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the perturbative S-matrix in QFT?
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New picture?

Unitarity methods
Recursion relations

Integrability
Strings, world-sheet models

Color-kinematics duality
Bootstrap approaches

……
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New picture?

Positive geometry

In this talk:



Motivation

✤ Practical approach: efficient computational method 

✤ Theoretical motivation: understand all-loop order S-
matrix, find a completely new framework

✤ Indirect way to attack bigger problems such as 
quantum gravity



Unexpected simplicity

✤ Need for new understanding: simplicity in scattering 
amplitudes invisible in Feynman diagrams

✤ Famous example: 2->4 gluon amplitudes in QCD

120 Feyman diagrams

(k1 · k4)(✏2 · k1)(✏1 · ✏3)(✏4 · ✏5)

100 pages



Unexpected simplicity

✤ Need for new understanding: simplicity in scattering 
amplitudes invisible in Feynman diagrams

✤ Famous example: 2->4 gluon amplitudes in QCD
Helicity amplitude

M6 =
X

Tr(T a1T a2 . . . T a6)A6(123456)

A6 =
h12i4

h12ih23ih34ih45ih56ih61i

M6(1
�2�3+4+5+6+)

Color ordering

Maximal-helicity
(MHV) violating

amplitude

(Parke, Taylor 1985)



Change of strategy

What is the scattering amplitude?
Feynman diagrams Unique object fixed

by physical properties

Modern methods use both: 
Calculate the amplitude directly
Use perturbation theory

Lesson from Parke-Taylor:
On-shell gauge invariant objects
Helicity amplitudes An,k



Modern methods

✤ Very rich playground of ideas

✤ Connection between amplitudes and geometry

Use of physical constraints: unitarity methods, recursion relations
Calculating loop integrals, study mathematical functions, symbols
Symmetries of N=4 SYM, UV of N=8 SUGRA, string amplitudes

Canonical example is the geometry of worldsheet
CHY formula: write QFT amplitudes on worldsheet

An =

Z
dz1 . . . dzn

Vol[SL(2, C)]
�

0

@
X

b 6=a

sab
za � zb

1

A In
(Cachazo, He, Yuan 2013)



Positive geometry

✤ Geometric space defined using a set of inequalities

✤ Define the differential form on this space

Fk(xi) � 0

polynomials parametrize kinematics

⌦(xi) ⇠
dxi

xi
xi = 0near boundary

⌦(xi)

Special form: logarithmic singularities on the boundaries



Simple examples

✤ Example: 1d interval

x = 0 x = 1 x = x1 x = x2

F (x) = x > 0

F1(x) = x� x1 > 0

F2(x) = x2 � x > 0

form: ⌦ =
dx

x
⌘ dlog x

⌦ =
dx (x1 � x2)

(x� x1)(x� x2)
= dlog

✓
x� x1

x� x2

◆
normalization: singularities are unit



Simple examples

✤ Example: 2d region

✤ General positive geometry: more than just boundaries

⌦ =
dx

x

dy

y

x > 0
y > 0 1� x� y > 0

x > 0

y > 0

x = (0,1) y = (0,1) x = (0, 1� y) y = (0,1)

⌦ =
(y � 1) dx

x(x+ y � 1)
^ dy

y
=

(y � 1) dx dy

xy(x+ y � 1)



Positive Grassmannian

✤ Consider space of (2x4) matrices modulo GL(2)

✤ Positive Grassmannian G+(2, 4)
(ij) > 0All (2x2) minors 

✓
a1 a2 a3 a4
b1 b2 b3 b4

◆

not all of them are boundaries

Real Grassmannian G(2, 4)



Positive Grassmannian

✤ Consider space of (2x4) matrices modulo GL(2)

✤ Positive Grassmannian 

G(2, 4)Real Grassmannian

G+(2, 4)
(ij) > 0All (2x2) minors 

✓
a1 a2 a3 a4
b1 b2 b3 b4

◆

not all of them are boundaries

(13)(24) = (12)(34) + (14)(23)Shouten identity
(

all positiveproduct positive

(13), (24) > 0 (13), (24) < 0
can not set (13)=0
unless set several 

others to zero



Positive Grassmannian

✤ Positive Grassmannian 

✤ Boundaries: 

✤ Logarithmic form: 

G+(2, 4)
✓

1 x 0 �y
0 w 1 z

◆Fix GL(2): choose 
parametrization x, y, z, w > 0

(12), (23), (34), (14) = 0

⌦ =
dx

x

dy

y

dz

z

dw

w
=

d2⇥4C

vol[GL(2)]

1

(12)(23)(34)(14)



Positive geometry for amplitudes

✤ Amplituhedron: planar N=4 SYM

✤ Associahedron: biadjoint scalar at tree-level

✤ More: cosmological polytopes, CFT, EFT

✤ Gravituhedron: tree-level GR???

Tree-level and all-loop integrand

Connection to CHY, recent work on 1-loop

(Arkani-Hamed, JT)

(Arkani-Hamed, Bai, He, Yan) 

(Arkani-Hamed, Benincasa, Huang, Shao) 

(JT, in progress)

(Arkani-Hamed, Thomas, JT)

Note: at the moment, no work on the final (integrated) loop amplitudes 
space of functions is too complicated, we can not play this game



Amplituhedron
(Arkani-Hamed, JT 2013)
(Arkani-Hamed, Thomas, JT 2017)



✤ Large N limit: only planar diagrams, cyclic ordering

✤             superfield:

✤ Superamplitudes: 

✤ Tree-level + loop integrand

Component amplitudes 
with power 

Amplitudes in planar N=4 SYM

An =
n�2X

k=2

An,k ⌘̃4k

N = 4 � = G+ + e⌘A�A + · · ·+ ✏ABCDe⌘Ae⌘Be⌘Ce⌘DG�

Contains An(�� · · ·�++ · · ·+)

(

k

conformal invariant
dual conformal invariant (

Yangian 
PSU(2,2|4)

broken after integration due to IR divergencies

N
k�2

MHV amplitude



✤ Large N limit: only planar diagrams, cyclic ordering

✤             superfield:

✤ Superamplitudes: 

✤ Tree-level + loop integrand

Component amplitudes 
with power 

Amplitudes in planar N=4 SYM

An =
n�2X

k=2

An,k ⌘̃4k

N = 4 � = G+ + e⌘A�A + · · ·+ ✏ABCDe⌘Ae⌘Be⌘Ce⌘DG�

Contains An(�� · · ·�++ · · ·+)

(

k

conformal invariant
dual conformal invariant (

Yangian 
PSU(2,2|4)

broken after integration due to IR divergencies

N
k�2

MHV amplitude
denote k � 2 ! k

MHV amplitude:
k = 0



✤ The simplest example is the 6pt NMHV amplitude 
pioneered by Andrew Hodges in 2009

has no boundary at the vertex (1235), the spurious pole never arises. The spurious
poles only arise from the representation of P6 as the di↵erence of T1345 and T1365,
which requires the insertion of a spurious boundary.

An observation as elementary as school geometry now allows a marvellous applica-
tion of this identification of spurious boundaries. Note that P6 can be decomposed
in a quite di↵erent way into the sum of three tetrahedra:

P6 = T1346 + T3546 + T5146

This is most easily seen in the dual picture (Figure 3), where these three tetrahedra
meet on their common edge {46}.

Figure 3: In the dual representation, P6 appears as the join of two tetrahedra,
with 5 vertices, 9 edges and 6 faces.

It follows that the volume of this polytope can also be written as

1

h1246ih2346i

✓
h1346i3

h1234ih1236i

◆
+

1

h2346ih2546i

✓
h3546i3

h2345ih2356i

◆

+
1

h1246ih2546i

✓
h5146i3

h1245ih1256i

◆
(22)

But this expression corresponds exactly to the formula (2) for the amplitude. Thus
twistor geometry reduces the hexagon identity almost to triviality in the special
case of split-helicity.

In this case it is the vertices V146, V346, V546 that correspond to spurious poles.
(Again, this is more easily seen in the dual picture, where these vertices correspond
to the internal faces which split the polyhedron into three parts.)

14

2

Amplitudes as volumes of polytopes

3d projection
A6 =

Z

P
dV

Volume in dual 
momentum twistor space

Later found this is equal to logarithmic 
form on the “cyclic polytope” in P 4

(Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT 2010)



✤ Calculation: triangulation in terms of elementary 
building blocks

has no boundary at the vertex (1235), the spurious pole never arises. The spurious
poles only arise from the representation of P6 as the di↵erence of T1345 and T1365,
which requires the insertion of a spurious boundary.

An observation as elementary as school geometry now allows a marvellous applica-
tion of this identification of spurious boundaries. Note that P6 can be decomposed
in a quite di↵erent way into the sum of three tetrahedra:

P6 = T1346 + T3546 + T5146

This is most easily seen in the dual picture (Figure 3), where these three tetrahedra
meet on their common edge {46}.

Figure 3: In the dual representation, P6 appears as the join of two tetrahedra,
with 5 vertices, 9 edges and 6 faces.

It follows that the volume of this polytope can also be written as

1

h1246ih2346i

✓
h1346i3

h1234ih1236i

◆
+

1

h2346ih2546i

✓
h3546i3

h2345ih2356i

◆

+
1

h1246ih2546i

✓
h5146i3

h1245ih1256i

◆
(22)

But this expression corresponds exactly to the formula (2) for the amplitude. Thus
twistor geometry reduces the hexagon identity almost to triviality in the special
case of split-helicity.

In this case it is the vertices V146, V346, V546 that correspond to spurious poles.
(Again, this is more easily seen in the dual picture, where these vertices correspond
to the internal faces which split the polyhedron into three parts.)

14

2

Triangulation

Divide into two simplices by
cutting the polyhedron 

with (1235) plane

The first only depends on (12345) 
and second on (12356)

A6 = [12345] + [12356]

each simplex is associated with “R-invariant”
this correctly reproduces amplitude

(Hodges 2009)



From kinematics to geometry

✤ Change of kinematics: pi, ✏j ! Zk 2 P 3

points in projective space
`j ! (ZAZB)j 2 P 3

lines in projective space
positive geometry in

P 3+k

kinematical space

projection

P 3

Definition of the
Amplituhedron

Form with logarithmic
singularities on the boundaries

= amplitude

An,k,`

k = 1, 2, . . . , n

(Arkani-Hamed, Thomas, JT 2017)



✤ Definition of the space:

Back to 6pt NMHV amplitude

positive geometry in

kinematical space
P 3

P 4

hZ1Z2Z3Z4Z5i, hZ1Z2Z3Z4Z6i, · · · > 0

Y : P 4 ! P 3projection:

Zj

zj

hzizi+1zjzj+1i > 0

convex hall of points

such that

projection these are boundaries: poles in S-matrix
⇠ (pi+1 + pi+2 + . . . pj)

2

In this case (boundaries)>0
completely specifies the 

projection, hence the space in P 3

convex

(5x5) determinants



✤ Triangulation -> differential form -> amplitude

Logarithmic form:

project to P 3

⌦6 = [12345] + [12356]

⌦ =
dx1

x1

dx2

x2

dx3

x3

dx4

x4

change variables: xi ! zk

[12345] =
(h1234idz5 + h2345idz1 + h3451idz2 + h4512idz3 + h5123idz4)4

h1234ih2345ih3451ih4512ih5123i

[12356] =
(h1235idz6 + h2356idz1 + h3561idz2 + h5612idz3 + h6123idz5)4

h1235ih2356ih3561ih5612ih6123i
where h1234i ⌘ hz1z2z3z4i

two simplicies

Back to 6pt NMHV amplitude



✤ Triangulation -> differential form -> amplitude

Back to 6pt NMHV amplitude

two simpliciesA6 = [12345] + [12356]

Replace: 

project to P 3

[12356] =
(h1235i⌘6 + h2356i⌘1 + h3561i⌘2 + h5612i⌘3 + h6123i⌘5)4

h1235ih2356ih3561ih5612ih6123i

[12345] =
(h1234i⌘5 + h2345i⌘1 + h3451i⌘2 + h4512i⌘3 + h5123i⌘4)4

h1234ih2345ih3451ih4512ih5123i

Differential form

Superfunctiondzj ! ⌘j

where h1234i ⌘ hz1z2z3z4i

compare 
to amplitude



Definition of Amplituhedron

✤ Constraints on positive geometry and the projection

positive geometry in
P 3+k

kinematical space

projection

P 3

hZa1Za2Za3 . . . Zak+3i > 0

where h. . . i is (k+3)x(k+3) determinant 

Za
Y�! za

P k+3 P 3

2 2
convex hall

hzizi+1zjzj+1i > 0

{h1234i, h1235i, . . . , h123ni} has k sign flips

(Arkani-Hamed, Thomas, JT 2017)



Definition of Amplituhedron

✤ Constraints on positive geometry and the projection

positive geometry in
P 3+k

kinematical space

projection

P 3

hZa1Za2Za3 . . . Zak+3i > 0

where h. . . i is (k+3)x(k+3) determinant 

Za
Y�! za

P k+3 P 3

2 2
convex hall

hzizi+1zjzj+1i > 0

{h1234i, h1235i, . . . , h123ni} has k sign flips

(Arkani-Hamed, Thomas, JT 2017)

example: {h1234i, h1235i, h1236i, h1237i}
n=7
k=2

+ ++ -
+ + +-



Definition of Amplituhedron

✤ Constraints on positive geometry and the projection

positive geometry in
P 3+k

kinematical space

projection

P 3

hZa1Za2Za3 . . . Zak+3i > 0

where h. . . i is (k+3)x(k+3) determinant 

Za
Y�! za

P k+3 P 3

2 2
convex hall

hzizi+1zjzj+1i > 0

{h1234i, h1235i, . . . , h123ni} has k sign flips

analogue of (13)>0 for G+(2, 4)

(Arkani-Hamed, Thomas, JT 2017)



Definition of Amplituhedron

✤ Tree-level

✤ Loop integrand            

hZa1Za2Za3 . . . Zak+3i > 0An,k,`=0

hzizi+1zjzj+1i > 0

{h1234i, h1235i, . . . , h123ni} has k sign flips
⌦n,k(zj) ! An,k(zj , e⌘j)

An,k,`

for each line (loop momentum): h(AB)jzizi+1i > 0

for each pair of lines: h(AB)j(AB)ki > 0

⌦n,k,`(zj , (AB)k) ! In,k,`(zj , e⌘j , (AB)k)

4k

4k + 4`

form

form

tree-level
amplitude

loop integrand

{h(AB)j12i, h(AB)j13i, . . . h(AB)j1ni} has (k+2) sign flips

(Arkani-Hamed, Thomas, JT 2017)



From geometry to amplitudes

✤ Amplituhedron: space of points and lines in projective space

✤ Turn the physics problem of calculating scattering 
amplitudes to a math problem of triangulations

✤ Same S-matrix: physics properties are consequences of 
positivity geometry of Amplituhedron

triangulate the space into “simplices” = elementary regions 
for which the form is trivial dlog form and sum them

⌦ =
dx1

x1

dx2

x2
. . .

dx4k+4`

x4k+4`
xk = f(zi, (AB)j)where



Exploring Amplituhedron
(Arkani-Hamed, JT 2013) (Arkani-Hamed, Thomas, JT 2017)

(Arkani-Hamed, Langer, Yelleshpur Srikant, JT 2018) (Kojima 2018)

(Langer, Kojima to appear) (Herrmann, Langer, Zheng, JT, to appear)

(Rao  2017, 2018)



known results up to 2-loop (for MHV configuration) for any n

Triangulations

✤ Systematic approach to triangulating the Amplituhedron 
is still missing 

✤ A number of non-trivial explicit calculations

✤ All-loop order data for boundaries (cuts of integrand)

✤ Recent work on the rigorous understanding of 
Amplituhedron for simple cases

higher      and higher     complicated`k

(Arkani-Hamed, Rao, Kojima, Langer, JT)

(Williams, Lam, Postnikov, Karp, Galashin)

(Arkani-Hamed, Yellshpur, Langer, JT)



Dual Amplituhedron 

✤ Original idea: amplitude = volume -> much desired 

✤ We do not know how to dualize Amplituhedron

has no boundary at the vertex (1235), the spurious pole never arises. The spurious
poles only arise from the representation of P6 as the di↵erence of T1345 and T1365,
which requires the insertion of a spurious boundary.

An observation as elementary as school geometry now allows a marvellous applica-
tion of this identification of spurious boundaries. Note that P6 can be decomposed
in a quite di↵erent way into the sum of three tetrahedra:

P6 = T1346 + T3546 + T5146

This is most easily seen in the dual picture (Figure 3), where these three tetrahedra
meet on their common edge {46}.

Figure 3: In the dual representation, P6 appears as the join of two tetrahedra,
with 5 vertices, 9 edges and 6 faces.

It follows that the volume of this polytope can also be written as

1

h1246ih2346i

✓
h1346i3

h1234ih1236i

◆
+

1

h2346ih2546i

✓
h3546i3

h2345ih2356i

◆

+
1

h1246ih2546i

✓
h5146i3

h1245ih1256i

◆
(22)

But this expression corresponds exactly to the formula (2) for the amplitude. Thus
twistor geometry reduces the hexagon identity almost to triviality in the special
case of split-helicity.

In this case it is the vertices V146, V346, V546 that correspond to spurious poles.
(Again, this is more easily seen in the dual picture, where these vertices correspond
to the internal faces which split the polyhedron into three parts.)

14

dual

same as in real spaces, it is also legitimate to picture the contour integrals using
figures in three real dimensions, and we shall do so in the following.

We now note that likewise

h1365i3

h1235ih2365ih1236ih1265i =

Z

T1365

6

(W.Z2)4
DW (21)

where T1365 has bounding faces W.Z1 = 0, W.Z3 = 0, W.Z5 = 0, W.Z6 = 0.

In both integrals, the necessary condition h1235i 6= 0 can be interpreted as the con-
dition that the vertex V135 is a finite point when the bounding face corresponding
to Z

↵

2 is sent to infinity.

3.1 Why spurious poles cancel: spurious boundaries

We have neglected questions of sign in the preceding discussion, (and the overall
sign will continue to neglected) but more precisely, we have tetrahedral contours
equipped with an orientation. We shall use the sign of the permutation to indicate
relative orientation, thus writing T1365 = �T1356. Then the di↵erence between (18)
and (21) is equivalent to integrating over T1345 � T1365 = T1345 + T1356. This is a
new polyhedron P6 = T13[46]5 with 6 vertices, 9 edges and 5 faces (Figure 2). The
vertex V135 is absent. It follows that the combined integral, giving the amplitude,
remains finite even when the vertex V135 is at infinity. This explains geometrically
why the pole h1235i no longer appears in the amplitude.

Figure 2: The polyhedron P6 = T13[46]5, with 6 vertices, 9 edges and 5 faces.

Our guiding idea is that spurious poles arise from spurious boundaries. If we
consider the amplitude to be given by the integration of (W.Z2)�4 over P6, which

13

A = dlog form A = volume

One case
understood:
NMHV tree

(Hodges)

vertices <-> faces
edge <-> edges

faces <-> vertices



Dual Amplituhedron 

✤ Idea: study triangulations

✤ Internal triangulations of Amplituhedron = external 
triangulations of dual Amplituhedron

has no boundary at the vertex (1235), the spurious pole never arises. The spurious
poles only arise from the representation of P6 as the di↵erence of T1345 and T1365,
which requires the insertion of a spurious boundary.

An observation as elementary as school geometry now allows a marvellous applica-
tion of this identification of spurious boundaries. Note that P6 can be decomposed
in a quite di↵erent way into the sum of three tetrahedra:

P6 = T1346 + T3546 + T5146

This is most easily seen in the dual picture (Figure 3), where these three tetrahedra
meet on their common edge {46}.

Figure 3: In the dual representation, P6 appears as the join of two tetrahedra,
with 5 vertices, 9 edges and 6 faces.

It follows that the volume of this polytope can also be written as

1

h1246ih2346i

✓
h1346i3

h1234ih1236i

◆
+

1

h2346ih2546i

✓
h3546i3

h2345ih2356i

◆

+
1

h1246ih2546i

✓
h5146i3

h1245ih1256i

◆
(22)

But this expression corresponds exactly to the formula (2) for the amplitude. Thus
twistor geometry reduces the hexagon identity almost to triviality in the special
case of split-helicity.

In this case it is the vertices V146, V346, V546 that correspond to spurious poles.
(Again, this is more easily seen in the dual picture, where these vertices correspond
to the internal faces which split the polyhedron into three parts.)
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same as in real spaces, it is also legitimate to picture the contour integrals using
figures in three real dimensions, and we shall do so in the following.

We now note that likewise

h1365i3

h1235ih2365ih1236ih1265i =

Z

T1365

6

(W.Z2)4
DW (21)

where T1365 has bounding faces W.Z1 = 0, W.Z3 = 0, W.Z5 = 0, W.Z6 = 0.

In both integrals, the necessary condition h1235i 6= 0 can be interpreted as the con-
dition that the vertex V135 is a finite point when the bounding face corresponding
to Z

↵

2 is sent to infinity.

3.1 Why spurious poles cancel: spurious boundaries

We have neglected questions of sign in the preceding discussion, (and the overall
sign will continue to neglected) but more precisely, we have tetrahedral contours
equipped with an orientation. We shall use the sign of the permutation to indicate
relative orientation, thus writing T1365 = �T1356. Then the di↵erence between (18)
and (21) is equivalent to integrating over T1345 � T1365 = T1345 + T1356. This is a
new polyhedron P6 = T13[46]5 with 6 vertices, 9 edges and 5 faces (Figure 2). The
vertex V135 is absent. It follows that the combined integral, giving the amplitude,
remains finite even when the vertex V135 is at infinity. This explains geometrically
why the pole h1235i no longer appears in the amplitude.

Figure 2: The polyhedron P6 = T13[46]5, with 6 vertices, 9 edges and 5 faces.

Our guiding idea is that spurious poles arise from spurious boundaries. If we
consider the amplitude to be given by the integration of (W.Z2)�4 over P6, which

13

135

Explicit triangulations -> deduce the dual Amplituhedron
(Langer, Zhen, JT, in progress)



Four point problem

✤ For MHV amplitudes (k=0) there is no projection

✤ For 4pt (2->2 scattering) the all-loop problem can be 
phrased in a simple way: geometry of     lines in 

Zj = zj
positive geometry

= kinematical space P
3

hza1za2za3za4i > 0

h1234i > 0

h(AB)j12i, h(AB)j23i, h(AB)j34i, h(AB)j14i > 0

` P 3

for each:

4pt only:

{h(AB)j12i, h(AB)j13i, h(AB)j14i}
+ +-

h(AB)j13i < 0

h(AB)j24i < 0

pair of lines: h(AB)j(AB)ki > 0 not boundaries
inequalities needed

boundaries

boundaries



✤ Geometry of     lines in 

Four point problem

` P 3 h1234i > 0 fix

z1

z2

z3

z4

draw in 3-d space

v =

✓
1
~v

◆

z =
�
z1 z2 z3 z4

�
=

0

BB@

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA

space of z is 
completely fixed



✤ Geometry of     lines in 

Four point problem

` P 3 h1234i > 0 fix

z1

z2

z3

z4

draw in 3-d space

v =

✓
1
~v

◆

z =
�
z1 z2 z3 z4

�
=

0

BB@

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA

Line in this space

space of z is 
completely fixed

A

B

A = z1 + xz2 +�yz3
B = z3 + wz2 + zz4

D =

✓
1 x 0 �y
0 w 1 z

◆
matrix of 

coefficients
positive constraints: x,y,z,w>0

One 
line



✤ Geometry of     lines in 

✤ Triangulation: break the space into elementary regions

Four point problem

` P 3

Many 
lines

A1

A2

A`

B` B2

B1

Dj =

✓
1 xj 0 �yj
0 wj 1 zj

◆
each line

xj , yj , wj , zj > 0

mutual positivities
(xj � xk)(zj � zk) + (wj � wk)(yj � yk) < 0

x 2 (xmin, xmax) ! ⌦ =
(xmax � xmin) dx

(x� xmin)(x� xmax)
for each parameter



✤ Geometry of     lines in 

✤ Triangulation: break the space into elementary regions

Four point problem

` P 3

Many 
lines

A1

A2

A`

B` B2

B1

Dj =

✓
1 xj 0 �yj
0 wj 1 zj

◆
each line

xj , yj , wj , zj > 0

mutual positivities
(xj � xk)(zj � zk) + (wj � wk)(yj � yk) < 0

x 2 (xmin, xmax) ! ⌦ =
(xmax � xmin) dx

(x� xmin)(x� xmax)
for each parameter

Quadratic conditions: hard to solve



✤ Positive quadrant 

High school problem gg ! gg



✤ Positive quadrant 

✤ Vectors

High school problem gg ! gg

~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

Vol (1) =
dx1

x1

dy1
y1

dz1
z1

dw1

w1
=



✤ Positive quadrant 

✤ Vectors

High school problem gg ! gg

~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

Vol (1) =
dx1

x1

dy1
y1

dz1
z1

dw1

w1
=



✤ Positive quadrant 

✤ Vectors

High school problem gg ! gg

~a2 =

✓
x2

y2

◆
~b2 =

✓
z2
w2

◆
~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

⇥[Vol (1)]2 =
dx1

x1

dy1
y1

dz1
z1

dw1

w1

dx2

x2

dy2
y2

dz2
z2

dw2

w2
=



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

~a2 =

✓
x2

y2

◆
~b2 =

✓
z2
w2

◆
~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

✤ Impose: (~a2 � ~a1) · (~b2 �~b1)  0

�

� > 90o

Subset of configurations allowed: triangulate



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

~a2 =

✓
x2

y2

◆
~b2 =

✓
z2
w2

◆
~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

�

Vol (2) =
dx1

x1

dy1
y1

dz1
z1

dw1

w1

dx2

x2

dy2
y2

dz2
z2

dw2

w2

"
~a1 ·~b2 + ~a2 ·~b1

(~a2 � ~a1) · (~b2 �~b1)

#



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

~a2 =

✓
x2

y2

◆
~b2 =

✓
z2
w2

◆
~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

Vol (2) =

�



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

(~a1 � ~a2) · (~b1 �~b2)  0

(~a1 � ~a3) · (~b1 �~b3)  0

(~a2 � ~a3) · (~b2 �~b3)  0

~a1,~a2,~a3 ~b1,~b2,~b3

✤ Conditions

Vol (3) =



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

✤ Conditions

~b1,~b2, . . . ,~b`~a1,~a2, . . . ,~a`

(~ai � ~aj) · (~bi �~bj)  0

i, jfor all pairs
Vol (`) = . . . . . .



Amplituhedron recap

✤ Calculating perturbative amplitudes (tree-level, integrand) in 
this theory is reduced to the math problem

✤ Can not derive Amplituhedron from QFT

✤ For planar N=4 SYM this is a new definition for the S-matrix

✤ General: no dictionary between Lagrangian and geometry

Define geometry, kinematical data are input
Triangulations and calculating differential forms

We can prove that the volume function satisfies all 
properties of scattering amplitudes: factorization etc.



Step 1.1.1. in the program

✤ Maybe this is very special and no reformulation exists 
in general, maybe it exists but it is something else

✤ Right/wrong: analyze “theoretical data”, look for new 
structures, make proposals and check them 

✤ Step-by-step process, all steps require new ideas
Lower supersymmetry, other theories, spins, masses
Final (integrated) amplitudes
UV physics, renormalization
…..



Thank you!


