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Introduction

Strongly coupled physics is notoriously difficult to
access.

We do not have small parameters in which to do a
perturbative expansion. Our most basic notions of field
theory are of a perturbative nature.

Make use of symmetries, look at special limits/
subsectors where things simplify.

Here: study theories with a global symmetry group.
Hilbert space of the theory can be decomposed into
sectors of fixed charge Q under the action of the global
symmetry group.

Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a
perturbative expansion!



Introduction

- fixed points in RG flows
- critical phenomena
+quantum gravity (via AdS/CFT)

- string theory (WS theory s

Conformal field theories (CFTs) do not have any
intrinsic scales, most have by naturalness couplings of
O(l).

Possibilities: analytic (2d), conformal bootstrap (d>2),
lattice calculations, non-perturbative methods...

Prime candidate for the large-charge approach.

(Also: they come with a lot of space-time symmetry
that will help us in practice to constrain the eff. action.)



Introduction

The large-charge approach consists of 2 steps:
|. identify the symmetry breaking patterns due to
charge fixing for a given order parameter/field

2. write an effective action for the low-energy DOF and
compute physical quantities

Step |:start from the global symmetries of the system
and how they act on the order parameter.

Example: in the superfluid transition of 4He, it is known
that the system has an O(2) symmetry.

Assume that, just like in the UV, the order parameter is
a complex scalar that transforms the same way under

O(2).



Introduction

Write down Wilsonian effective action. In general:
infinitely many terms - not so useful.
Make self-consistent truncation at large charge:

* Set a cutoff A\ obeying __~ space dimension
typical scale of the 1 1 QY
system \‘Z <AL % =7

* write a linear sigma model action for the order
parameter.Work at criticality: impose scale invariance
of the action, assuming that the fields have vanishing
anomalous dimension (at leading order in 1/Q)

* determine the fixed-charge ground state

* compute the quantum fluctuations to verify that they
are parametrically small when Q >> |.



Introduction

In a sector of fixed charge, the classical solution around
which the quantum fluctuations are computed will

generically break both spacetime (Lorentz) and global
symmetries: Goldstone bosons

Step 2: write down EFT encoded by Goldstones.
Similar techniques to chiral perturbation theory.
Important difference: the symmetry breaking comes
from fixing the charge (NOT dynamical).

Use EFT to calculate the CFT data (anomalous
dimensions, 3-pt functions).

Wilsonian action has only a handful of terms that are
not suppressed by the large charge. Useful!



Introduction

Some questions:

Does it work!?

For what kinds of theories does it work!?

In how many space-time dimensions!?

For what kinds of global symmetries does it work!?
What happens if we fix several charges
independently?

What can we learn via this approach?
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The O(2) model



The O(2) model

Consider simple model: O(2) model in (2+1) dimensions
Loy = 0,¢" "¢ — g*(¢"¢)°

Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

Global U(l) symmetry:  @rp =ae™  x — x + const.

Look at scales: put system in box (2-sphere) of scale R
Second scale given by U(l) charge Q: »*/? ~ Q'/?/R

Study the CFT at the fixed point in a sector with

| 1/2 UV scale
= <A< QR < g2

cut-off of effective theory
Write Wilsonian action.




The O(2) model

Assume large vev fora: A< a’® <y’

scalar curvature

B
Lig = % 0,a0"a + %b2a2 0ux 0"x — 1_672! ga6 + higher derivative terms

dimensionless constants
Lagrangian is approximately scale-invariant.

 has approximately mass dimension |/2 and the action
has a potential term o |p|°

Do semi-classical analysis: solve classical e.o.m. at fixed

Noether charge.
=y T
Classical solution at lowest energy and fixed global

charge becomes the vacuum of the quantum theory.

ba’x Q ~ 47 R*bvV ) a?



The O(2) model

Classical solution: non-const. vev

@
T W =kt

<CL>:U, <>.(>::LL:

Fixed-charge ground state is homogeneous in space.
Determine radial vev v by minimizing the classical

potential: 0\? 1 . Rv2+éfu6
202 16 6
™~

‘/cl(v) Vclass —

T

centrifugal term

D~ Q1/4
large condensate is
compatible with our
assumption a > 1
/Lf\,pl/z
v)

(V)



The O(2) model

Ground state at fixed charge breaks symmetries:

expl. spont.

SO(L 4)spacetime X O(Z)global — SO(S)space X D X O(Q)global — SO(B)space X D/

D" =D — p0O(2)

Quantum story: study the low-energy spectrum
Parametrize fluctuations on top of the classical vacuum

A

X =t + X <+— Goldstone

a =7+ a
/v (V)
massive mode, not relevant
for low-energy spectrum m ~ O(v/Q)

Go to NLSM: Integrate out a (saddle point for LO).
Dynamics is described by a single Goldstone field X:

L10 = ks (D, 0¥ x)?/? «— AN get.this purely.by
dimensional analysis



The O(2) model

Use dimensional analysis and scale invariance to
determine (tree-level) operators in effective action
beyond LO (scalar operators of scaling dimension 3,
including curvatures of the background metric)

Use p-scaling to determine which terms appear:
Ox ~ p2,. 9.0y~ p /4

Op/?) O35 = | DX [P LO Lagrangian
; «~—conf.inv. combination,
O(p'/?) : O1/2 = R) aX|+2(a| Ox|) negative p-scaling

| Ox|

scale-inv. but NOT
conformally inv.
For homogeneous solutions, there are no other terms
contributing to the effective Lagrangian at non-negative

p-scaling for d>1.



The O(2) model
Result:

L = ks/5(0,x0"X)*? + k1 o R0, x0"x) " + O(Q~Y/?)

\

dimensionless parameters suppressed by inverse
powers of Q

To be understood as an expansion around the classical
ground state ut + ¥

Expand action to second order in fields:
L = k3/2,u3 + k‘l/gR,u + (875)2)2 — %(VSZ)%)Q + ...

Compute zeros of inverse propagator and get

dispersion relation: p
P Wp = % — dictated by conf. invariance 1/vd

Spontaneous symmetry breaking
= X is relativistic Goldstone (type |)

= superfluid phase of O(2) model



The O(2) model

Are also the quantum effects controlled?
All effects except Casimir energy are suppressed
(negative p-scaling)

Effective theory at large Q:

vacuum + Goldstone + |/Q-suppressed corrections
Energy of classical ground state at fixed charge:

2 dimensionless parameters (b, A)
N

€3/2(~3/2 | €1/2 1/2 —1/2
Ex(Q) = @ RVVQ =+ O0(Q ")
V- 2

dependence on manifold




The O(2) model

Use state-operator correspondence of CFT:

R° R x S
conformal a1 - Hy energy
dimension ——|
N
Sd—1

Conformal dimension of lowest operator of charge Q:

one-loop vacuum
energy of Goldstone

C
D(Q) = 2?:;3623/2 +2¢/7e12QY2 —0.094 + O(Q™/?)
T
S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]
1 0.0937 ...
BEyac = (20 + 1) log(w?® + I(1 + 1)) = _1/9162) — _
e =57 | 5o §j B +1(L+ 1)) = 5= ((<1/218Y) = -



The O(2) model

Our prediction:

D(Q) = ;32%@3/2 +2v/T 1 2Q"? — 0.094 4+ O(Q™/?)
IndependentMconﬁrmatioq fromlthe IaFtice: .
12
10 |
_ 8t :
2 | | Excellent
agreement!!
ol ¢3/2 = 1.195(10)
2 | VG data o | €12 = 0.075(10)
fit ——
works for smallo/v 2 4 6 8 10
c h e rge * Wh)” 7 Q D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711]

Large-charge expansion works extremely well for O(2).
Where else?



Beyond O(2)

Where else can apply the large-charge expansion?
Try out other known CFTs/assume they exist.

Obvious generalization in 3d: O(2n) vector model
non-Abelian global symmetry group: new effects

SU(N) matrix model in 3d.

Not many examples of (non-susy, non-fermionic) CFTs
known in 4d.
Asymptotically safe CFT (UV fixed point)

Superconformal CFTs in 3d and 4d. Cases with moduli
space work differently!

Non-relativistic CFTs (Schrodinger symmetry) in 3d, 4d
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Beyond O(2):
3d O(2n) vector model



The O(2n) vector model

Generalize to O(2n).

2n
1 1 1 A
= aqu ra = a a aa\3 1. .9 2
L—zugb(‘?gb 2;_1(8Rgbqb —|—12(gb¢)>, a=1,...,2n R; x R

U(n) C O(2n)
1 , 1 .
@1:ﬁ(¢1+2¢2)7 @2:ﬁ(¢3+z¢4)7 e
Fix ©t<n U(l) charges:

/dd‘lazz‘ (Pip; — Pipi) = Q; = vol. X p;

Solution for homogeneous ground state:

Spi:\@

QO;H_]':O, jzly'”?n_kv/

2 % _1 3 A.
Az = T u4\R+\/R2+W2 (ZQz)2

LA et i=1,...k,
same for all fields!




The O(2n) vector model

Fixing k charges explicitly breaks O(2n) to
O(2n-2k) x U(k).

We can always rotate (3) = (A1, ..., 4,0, ..)

by a U(k) transformation into (o,...,0, \/1“?+ +Ae 0,..)

Vacuum breaks symmetry spontaneously to
O(2n-2k) x U(k-1).

We also see that all homogeneous states of minimal
energy with fixed total charge (Q: +Q2+---+Qx) are
related by an U(k) transformation and have the same
energies (and conformal dimensions).

What happens if instead, we choose a configuration with
k different chemical potentials that cannot be rotated
into the state (0.--.,0, %5,0,...,0)?

J/ \ - J/
v

k—1 n—k
Ground state must be inhomogeneous!




The O(2n) vector model

For quantum description, write effective theory for
fluctuations around the ground state.

Expand Lagrangian around the ground state

(0,...,0,2%,0,...,0)
ktl ntk
ttigon /v b — hap—1
U(l) sector: ¢r= J5e#tie=/ (v+¢2k_1) Pk-1
( ) v dor — Par + 0,
U(k-1) sector: ¢i=e*"¢; i U9,

Developing to second order in fields:

L = (0—in)g} (Ortip)ps + Y ¢igi— Y ViV,
1=1 1=k+1 =1

- ZM TR 2N2¢§k—1

Find inverse propagators and dlsperS|on relations.



The O(2n) vector model
We expect dim[U(k)/U(k-1)] = 2k-1 Goldstone d.o.f.

Massless modes:

2 p* p° 6
w”r:4_pb2_8_,u4+0('u ) k — 1 times
o 1 p*

w2 = —p* + +0(u™) one time
Qv\?ﬁ 2

There are “conformal” Goldstone

- | relativistic Goldstone w x p

- k-1 non-relativistic Goldstones (count double) w o p°

Nielsen and Chadha; Murayama and Watanabe
14+2x (k—1) =2k — 1 = dim(G/H)
Non-relativistic Goldstones have no zero-point energy
in flat space and contribute to the conformal dimensions
only at higher order. Ground-state energy again
determined by a single relativistic Goldstone.



The O(2n) vector model

Same formula for anomalous dimensions as for O(2):

n-dependent universal for O(2n)

C3 /‘2/ \

Q%2 + 27 c12,QY% — 0.094 + O(Q™Y?)

D(Q) =

Qﬁ L. Alvarez-Gaume, O. LoukalD. Orlando and S. R., arXiv:1610.04495 [hep-th]
Comparison with old lattice data: verified at large n for

D CP(n-1) model  delaFuent
3.0

: * 0(2)
20

E 0(3)
15" * O(4)
1.0 e O(5)

7: ! ! ! | ! ! ! ! | ! ! ! ! | | | | | | Q

1 2 3 4
c3/2 decreases, ci/2 increases with increasing n

Hasenbusch, Vicari



The O(2n) vector model

New lattice data for O(4) model:
12

10

8 u
C3/2 = 1068(4)
| 61/2 — 0083(3)

D{, )
(@)

| | | | | | | | | |
o5 1 15 2 25 3 35 4 45 5
j D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. 1902.09542

Again excellent agreement with large-Q prediction!



R(L/2)

The O(2n) vector model

Only total charge matters for homogeneous case:

Correlation function:

a(Q) Co(r = L/2)

CA(r) ~ R(L/2) = L) ~ 1/[2(P(Q)—D(Q-1))
o) ™ rp@ ==ty RO~
(Q1,Q2)=(0,0) —=— | | | (Q1,Q2)=(0,3) —=—
(Q1,.Q2)=(0.1) — = 3 (Q1,Q2)=(1,2) o
1072 - (Q1,Q2)=(1,0) —e— : 10 (Q1,Q2)=(2,1) — = —
L (Q1,Q2)=(0.2) ! (Q1,Q2)=(3,0)
 (Q1,Q2)=(2.0) / (Q1.Q2)=(4.0)
%ﬁé,m/):“é”// , - (Q1.Q2)=(5.0)
10 T 10 |
107 -
: ‘ ‘ ‘ 107
0.01 0.01
1/L 1/L

D. Banerjee, Sh. Chandrasekharan, D. Orlando, S .R. unpublished

Parallel lines in log/log plot: conformal dimensions are the
same!



The O(2n) vector model

Now let’s take the limit » —

Start from first principles, expand path integral around
saddle point (no EFT!)

Leading order: theory is solvable and we find the same

powers in the large-Q expansion of the anomalous
dimension.

n

Here, Q large means @ > ]

NLO in N: reproduce dispersion relations of Goldstones.



The O(2n) vector model

Find coefficients of the expansion (leading order in N):

03/2 — 4/3\/7’('/%
C1/2 = 1/12y/n/m L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571
Within 10% of the lattice measurements for O(4):

55 = 1.18 c32 = 1.068(4)
s = 0.094 c1 79 = 0.083(3)

New lattice data (Chandrasekharan, Singh, unpublished):

1 o045t
06"
1 o040L
05

1, 035
04
I ' 030-
03 o) I
i | 025

02-




The O(2n) vector model

At large n, we now have more control and can also take the
limit of Q/N <« 1.

In this limit, the operator of charge Q whose dimension we

are calculating is ¢% o
engineering dimension of

@1{&9%(3)2
Q 2 w2N 2N

one-loop
tree-level

Can be verified by a perturbative (loop) calculation around
the zero-charge vacuum (Benvenuti, unpublished)!



The O(2n) vector model

We can also consider the case of 9 £0, T+0.
Unbroken phase (transition at T=0).

,— QAr
, / 2N V ) s )

3/2 —B P
A—gp/ 662p —F—F -+ e \/ﬁ<——|—

contribution of the type |l Goldstone (finite temp)
Calculate entropy from low-T expansion of F:

8F 7 1/2 SNL C(g) NL B /01/2
- — - - e e — - \/_ -

contribution of the type |l Goldstone (finite temp)

At T=0 consistent with EFT result (5S=0).

In the matrix model, this contribution will go like N/2.

Looks like entropy of RN BH (in the right double scaling
limit.)



An example in 4d:
asymptotically safe CFT



An asymptotically safe CFT

Look for CFTs with bosons in 4D. Start with a QCD-

inspired theory with quarks, gluons and scalars:
N flavors of fermions

gauge group SY/(N¢) N X Ng matrix of cplx
/ scalars
1

L= —-—To(F*"F,)+T Tr(QLHQr + QrH'
5 r( u) r(QiDQ) +yTr(QLHQr + QrH'Q1L) Q= L1 £ 190

+Tr(9,H 0" H) —uTr(H'H)" — o(Tr H H)? — % Tr(HH)

Rescaled couplings

o :g2NC N :yQNC - uNp Y vINZ
Ny 11
Control parameter = Yo%

In the limit Nz — 0o, N¢ — oo With Nr/Ne fixed: asymptotically safe.

Litim, Sannino

Perturbatively controlled UV fixed point with
26 4 V23 -1

agzﬁe%—... O‘Z_E€+ ap = 19 €+ ... ay; = —0.1373e+ ...




An asymptotically safe CFT

Study this theory at large charge.

L= — % Te(F™ F,,) + Te(QildQ) + y Tr(QLHQR + QrH QL)

r(0,HI0"H) — uTr(H'H)” — o(Tr H'H)? — %Tr(HTH

Global symmetry: SU(Ng)p x SUNp)g x U(1)5

New elements compared to vector model:

* His a matrix field, large non-Abelian global symmetry
* fermions and gluons are present

* 4D, different scalings

* UV fixed point, perturbatively controlled, trustable LSM
Large-charge expansion: focus on scalar sector



An asymptotically safe CFT

Noether currents:

Ji =5 (AHH — HaH"), Jr=—5 (H'dH - dH' H)
Corresponding charges:
dr, I/d3a:J2, QR:/d?’a:J%

spec(Qr) = {Ji", Ja's-- -, N} spec(Qr) = {1, o', ... N, }

Ansatz for homogeneous ground state: cartan subalgebra

“/A self-adjoint

Ho(t) _ eiMLtBe—iMRt
Impose charge conservation:
Qr = —iVe™rt([M}, BB — 2[My, BMrB'])e Mt = 0,
Or = iVeMrt([M%, BfB] — 2[Mg, Bt M, B])e™Mrt =

M commutes or anti-
comm with B diagonal

:>HO:eZMtB/



An asymptotically safe CFT

We find: 9r = —-2VMB?, Qr =2VB’M = -Q;,
Simple choice for charges:
N),
EEIICA Vet N A [ (1] 0)
\O‘— / traceless B=D NE L—I\O‘_]l/
) 2
EOM on ansatz #, = ¢*MtB: J =2V

R
21° = (u+ vNp)b* + 5

Assume ] large, expand in series:

27_[2 1/3 ) R V 1/3
e /3 —1/3 —5/3
H (v) 9 72<2n2> 3 +o(a)

Natural expansion parameter:
ap + Oy Qp + Oy

N
(utoNF) _,, — 9,0 > 1

872 Np N2
N2 e— huge \ |

Consistent for  Juw > — Jiot = JNF
© T—tiny

J=J




An asymptotically safe CFT

Ground-state energy: not universal

/

1/3 2/3 2 4/3
f_3 N jam\V g RV / s _ 1 (RN (V. / 40 1 @(5—2/3>
20n + 0y \ V 36 \ 272 144\ 6 2712

T .. 3 N; a3 Lo 1 —2/3
Specialize to 3-sphere: t= [3 s PP -+ 0(d )]

210 X + Xy

Classical result. What about Goldstone contributions,
what about fermions, gluons!?

At large charge, the fermions receive large masses and
decouple: kinetic term

//Yu kawa term
1 /3 %,

1/2 1/2
mll)— n _I_yZbZ ) 31/3+O<3—1/3>

Below the fermion mass scale, also gluons decouple.
Gap:

N Xh + &y

3
AymM = My, exp —22“9 y)

~ O(e)
Low-energy physics described by Goldstones only!



An asymptotically safe CFT

Symmetry-breaking pattjA}/&MtB

exp

SU(Nr) x SU(Np) x U(1) = SU 2) x SU(Np/2) x U(1 )QXSU(NF)

spont

Expect dim(SU(Nr)) = Nz —1 Goldstone DoF

Do quadratic expansion of the Lagrangian around the
ground state, find dispersion relations.

W= %‘F (Nr/2)* type Il Goldstone modes
W= \/% +. conformal Goldstone (type )

* 4. NE/2-2 type | Goldstones
3o, + 2,

W =

—

\causality constraint: 0 < ap/(3ap + 2a,) < 1
Constraint satisfied at fixed point.



An asymptotically safe CFT

Goldstones are organized in reps of ghe unbroken
adjoint

Symmetry group: / N\ //bifundamental
SU(NE/2) x SU(Ng/2)
representation L1 (= 1) (=) )
type I I I II
DOF 1 N2/4—1 N?/4—1 2xN?/4
V€10C1ty 1/\/§ \/306]1“#]1206\, \/306}106#% n/a
Vacuum energy of the type | Goldstones:  ¢(_1/g53) = - 2414
o

o 1 N2 Ap, 1
Eo = (2 X (TF — 1) \/Bah ey + ﬁ>§(—1/2]M3).

Conformal dimension (via state-operator corr.):

3 N? 1 1 -
AM) =roB(SY) =5 =70 [‘74/3+6j2/3—mj0+0(j 2/3)]

N2 1
(£ _ o Y =) w0212, ..
2 3an + 20, /3

D.Orlando, S.R., F. Sannino, arXiv:1905.00026




UV fixed point

Confinement

IR fixed point

Leaving the conformal
point



Leaving the conformal point

There is no reason why the large-charge approach
should not work for general QFTs.

Of course, there are many practical advantages in
working at conformality (restricting the form of terms
appearing in the eff. action, state/op. correspondence...)

First step: work near enough a conformal point that it
still dominates the dynamics.

Possible scenario: walking dynamics
UV fixed point g(p)

A

quasi-conformal




Leaving the conformal point

Consider simple case with a global U(l) at large charge
in 4D.

The leading term in the effective action (on torus) is
given in terms of the Goldstone,

Lnrsmlx]) = ka(0ux 0ux)°

Class. ground state: x=ut  p=(4kQ)"?/L

Start differently: two-derivative EFT for Goldstone:

2 dim[ 1] constants
La|x] = ‘% 0uX OuX — Che”

Introduce new field 0 to non-linearly realize conformal

invariance. O acts as the massive Goldstone of broken
conformal symmetry.



Leaving the conformal point

[f]= -1
Under dilatations: z — ez c—o—alf —

To non-linearly realize conformal symmetry, dress all

operators: /[Ok] =k conf.
O, — eF=Dfo 0, kin.tern:/ coupling
1 v 2 —20f 4 —4of 1 —20f v / ‘SR 2
Lerr|x, o] = 59“ fZe 0,x0v,x —C"e + 5¢ g’ 0,0 0,0 — 7z + O(R?)

Introduce complex field: = =0 +if.x

Recast action as b Lo u=aCt
/ v2f /
Llp] = 09" "9 — ERp"p — ulp™p)* + O(R?)

LSM model action, O appears as radial mode!



Leaving the conformal point

Fixed-charge ground state:

1
X = ut, o= 7 log(v),
M:4C4/3AQ/37 U:2f7r’\/c4/3/3/AQ7
cass = 3(C/ @), Ao = QYL

Expanding the fields around this vacuum, we find (as
expected) a massless and a massive mode (which
decouples in the EFT) = go back to NLSM

Can use it to explicitly break conformal invariance: add a

(small!) mass for O.

Lm[x,a] — LCFT[X,U] — Um(g)

m2

Un(o) = 16f02 (e749f +40f —1)

Energy-momentum tensor no longer traceless:




Leaving the conformal point

What is the signature of this mass term at large charge?

Action admits same type of fixed-charge ground state
solution.

. QY mlL?
Energy: B = i3~ — o7 log(Q) + co

Dispersion relations of the two modes:
Y L
W= —= :
V3 9cay3f2AG P

; 32A N 5 | m2 5
w = beg/s) = — .
/3 3 @ 8\/6[)64/3./\@ 2064/3]02*/\%2 P

Near the conformal point, physics is still governed by
fixed point. Makes sense to study conformal dimension.




Leaving the conformal point

Calculate 2-point fn on the cylinder and map it to flat
space via Weyl-rescaling:

<(9Q(t0,no)(’)_Q(t1,n1)>cy1 = /DxDJeXp[Qlog(gp(to,no)@(tl,nl)) —/dtdQLm[X,O'H

Large Q:integral is dominated by saddle point,

X = 1ut, o = const.

O t(), Ilp O_ tl) Nni))cv] = e_ECylltl_tO|
Q Q y

2,..2..4
64/3 mTmg,r

\02/3 = (m/(f=A*))*7/(2f?)

Map to flat space:

€Q €Q
<OQ<tO,nO)O—Q(t17n1)>ﬂaf, — ‘x‘A*+’r‘0ECy1 — ‘$’2A

A=A Ur
—A 1= o]
2cy 5 700 BT

D.Orlando, S.R., F. Sannino, arXiv:1909.08642






Summary

We studied various CFTs in sectors of large global charge

Concrete examples where a (strongly-coupled) CFT
simplifies in a special sector.

O(2N) model in 3d:in the limit of large U(Il) charge Q,

we computed the conformal dimensions in a
controlled perturbative expansion:

D(Q) = ;32%@3/2 + 2ﬁ01/2Q1/2 —0.094 + O(Q™"/?)

Excellent agreement with lattice results for O(2),
O(4)

Can be applied beyond vector model: SU(N) matrix
models, SCFT




Summary

Asymptotically safe CFT in 4d (scalars, fermions and
gauge fields). Controllable UV fixed point.

fermions and gluons decouple

large-charge expansion for scalar sector

interesting Goldstone spectrum
near-conformal/walking dynamics:

radial mode can be reinterpreted as dilaton of
spontaneously broken conformal symmetry.

Explicitly break conformality by adding mass term
for dilaton.

log(Q)-term appears in ground state energy:
signature of massive dilaton



Summary

Some questions:
* Does it work?
- For all the examples, we tried, yes! Confirmation
from lattice data (O(2) and O(4))
* For what kinds of theories does it work?
- (S)CFTs and non-relativistic CFTs
* In how many space-time dimensions!

d>| space dimensions
* For what kinds of global symmetries does it work?

- we checked U(1), O(2n) vector models, SU(N)
matrix models



Summary

* What happens if we fix several charges!?

- k charges with same chemical potential:
homogeneous solution with type | and type |l
Goldstones.

- different chemical potentials: inhomogeneous
solutions

* What can we learn via this approach!?
- calculate CFT data of strongly coupled CFTs at

large charge!



Further directions

Further study of supersymmetric models at large R-
charge (higher-dim. moduli spaces) meieman. wseds. ortando, Reffert, Watanabe

Connection to holography (gravity duals)

Loukas, Orlando, Reffert, Sarkar

Operators with spin; connection to large-spin results

Cuomo, de la Fuente Monin, Pirtskhalava, Rattazzi; Cuomo

Understanding dualities semi-classically at large charge

Use/check large-charge results in conformal bootstrap

Jafferis and Zhiboedov

Further lattice simulations: inhomogeneous sector,
general O(N) Chandrasekharan et al.



Further directions

Chern-Simons matter theories @large charge

Watanabe

4-€ eX anS|On Iar e Char e Arias-Tamargo, Rodriguez-Gomez, Russo;

P @ g g Badel, Cuon?o, Moning, Rattazzi; Walt{anabe
strongly coupled CFTs in 4d at IR fixed point
NOoON-Con fO ma I CaAS€ orlando , Reffert, Sannino; Dodelson, Hellerman, Yamazaki
Fishnet CFTs (non-unitary)

Study fermionic theories. Can large-charge approach
be used for QCD (e.g. large baryon number)!?



Thank you for your
attention!



