf stars with a procision of $13 \mathrm{~ms}^{-1}$. The stars in sur survey are seloloclor for ther apparent comstant ramaial velocty
 of stars bow significant uelocity variations. Although most an didates require additional meesarements, ue report lefe lie discovery of a companion with a minimum mass of 0.5 M . orbiting at 0.05 su around the solar-type star 5I Peg. Constrams originating from the observed rotational velocity of 51 Peg and from its low clromospheric emission zive an upper limit of 2 M , for NATURE FOL 378 - 23 NOVEMEER 1995
mass of the companion. Alternative explanations to the bserved ratial velocity variation (pukation of spot rotation) are unlikely
The very small distance between the companioe and 51 Peg if certainly not predicted by current models of giant plank formation. As the eemperature of the compamion is aboon $1,300 \mathrm{~K}$, this object seens to be dangerously dose to the Jeam thermal evaporation limit. Moreover, mon-thermal evaporation eflects are knoun to be dominant" over thermal ones. This jov-lan-mass companion may therefore be the result of the stripping of a very-low-mass brown dwarf.
The short-period orbital motion of 51 Peg also displays a long. period perturbation, which may be the signature of a second

Discovery of Jupiter-mass companion(s)
Our mexsurements are made with the new fibre-fod echelle speerograph ELODIE of the Haute-Provence Obserator France ${ }^{10}$. This instrument permits measurements of radial velocity with an accuracy of about $13 \mathrm{~ms}^{-1}$ of stars up to 9 mzd in an exposure time of $<30 \mathrm{~min}$. The radial velocity is computed

Imaging Exoplanets with the Solar Gravitational Lens

Imaging point sources with the SGL

On-axis
$0<\rho_{0} \ll 2 \mathrm{~cm}$

Small off-axis displacement
$0.5 \mathrm{~m} \lesssim \rho_{0} \lesssim r_{g}$

Large off-axis
displacement

Very large off-axis displacement

THE SOLAR GRAVITATIONAL LENS

Image formation process with the SGL

Turyshev \& Toth, Phys. Rev. D 100, 084018 (2019), arXiv:1908.01948

THE SOLAR GRAVITATIONAL LENS

Modeling the signal from an extended source

Photon flux received from exo-Earth

Photon rate: $\quad Q_{\mathrm{exo}}=\frac{\lambda \epsilon_{\lambda}}{h c} a I_{\odot} \frac{\pi d^{2}}{4} \frac{R_{\oplus}}{z_{0}} \sqrt{\frac{2 r_{g}}{z}} \quad \begin{aligned} & \epsilon \text {-correction for solar }\end{aligned} \begin{aligned} & \epsilon_{\mathrm{vis}}=0.5 \\ & \text { spectral irradiance }\end{aligned} \quad \begin{gathered}\epsilon_{\mathrm{IR}}=0.4 \\ \epsilon_{\mathrm{UV}}\end{gathered}$

Image diameter:

$$
2 r_{\oplus}=1.3\left(\frac{z}{650 \mathrm{AU}}\right)\left(\frac{30 \mathrm{pc}}{z_{0}}\right) \mathrm{km}
$$

Maximum SNR per imaged pixel:

$$
\mathrm{SNR}_{\mathrm{R}}^{\max }=\frac{2 r_{\oplus}}{d} \cdot \mathrm{SNR}_{\mathrm{S}}
$$

Detection sensitivity

Amplified signal from distant exoplanets may be used for imaging

Convolving BW source with the SGL

An image of the Earth with 1024×1024 pixels

Some source features are still recognizable

The convolved image of an exo-Earth at 30pc, formed by the SGL at $z=650 \mathrm{AU}$, with $\lambda=500 \mathrm{~nm}$

SGL Image Deconvolution

An image of the Earth with 1024×1024 pixels

Right: Deconvolution at different resolutions and bit depths. Columns: resolutions of (256×256), (512×512), (1024×1024) pixels. Rows: "low quality" (4 , 6,8 bits), "medium quality" ($6,8,10$ bits), "high quality" ($8,10,12$ bits) samples.

Convolving source with the SGL (color)

As the telescope aperture is much larger than the first minimum of the PSF, the actual SGL's magnification is wavelength independent!

Convolved
Major features are clearly visible. Spatially resolved spectroscopy is possible.

As the telescope aperture is much larger than the first minimum of the PSF, the actual SGL's magnification is wavelength independent!

Initial convolution/deconvolution results are promising. Further work is needed.

THE SOLAR GRAVITATIONAL LENS
 Do not point at the Sun!!!!

© «- Approx. size of Earth

For SGL-relevant geometry, wave effects on light propagation are negligible

Spherical obscuration

Pure gravity

Plasma only

Gravity + Plasma

Plasma pushes the focal area of the SGL outward to higher heliocentric ranges

Effect of solar corona on light amplification

Distance from the Sun $\left(r / R_{\odot}\right)$

Turyshev \& Toth, Phys. Rev. D 99, 024044 (2019)

Solar corona electron content density (Muhleman et al., 1977):

$$
\bar{n}_{e}(r)=\left[2.99 \times 10^{8}\left(\frac{R_{\odot}}{r}\right)^{16}+1.55 \times 10^{8}\left(\frac{R_{\odot}}{r}\right)^{6}+3.44 \times 10^{5}\left(\frac{R_{\odot}}{r}\right)^{2}\right] \mathrm{cm}^{-3} . \Rightarrow \quad \omega_{\mathrm{p}}^{2}=\frac{4 \pi e^{2}}{m_{e}} \sum_{i} \alpha_{i}\left(\frac{R_{\odot}}{r}\right)^{\beta_{i}}
$$

$$
\bar{\mu}_{z}=\frac{4 \pi^{2}}{1-e^{-4 \pi^{2} r_{g} / \lambda}} \frac{r_{g}}{\lambda} \mathcal{F}_{\mathrm{pg}}^{2} J_{0}^{2}\left(2 \pi \frac{\rho}{\lambda} \sqrt{\frac{2 r_{g}}{z}} \mathcal{F}_{\mathrm{pg}}\right) \quad \text { SGL's point-source magnification in the }
$$

$$
\mathcal{F}_{\mathrm{pg}}=\left(1+\frac{\delta \theta_{\mathrm{p}}^{2}}{\delta \theta_{\mathrm{g}}^{2}}\right)^{\frac{1}{2}}-\frac{\delta \theta_{\mathrm{p}}}{\delta \theta_{\mathrm{g}}} \geq 0 \quad \frac{\delta \theta_{\mathrm{p}}}{\delta \theta_{\mathrm{g}}}=\left\{7.80 \times 10^{-8}\left(\frac{R_{\odot}}{b}\right)^{15}+2.41 \times 10^{-8}\left(\frac{R_{\odot}}{b}\right)^{5}+2.85 \times 10^{-11}\left(\frac{R_{\odot}}{b}\right)\right\}\left(\frac{\lambda}{1 \mu \mathrm{~m}}\right)^{2}
$$

For impact parameters $b \in\left[R_{\odot}, 3 R_{\odot}\right]$, wavelengths $\lambda \geq 3 \mathrm{~cm}$ are severely affected, wavelengths $\lambda \geq 30 \mathrm{~cm}$ are completely blocked by the plasma, obliterating SGL.

Propagation of visible/IR wavelengths practically is not affected by the solar plasma

Solar corona brightness

K-corona dominates for

$$
b<2 R_{\odot}
$$

Large format imaging detector

- Assumptions:
- Coronagraph blocks-out the Sun to the level of the solar corona
- Detector receives light from an exoplanet and that from the solar corona
- We image the disk centered at the Einstein ring having thickness of λ / d
- Extra pixels on the detector are not used for imaging

Brightness of the solar corona

Model for the solar corona brightness from November \& Koutchumi (1996)

$$
B_{\mathrm{cor}}(r)=20.09\left(\frac{3.670}{r^{18}}+\frac{1.939}{r^{7.8}}+\frac{0.0551}{r^{2.5}}\right) \frac{\mathrm{W}}{\mathrm{~m}^{2} \mathrm{sr}} \quad r=\frac{\bar{r}}{R_{\odot}}
$$

Relevant angular sizes

Thickness of the imaged region around the Sun

- As the heliocentric distance increases, the Einstein ring (together with the entire imaged region) further separates from the Sun. Fewer detector pixels used.
- Coronagraph may have to be able to compensate for decreasing angular sizes.

Fluxes from the solar corona and an exoplanet
$Q_{\text {cor }}=\frac{\lambda \epsilon_{\lambda}}{h c} \frac{1}{4} \pi d^{2} \int_{0}^{2 \pi} d \phi \int_{\beta_{-}}^{\beta_{+}} \beta d \beta B_{\text {cor }}(\beta) \quad Q_{\text {exo }}=\frac{\lambda \epsilon_{\lambda}}{h c} a I_{\odot} \frac{\pi d^{2}}{4} \frac{R_{\oplus}}{z_{0}} \sqrt{\frac{2 r_{g}}{z}}$

Noise from the solar corona is $\sim 10^{3}$ times stronger than the signal.

SNR for solar gravity lens and corona

Estimating the SNR for the combined system: $\quad \mathrm{SNR}_{\mathrm{R}}=\frac{\mathrm{Q}_{\mathrm{exo}} \sqrt{\tau_{1}}}{\sqrt{p \mathrm{Q}_{\mathrm{cor}}}}$

Impact of the solar corona on the detection sensitivity (SNR).

THE SOLAR GRAVITATIONAL LENS

Resolution in 1 and 10 years of integration

Determine number of pixels, N :

$$
N=\left(\frac{t_{\mathrm{tot}} \mathrm{Q}_{\mathrm{exo}}^{2}}{p \mathrm{Q}_{\mathrm{cor}} \mathrm{SNR}_{\mathrm{S}}^{2}}\right)^{1 / 4}
$$

$$
\begin{aligned}
t_{\mathrm{tot}} & =1 \text { year } \\
t_{\mathrm{tot}} & =10 \text { years }
\end{aligned}
$$

SGL offers pretty impressive capabilities:
To image exo-Earth at 10 pc with $\mathrm{N}=100$ pixels: telescope diameter $\sim 3,000 \mathrm{~km}$ is needed.
To image exo-Earth at 30 pc with $\mathrm{N}=100$ pixels: telescope diameter $\sim 8,850 \mathrm{~km}$ is needed.

Achieving High Solar System Exit Velocity

Propulsion Options Considered:

- Chemical: < 15 AU/year
- Requires large $\Delta \mathrm{V}$ close to the Sun, and larger SV
- Solar Thermal: 22 AU/year
- Needs $2-3 \mathrm{R}_{\odot}$ flyby requiring a heat shield of $>1,000 \mathrm{~kg}$;
- JPL/MSFC point design was 500 kg spacecraft with $8,000 \mathrm{~kg}$ (dry) propulsion stage;
- Nuclear Electric: 20 AU/year
- 2-stage 30kW SEP/20 kW reaches 20 AU/yr, but maximum 40 year trip time;
- Electric Sail: 12-23 AU/year
- 20 tethers, each 10 km length $\Rightarrow 23 \mathrm{AU} / \mathrm{yr}$ (P. Januhen)
- 500 kg to $\sim 12 \mathrm{AU} / \mathrm{yr}$ (L. Johnson)

Arora, N., et. al., "Trajectories for a Near Term Mission to the Interstellar Medium"

Alkalai, L., et. al., "A Vision for Planetary and Exoplanets Science: Exploration of the Interstellar Medium - The Space Between Stars", 2017

All have features that have high risk, too costly and do not meet desired approach (e.g. share-rides, etc.)

Arora, N., et. al., "Trajectories for a Near Term Mission to the Interstellar Medium"

Baseline Propulsion: Solar Sails for Solar System Exit

Would like $\mathrm{V} \sim 25 \mathrm{AU} / \mathrm{yr}$, to enable a 22 year journey to 550 AU

Solar Sail-driven spiral trajectory controls Perihelion time to match

- exo-star's right ascension and orbit plane Inclination, and
- exo-star's celestial elevation

SunVane Sail Design NXTRAC, L.GARDE

- for 10 kg s/c unit, $400 \mathrm{~m}^{2} / \mathrm{kg}$, vane length ~ 100 m

Central portion of the JPL Starshade (not as a coronagraph)

- for $10 \mathrm{~kg} \mathrm{~s} / \mathrm{c}$ unit, $400 \mathrm{~m}^{2} / \mathrm{kg}$, dia of sharshade $\sim 71 \mathrm{~m}$

Parker Solar Probe
closest approach $\sim 9 R_{\odot}$

LIGHTSAIL 2

NEASCOUTD
AIM:
SIDELENGTH:9.2M

SunVane: A Scalable Approach to Sail Architectures

SIMPLIFIED DEPLOYMENT
ARTICULATED VANES ENABLE CONTROL
SIGNIFICANT POWER GENERATION
SCALES TO 400 A/M RATIO WITH CURRENT TECHNOLOGY

LEVERAGES TRUSS ADVANCES (< $10 \mathrm{~g} / \mathrm{m}$) VANES PROVIDE MULTIFUNCTIONAL CABILITIES FOR COMMUNICATION AND POWER GENERATION

Mission CONOPS in Overview

- The knowledge of the physical properties of the SGL much evolved
- Analytical models for SGL magnification for extended sources
- Models confirmed with numerical simulations
- Solar corona is now fully accounted for in the SNR analysis
- Studied many scenarios of image reconstruction with the SGL
- Improved set of mission-relevant parameters
- Detection sensitivity; Instrument size and performance; Per pixel integration time;
- Duration of imaging mission phase; Number of spacecraft; Navigational precision;
- Formulated mission requirements to deliver a spacecraft beyond 700 AU , to form an imaging system that could exploit the unique optical properties of the SGL.
- Investigated several possible mission architectures
- Considered: single large s/c, cluster of mid-size s/c, and cluster of solar sail s/c;
- Baseline architecture: "string of pearls", based on solar sail propulsion
- CONOPS for s/c at the SGL to detect, track, and study the Einstein ring
- Developed a Technology Roadmap and a set of flight demonstrations
- Summary
- No major showstoppers have been identified
- Imaging with the SGL is challenging, but feasible

SGL may yield an image an exo-Earth

