

The large-charge limit: New Developments

Susanne Reffert University of Bern

based on arXiv:1505.01537, 1610.04495, 1707.00710, 1809.06371, 1902.09542, 1905.00026, 1909.02571, 1909.08642, and work in progress with:

L. Alvarez-Gaume (SCGP), D. Banerjee (Humboldt U.),
Sh. Chandrasekharan (Duke), S. Favrod (Bern),
S. Hellerman (IPMU), O. Loukas, D. Orlando (INFN Torino),
F. Sannino (Odense), M. Watanabe (Weizmann)

Strongly coupled physics is notoriously difficult to access.

We do not have small parameters in which to do a perturbative expansion. Our most basic notions of field theory are of a perturbative nature.

Make use of symmetries, look at special limits/ subsectors where things simplify.

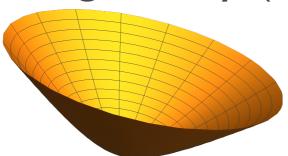
Here: study theories with a global symmetry group. Hilbert space of the theory can be decomposed into sectors of fixed charge Q under the action of the global symmetry group.

Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a perturbative expansion!

CFTs play an important role in theoretical physics:

- fixed points in RG flows
- critical phenomena
- quantum gravity (via AdS/CFT)
- string theory (WS theory)



Conformal field theories (CFTs) do not have any intrinsic scales, most have by naturalness couplings of O(1).

Possibilities: analytic (2d), conformal bootstrap (d>2), lattice calculations, non-perturbative methods...

Prime candidate for the large-charge approach.

(Also: they come with a lot of space-time symmetry that will help us in practice to constrain the eff. action.)

The large-charge approach consists of 2 steps:

- I. identify the symmetry breaking patterns due to charge fixing for a given order parameter/field
- 2. write an effective action for the low-energy DOF and compute physical quantities

Step I: start from the global symmetries of the system and how they act on the order parameter.

Example: in the superfluid transition of 4He, it is known that the system has an O(2) symmetry.

Assume that, just like in the UV, the order parameter is a complex scalar that transforms the same way under O(2).

Write down Wilsonian effective action. In general: infinitely many terms - not so useful.

Make self-consistent truncation at large charge:

- Set a cutoff Λ obeying typical scale of the system $\frac{1}{L} \ll \Lambda \ll \frac{1}{\ell_Q} = \frac{Q^{1/d}}{L}$
 - write a linear sigma model action for the order parameter. Work at criticality: impose scale invariance of the action, assuming that the fields have vanishing anomalous dimension (at leading order in I/Q)
 - determine the fixed-charge ground state
 - compute the quantum fluctuations to verify that they are parametrically small when Q >> 1.

In a sector of fixed charge, the classical solution around which the quantum fluctuations are computed will generically break both spacetime (Lorentz) and global symmetries: Goldstone bosons

Step 2: write down EFT encoded by Goldstones. Similar techniques to chiral perturbation theory. Important difference: the symmetry breaking comes from fixing the charge (NOT dynamical).

Use EFT to calculate the CFT data (anomalous dimensions, 3-pt functions).

Wilsonian action has only a handful of terms that are not suppressed by the large charge. Useful!

Some questions:

- Does it work?
- For what kinds of theories does it work?
- In how many space-time dimensions?
- For what kinds of global symmetries does it work?
- What happens if we fix several charges independently?
- What can we learn via this approach?

Overview

- Introduction
- The O(2) model
 - semi-classical treatment
 - quantum treatment
 - results and lattice comparison
- Beyond O(2)
 - O(2n) vector model
 - an asymptotically safe CFT
 - leaving the conformal point
- Summary/Outlook



Consider simple model: O(2) model in (2+1) dimensions

$$\mathcal{L}_{UV} = \partial_{\mu} \phi^* \, \partial^{\mu} \phi - g^2 (\phi^* \phi)^2$$

Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

Global U(I) symmetry: $\varphi_{IR} = a e^{ib\chi}$ $\chi \to \chi + \text{const.}$

Look at scales: put system in box (2-sphere) of scale R Second scale given by U(I) charge Q: $\rho^{1/2} \sim Q^{1/2}/R$

Study the CFT at the fixed point in a sector with

$$\frac{1}{R} \ll \Lambda \ll \frac{Q^{1/2}}{R} \ll g^2 \qquad \text{UV scale}$$
 cut-off of effective theory

Write Wilsonian action.

Assume large vev for a: $\Lambda \ll a^2 \ll g^2$

scalar curvature
$$\mathcal{L}_{\mathrm{IR}} = \frac{1}{2} \, \partial_{\mu} a \, \partial^{\mu} a + \frac{1}{2} b_{\mu}^{2} a^{2} \, \partial_{\mu} \chi \, \partial^{\mu} \chi - \frac{R}{16} a^{2} + \frac{\lambda}{6} a^{6} + \text{higher derivative terms}$$
 dimensionless constants

Lagrangian is approximately scale-invariant.

 ϕ has approximately mass dimension I/2 and the action has a potential term $\propto |\varphi|^6$

Do semi-classical analysis: solve classical e.o.m. at fixed Noether charge.

$$\rho = \frac{\delta \mathcal{L}_{IR}}{\delta \dot{\chi}} = b^2 a^2 \dot{\chi} \qquad Q \sim 4\pi R^2 b \sqrt{\lambda} a^4$$

Classical solution at lowest energy and fixed global charge becomes the vacuum of the quantum theory.

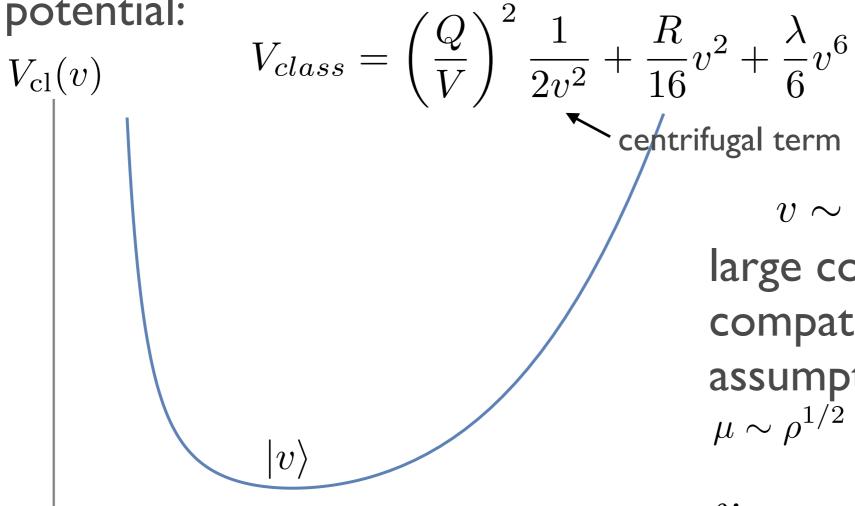
Classical solution:

$$\langle a \rangle = v, \qquad \langle \dot{\chi} \rangle = \mu = \frac{Q}{V \cdot v^2}, \qquad \langle \chi \rangle = \mu t$$

Fixed-charge ground state is homogeneous in space.

Determine radial vev v by minimizing the classical

potential:



centrifugal term

$$v \sim Q^{1/4}$$

large condensate is compatible with our assumption $a \gg 1$ $\mu \sim \rho^{1/2}$

non-const. vev

v

Ground state at fixed charge breaks symmetries:

$$SO(1,4)_{\text{spacetime}} \times O(2)_{\text{global}} \xrightarrow{\text{expl.}} SO(3)_{\text{space}} \times D \times O(2)_{\text{global}} \xrightarrow{\text{spont.}} SO(3)_{\text{space}} \times D'$$

$$D' = D - \mu O(2)$$

Quantum story: study the low-energy spectrum Parametrize fluctuations on top of the classical vacuum

$$a = v + \hat{a} \qquad \chi = \mu \, t + \frac{\hat{\chi}}{v} \qquad \qquad \text{Goldstone}$$

massive mode, not relevant $\mathbf{\hat{}}$ for low-energy spectrum $m \sim \mathcal{O}(\sqrt{Q})$

Go to NLSM: Integrate out a (saddle point for LO). Dynamics is described by a single Goldstone field χ :

$$\mathcal{L}_{LO}=k_{3/2}(\partial_{\mu}\chi\,\partial^{\mu}\chi)^{3/2}$$
 can get this purely by dimensional analysis

Use dimensional analysis and scale invariance to determine (tree-level) operators in effective action beyond LO (scalar operators of scaling dimension 3, including curvatures of the background metric)

Use ρ -scaling to determine which terms appear:

$$\mathcal{O}(\rho^{3/2}): \qquad \mathcal{O}_{3/2} = |\partial\chi|^3 - \text{LO Lagrangian}$$

$$\mathcal{O}(\rho^{1/2}): \qquad \mathcal{O}_{1/2} = R|\partial\chi| + 2\frac{(\partial|\partial\chi|)^2}{|\partial\chi|} \qquad \text{negative ρ-scaling}$$
 scale-inv. but NOT conformally inv.

For homogeneous solutions, there are no other terms contributing to the effective Lagrangian at non-negative ρ -scaling for d>1.

Result:

$$\mathcal{L} = k_{3/2} (\partial_{\mu} \chi \partial^{\mu} \chi)^{3/2} + k_{1/2} R (\partial_{\mu} \chi \partial^{\mu} \chi)^{1/2} + \mathcal{O}(Q^{-1/2})$$
 dimensionless parameters suppressed by inverse powers of Q

To be understood as an expansion around the classical ground state $\mu t + \hat{\chi}$

Expand action to second order in fields:

$$\mathcal{L} = k_{3/2}\mu^3 + k_{1/2}R\mu + (\partial_t \hat{\chi})^2 - \frac{1}{2}(\nabla_{S^2}\hat{\chi})^2 + \dots$$

Compute zeros of inverse propagator and get dispersion relation: $\omega_{\vec{p}} = \frac{|\vec{p}|}{\sqrt{2}} \longrightarrow \text{dictated by conf. invariance } 1/\sqrt{d}$

Spontaneous symmetry breaking

- $\Rightarrow \chi$ is relativistic Goldstone (type I)
- \Rightarrow superfluid phase of O(2) model

Are also the quantum effects controlled?

All effects except Casimir energy are suppressed (negative ρ -scaling)

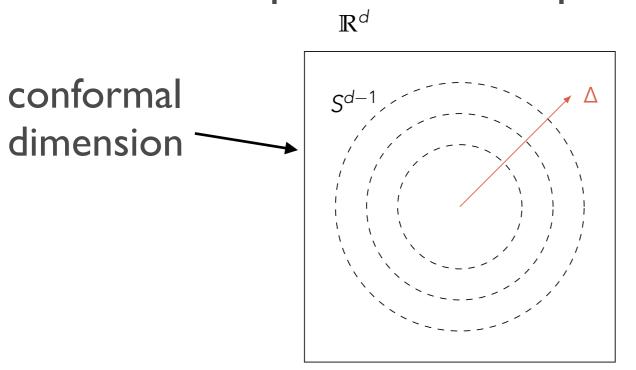
Effective theory at large Q:

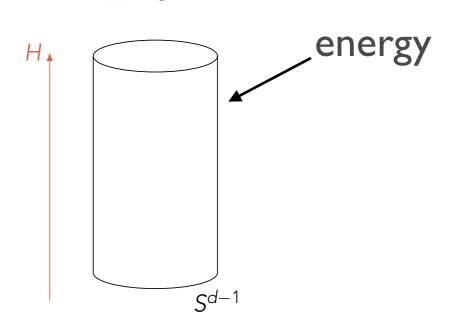
vacuum + Goldstone + I/Q-suppressed corrections

Energy of classical ground state at fixed charge:

2 dimensionless parameters (b,
$$\lambda$$
)
$$E_{\Sigma}(Q) = \frac{c_{3/2}}{\sqrt{V}}Q^{3/2} + \frac{c_{1/2}}{2}R\sqrt{V}Q^{1/2} + \mathcal{O}(Q^{-1/2})$$
 dependence on manifold

Use state-operator correspondence of CFT:





 $\mathbb{R} \times S^{d-1}$

Conformal dimension of lowest operator of charge Q: one-loop vacuum

$$D(Q) = \frac{c_{3/2}}{2\sqrt{\pi}}Q^{3/2} + 2\sqrt{\pi}\,c_{1/2}Q^{1/2} - 0.094 + \mathcal{O}(Q^{-1/2})$$
 energy of Goldstone

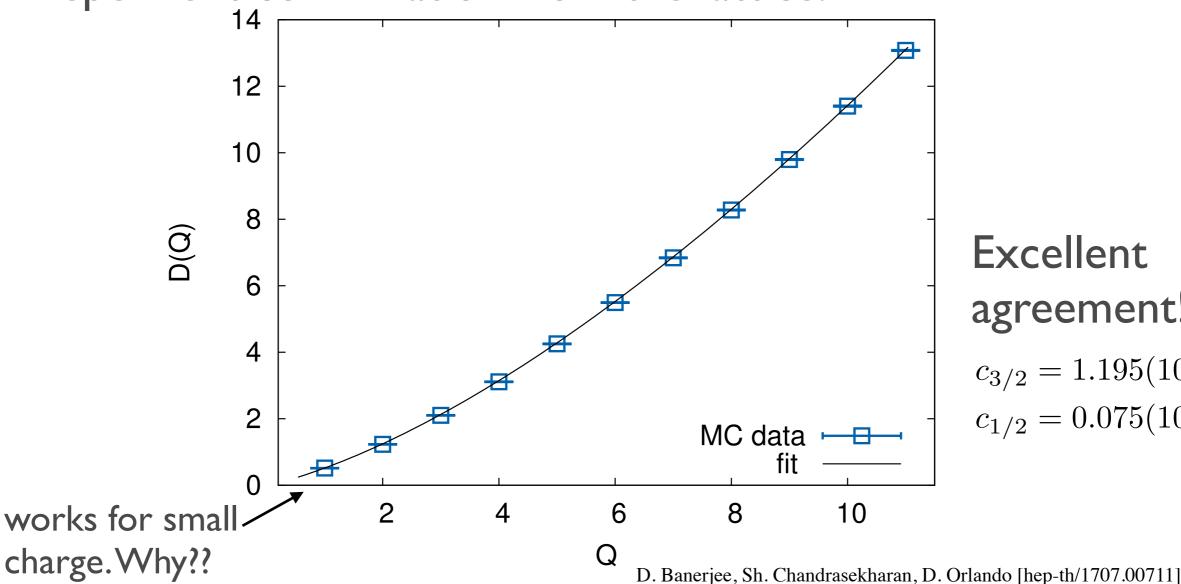
S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]

$$E_{\text{VAC}} = \frac{1}{2\sqrt{2}r} \int \frac{d\omega}{2\pi} \sum_{l=0}^{\infty} (2l+1) \log(\omega^2 + l(l+1)) = \frac{1}{2\sqrt{2}r} \zeta(-1/2|S^2) = -\frac{0.0937...}{r}$$

Our prediction:

$$D(Q) = \frac{c_{3/2}}{2\sqrt{\pi}}Q^{3/2} + 2\sqrt{\pi}c_{1/2}Q^{1/2} - 0.094 + \mathcal{O}(Q^{-1/2})$$

Independent confirmation from the lattice:



Excellent agreement!!

$$c_{3/2} = 1.195(10)$$

$$c_{1/2} = 0.075(10)$$

Large-charge expansion works extremely well for O(2).

Where else?

Beyond O(2)

Where else can apply the large-charge expansion?

Try out other known CFTs/assume they exist.

Obvious generalization in 3d: O(2n) vector model non-Abelian global symmetry group: new effects

SU(N) matrix model in 3d.

Not many examples of (non-susy, non-fermionic) CFTs known in 4d.

Asymptotically safe CFT (UV fixed point)

Superconformal CFTs in 3d and 4d. Cases with moduli space work differently!

Non-relativistic CFTs (Schrödinger symmetry) in 3d, 4d



Beyond O(2): 3d O(2n) vector model

Generalize to O(2n).

$$L = \frac{1}{2} \partial_{\mu} \phi^{a} \partial^{\mu} \phi^{a} - \frac{1}{2} \sum_{i=1}^{2n} \left(\frac{1}{8} R \phi^{a} \phi^{a} + \frac{\lambda}{12} (\phi^{a} \phi^{a})^{3} \right), \quad a = 1, \dots, 2n \qquad \mathbb{R}_{t} \times \mathbb{R}^{2}$$

$$U(n) \subset O(2n)$$

$$\varphi_{1} = \frac{1}{\sqrt{2}} (\phi_{1} + i\phi_{2}), \qquad \varphi_{2} = \frac{1}{\sqrt{2}} (\phi_{3} + i\phi_{4}), \qquad \dots,$$

Fix $k \le n$ U(I) charges:

$$\int d^{d-1}x \, i \, (\dot{\varphi}_i \varphi_i^* - \dot{\varphi}_i^* \varphi_i) = \overline{Q}_i = \text{vol.} \times \overline{\rho}_i$$

Solution for homogeneous ground state:

$$\begin{cases} \varphi_i = \frac{1}{\sqrt{2}} A_i \, e^{i\mu t}, & i=1,\ldots,k\,,\\ \varphi_{k+j} = 0, & j=1,\ldots,n-k\,, \end{cases}$$
 same for all fields!
$$A_i^2 = \frac{Q_i}{4\pi\mu}, \qquad \mu = \frac{1}{4} \sqrt{R + \sqrt{R^2 + \frac{2}{\pi^2} \lambda (\sum_i Q_i)^2}}$$

Fixing k charges explicitly breaks O(2n) to $O(2n-2k) \times U(k)$.

We can always rotate $\langle \vec{\varphi} \rangle = \frac{1}{\sqrt{2}}(A_1, \dots, A_k, 0, \dots)$ by a U(k) transformation into $(0, \dots, 0, \sqrt{\frac{A_1^2 + \dots + A_k^2}{2}}, 0, \dots)$

Vacuum breaks symmetry spontaneously to $O(2n-2k) \times U(k-1)$.

We also see that all homogeneous states of minimal energy with fixed total charge $(Q_1 + Q_2 + \cdots + Q_k)$ are related by an U(k) transformation and have the same energies (and conformal dimensions).

What happens if instead, we choose a configuration with k different chemical potentials that cannot be rotated into the state $(0, \dots, 0, \frac{v}{\sqrt{2}}, 0, \dots, 0)$?

Ground state must be inhomogeneous!

For quantum description, write effective theory for fluctuations around the ground state.

Expand Lagrangian around the ground state

$$\left(\underbrace{0,\ldots,0}_{k-1},\underbrace{\frac{v}{\sqrt{2}}},\underbrace{0,\ldots,0}_{n-k}\right)$$

$$\textbf{U(I) sector:} \quad \varphi_k = \frac{1}{\sqrt{2}} e^{i\mu t + i\hat{\phi}_{2k}/v} \left(v + \hat{\phi}_{2k-1} \right) \qquad \begin{cases} \hat{\phi}_{2k-1} \to \hat{\phi}_{2k-1} \\ \hat{\phi}_{2k} \to \hat{\phi}_{2k} + \theta \end{cases},$$

$$\begin{cases} \hat{\phi}_{2k-1} \to \hat{\phi}_{2k-1} \\ \hat{\phi}_{2k} \to \hat{\phi}_{2k} + \theta \end{cases}$$

$$U(k-1)$$
 sector: $\varphi_i = e^{i\mu t}\hat{\varphi}_i$

$$\hat{\varphi}_i \mapsto \tilde{U}_i{}^j \hat{\varphi}_j$$

Developing to second order in fields:

$$\mathcal{L}^{(2)} = \sum_{i=1}^{k} (\partial_t - i\mu) \varphi_i^* (\partial_t + i\mu) \varphi_i + \sum_{i=k+1}^{n} \dot{\varphi}_i^* \dot{\varphi}_i - \sum_{i=1}^{n} \nabla \varphi_i^* \nabla \varphi_i$$
$$- \sum_{i=1}^{n} \mu^2 \varphi_i^* \varphi_i - 2\mu^2 \phi_{2k-1}^2$$

Find inverse propagators and dispersion relations.

We expect dim[U(k)/U(k-1)] = 2k-1 Goldstone d.o.f.

Massless modes:

$$\omega_{nr}^{2} = \frac{p^{4}}{4\mu^{2}} - \frac{p^{6}}{8\mu^{4}} + \mathcal{O}(\mu^{-6})$$

$$k - 1 \text{ times}$$

$$\omega_{r}^{2} = \frac{1}{2}p^{2} + \frac{p^{4}}{32\mu^{2}} + \mathcal{O}(\mu^{-4})$$
one time

There are

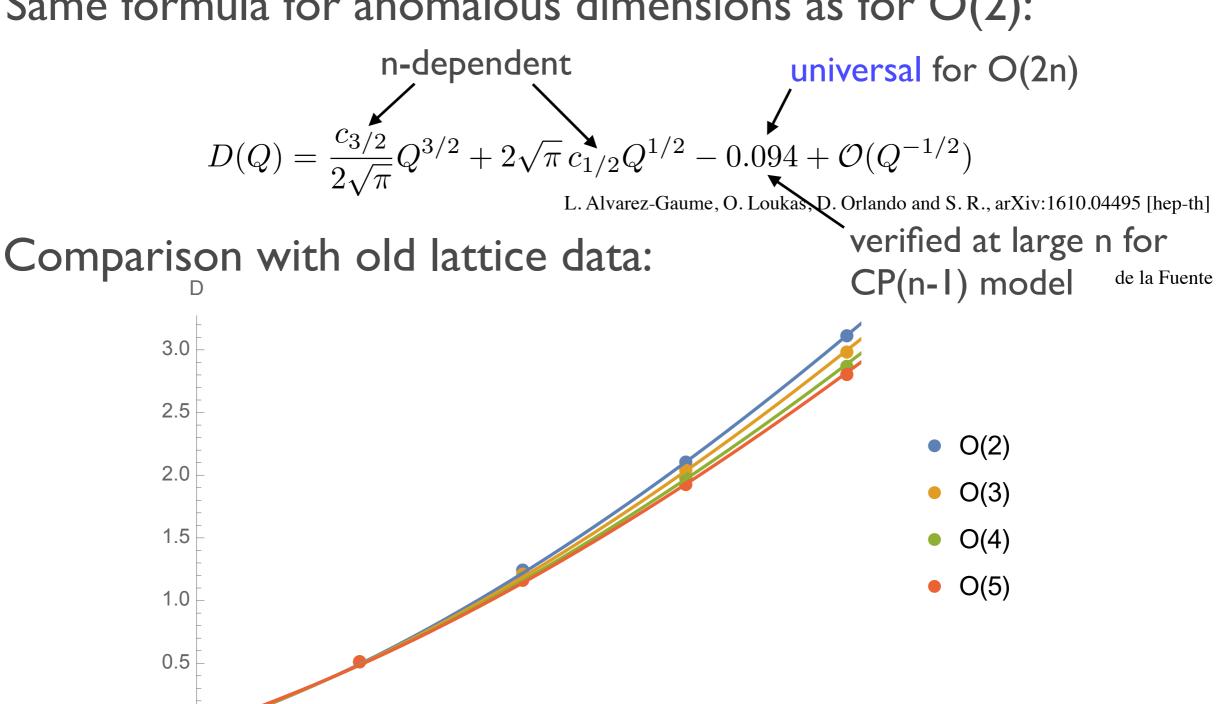
- `"conformal" Goldstone
- I relativistic Goldstone $\omega \propto p$
- k-l non-relativistic Goldstones (count double) $\omega \propto p^2$

Nielsen and Chadha; Murayama and Watanabe

$$1 + 2 \times (k - 1) = 2k - 1 = \dim(G/H)$$

Non-relativistic Goldstones have no zero-point energy in flat space and contribute to the conformal dimensions only at higher order. Ground-state energy again determined by a single relativistic Goldstone.

Same formula for anomalous dimensions as for O(2):



 $c_{3/2}$ decreases, $c_{1/2}$ increases with increasing n

Hasenbusch, Vicari

New lattice data for O(4) model:

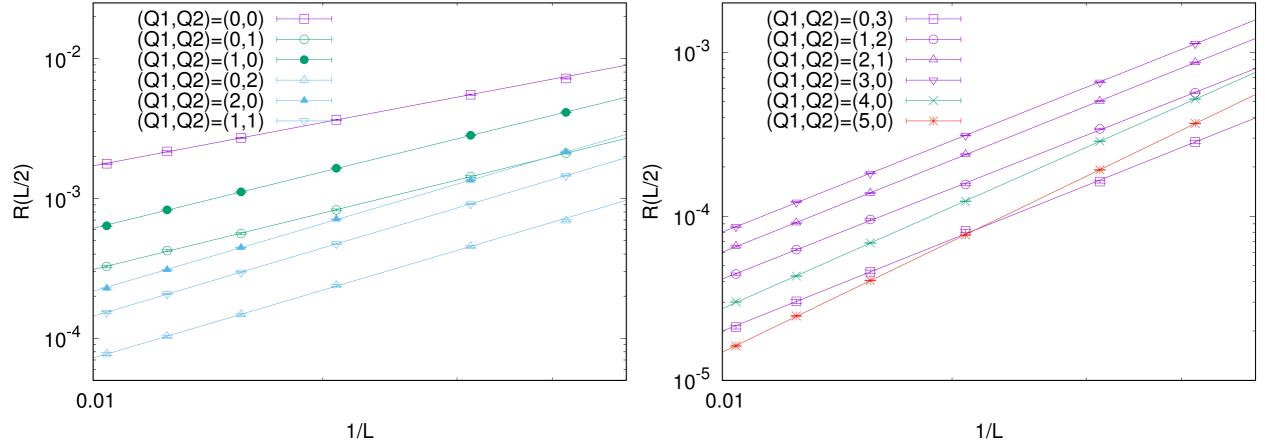


Again excellent agreement with large-Q prediction!

Only total charge matters for homogeneous case:

Correlation function:

$$C_Q(r) \sim \frac{a(Q)}{|\vec{r}|^{2D(Q)}}$$
 $R(L/2) = \frac{C_Q(r = L/2)}{C_{Q-1}(r = L/2)}$ $R(L) \sim 1/L^{2(D(Q) - D(Q-1))}$



D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. unpublished

Parallel lines in log/log plot: conformal dimensions are the same!

Now let's take the limit $n \to \infty$

Start from first principles, expand path integral around saddle point (no EFT!)

Leading order: theory is solvable and we find the same powers in the large-Q expansion of the anomalous dimension.

Here, Q large means $Q > \frac{n}{4}$

NLO in N: reproduce dispersion relations of Goldstones.

Find coefficients of the expansion (leading order in N):

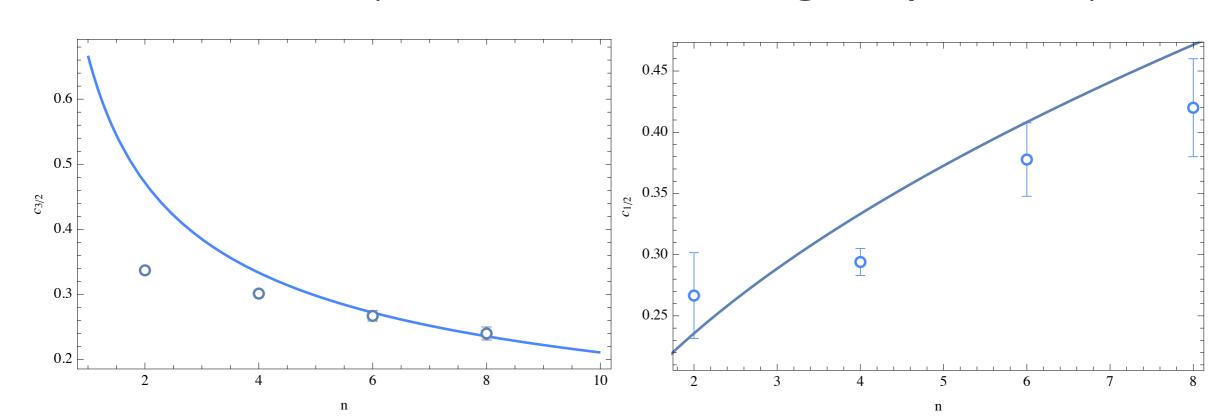
$$c_{3/2}=4/3\sqrt{\pi/n}$$

$$c_{1/2}=1/12\sqrt{n/\pi}$$
 L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571

Within 10% of the lattice measurements for O(4):

$$c_{3/2}^{n=4} = 1.18$$
 $c_{3/2} = 1.068(4)$ $c_{1/2}^{n=4} = 0.094$ $c_{1/2} = 0.083(3)$

New lattice data (Chandrasekharan, Singh, unpublished):



At large n, we now have more control and can also take the limit of $Q/N \ll 1$.

In this limit, the operator of charge Q whose dimension we are calculating is φ^Q .

engineering dimension of
$$\varphi$$

$$\frac{\Delta(Q)}{Q} = \frac{1}{2} + \frac{4}{\pi^2} \frac{Q}{N} + \mathcal{O}\left(\frac{Q}{2N}\right)^2$$
 one-loop tree-level

Can be verified by a perturbative (loop) calculation around the zero-charge vacuum (Benvenuti, unpublished)!

We can also consider the case of $Q \neq 0$, $T \neq 0$.

Unbroken phase (transition at T=0).

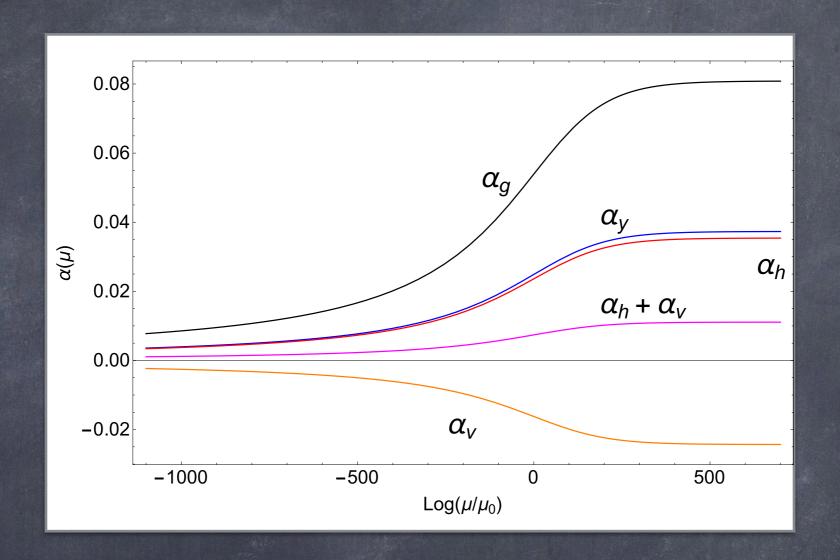
$$\Delta = \frac{2}{3}\rho^{3/2} - \frac{\pi^2}{6\beta^2}\rho^{1/2} - \frac{\zeta(3)}{\beta^3} + \dots + e^{-\beta\sqrt{\rho}}\left(\frac{\rho^{1/2}}{\beta^2} + \dots\right)$$
 contribution of the type II Goldstone (finite temp)

Calculate entropy from low-T expansion of F:

$$\mathcal{S} = \beta^2 \frac{\partial F}{\partial \beta} = \frac{\pi}{6} N V \frac{\rho^{1/2}}{\beta} + \frac{3NV\zeta(3)}{2\pi\beta^2} + \dots - \frac{NV}{2\pi} e^{-\beta\sqrt{\rho}} \left(\rho + 2\frac{\rho^{1/2}}{\beta} + \dots\right).$$
 contribution of the type II Goldstone (finite temp)

At T=0 consistent with EFT result (S=0).

In the matrix model, this contribution will go like N^2. Looks like entropy of RN BH (in the right double scaling limit.)



An example in 4d: asymptotically safe CFT

Look for CFTs with bosons in 4D. Start with a QCD-inspired theory with quarks, gluons and scalars: N_F flavors of fermions

 $\mathcal{L} = -\frac{1}{2}\operatorname{Tr}(F^{\mu\nu}F_{\mu\nu}) + \operatorname{Tr}(\bar{Q}i\not{D}Q) + y\operatorname{Tr}(\bar{Q}_LHQ_R + \bar{Q}_RH^\dagger Q_L) \\ + \operatorname{Tr}(\partial_\mu H^\dagger \partial^\mu H) - u\operatorname{Tr}(H^\dagger H)^2 - v(\operatorname{Tr}H^\dagger H)^2 - \frac{R}{6}\operatorname{Tr}(H^\dagger H)$

Rescaled couplings

$$\alpha_g = \frac{g^2 N_C}{(4\pi)^2}, \qquad \alpha_y = \frac{y^2 N_C}{(4\pi)^2}, \qquad \alpha_h = \frac{u N_F}{(4\pi)^2}, \qquad \alpha_v = \frac{v N_F^2}{(4\pi)^2}$$

Control parameter $\epsilon = \frac{N_F}{N_C} - \frac{11}{2}$

In the limit $N_F \to \infty$, $N_C \to \infty$ with N_F/N_C fixed: asymptotically safe.

Perturbatively controlled UV fixed point with

$$\alpha_g^* = \frac{26}{57}\epsilon + \dots$$
 $\alpha_y^* = \frac{4}{19}\epsilon + \dots$ $\alpha_h^* = \frac{\sqrt{23} - 1}{19}\epsilon + \dots$ $\alpha_{v1}^* = -0.1373\epsilon + \dots$

Study this theory at large charge.

$$\mathcal{L} = -\frac{1}{2}\operatorname{Tr}(F^{\mu\nu}F_{\mu\nu}) + \operatorname{Tr}(\bar{Q}i\not DQ) + y\operatorname{Tr}(\bar{Q}_LHQ_R + \bar{Q}_RH^{\dagger}Q_L)$$
$$+ \operatorname{Tr}(\partial_{\mu}H^{\dagger}\partial^{\mu}H) - u\operatorname{Tr}(H^{\dagger}H)^2 - v(\operatorname{Tr}H^{\dagger}H)^2 - \frac{R}{6}\operatorname{Tr}(H^{\dagger}H)$$

Global symmetry: $SU(N_F)_L \times SU(N_F)_R \times U(1)_B$

New elements compared to vector model:

- H is a matrix field, large non-Abelian global symmetry
- fermions and gluons are present
- 4D, different scalings
- UV fixed point, perturbatively controlled, trustable LSM Large-charge expansion: focus on scalar sector

Noether currents:

$$J_L = \frac{i}{2} \left(dH H^{\dagger} - H dH^{\dagger} \right),$$

$$J_L = \frac{i}{2} \left(dH H^{\dagger} - H dH^{\dagger} \right), \qquad J_R = -\frac{i}{2} \left(H^{\dagger} dH - dH^{\dagger} H \right)$$

Corresponding charges:

$$Q_L = \int \mathrm{d}^3 x \, J_L^0,$$

$$\operatorname{spec}(\mathcal{Q}_L) = \{J_1^L, J_2^L, \dots, J_{N_F}^L\}$$

$$Q_R = \int \mathrm{d}^3 x \, J_R^0$$

$$\operatorname{spec}(\mathcal{Q}_L) = \{J_1^L, J_2^L, \dots, J_{N_F}^L\} \qquad \operatorname{spec}(\mathcal{Q}_R) = \{J_1^R, J_2^R, \dots, J_{N_F}^R\}$$

Ansatz for homogeneous ground state: Cartan subalgebra $H_0(t) = e^{iM_L t} B e^{-iM_R t}$ self-adjoint

$$H_0(t) = e^{iM_L t} B e^{-iM_R t}$$

Impose charge conservation:

$$\dot{\mathcal{Q}}_L = -iVe^{iM_Lt} \left(\left[M_L^2, BB^{\dagger} \right] - 2 \left[M_L, BM_RB^{\dagger} \right] \right) e^{-iM_Lt} = 0,$$

$$\dot{\mathcal{Q}}_R = iVe^{iM_Rt} ([M_R^2, B^{\dagger}B] - 2[M_R, B^{\dagger}M_LB])e^{-iM_Rt} = 0$$

M commutes or anti- $\Rightarrow H_0 = e^{2iMt} B$ diagonal comm with B

We find: $Q_L = -2VMB^2$,

$$Q_R = 2VB^2M = -Q_L$$

Simple choice for charges:

$$M = \mu \begin{pmatrix} 1 & 0 \\ \hline 0 & -1 \end{pmatrix}, \text{ in su(N),}$$

$$\text{traceless } B = b \begin{pmatrix} 1 & 0 \\ \hline 0 & 1 \end{pmatrix}$$

$$Q_{L} = J \begin{pmatrix} 1 & 0 \\ \hline 0 & -1 \end{pmatrix}$$

$$J = 2Vb^{2}\mu$$

EOM on ansatz $H_0 = e^{2iMt}B$:

$$2\mu^2 = (u + vN_F)b^2 + \frac{R}{12}$$

Assume J large, expand in series:

$$\mu = \left(\frac{2\pi^2}{V}\right)^{1/3} \mathcal{J}^{1/3} + \frac{R}{72} \left(\frac{V}{2\pi^2}\right)^{1/3} \mathcal{J}^{-1/3} + \mathcal{O}\left(\mathcal{J}^{-5/3}\right)$$

Natural expansion parameter:

$$\mathcal{J} = J \frac{(u+vN_F)}{8\pi^2} = 2J \frac{\alpha_h + \alpha_v}{N_F} = 2J_{\rm tot} \frac{\alpha_h + \alpha_v}{N_F^2} \gg 1$$
 Consistent for $J_{\rm tot} \gg \frac{N_F^2}{\epsilon}$ tiny

An asymptotically safe CFT

Ground-state energy:

$$\mathsf{E} = \frac{3}{2} \frac{\mathsf{N}_{\mathsf{F}}^2}{\alpha_{\mathsf{h}} + \alpha_{\mathsf{v}}} \left(\frac{2\pi}{\mathsf{V}}\right)^{1/3} \left[\sqrt[3]{4/3} + \frac{\mathsf{R}}{36} \left(\frac{\mathsf{V}}{2\pi^2}\right)^{2/3} \sqrt[3]{3/3} - \frac{1}{144} \left(\frac{\mathsf{R}}{6}\right)^2 \left(\frac{\mathsf{V}}{2\pi^2}\right)^{4/3} \sqrt[3]{9/3} + \mathcal{O}\left(\mathcal{J}^{-2/3}\right) \right]$$

Specialize to 3-sphere:
$$E = \frac{3}{2r_0} \frac{N_F^2}{\alpha_h + \alpha_v} \left[\vartheta^{4/3} + \frac{1}{6} \vartheta^{2/3} - \frac{1}{144} \vartheta^0 + O(\vartheta^{-2/3}) \right]$$

Classical result. What about Goldstone contributions, what about fermions, gluons?

At large charge, the fermions receive large masses and

Below the fermion mass scale, also gluons decouple.

Gap:
$$\Lambda_{YM} = m_{\psi} \exp \left[-\frac{3}{22\alpha_{g}(m_{\psi})} \right] \approx \mathcal{O}(\epsilon)$$

Low-energy physics described by Goldstones only!

An asymptotically safe CFT

Symmetry-breaking pattern: $H_0 = e^{2iMt}B$

$$SU(N_F) \times SU(N_F) \times U(1) \xrightarrow{\exp} SU(N_F/2) \times SU(N_F/2) \times U(1)^2 \times SU(N_F)$$

$$\xrightarrow{\text{spont.}} SU(N_F/2) \times SU(N_F/2) \times U(1)^2$$

Expect $dim(SU(N_F)) = N_F^2 - 1$ Goldstone DoF

Do quadratic expansion of the Lagrangian around the ground state, find dispersion relations.

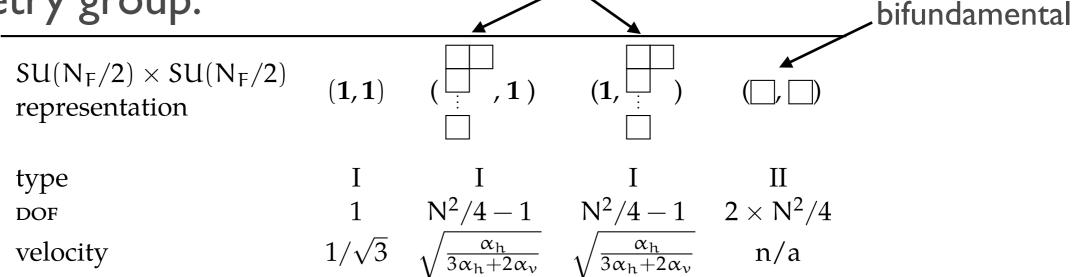
$$\omega = \frac{p^2}{4\mu} + \dots$$
 (N_F/2)² type II Goldstone modes $\omega = \frac{p}{\sqrt{3}} + \dots$ conformal Goldstone (type I) $\omega = \sqrt{\frac{\alpha_h}{3\alpha_h + 2\alpha_v}}p + \dots$ $N_F^2/2 - 2$ type I Goldstones causality constraint: $0 < \alpha_h/(3\alpha_h + 2\alpha_v) < 1$

Constraint satisfied at fixed point.

An asymptotically safe CFT

Goldstones are organized in reps of the unbroken

symmetry group:



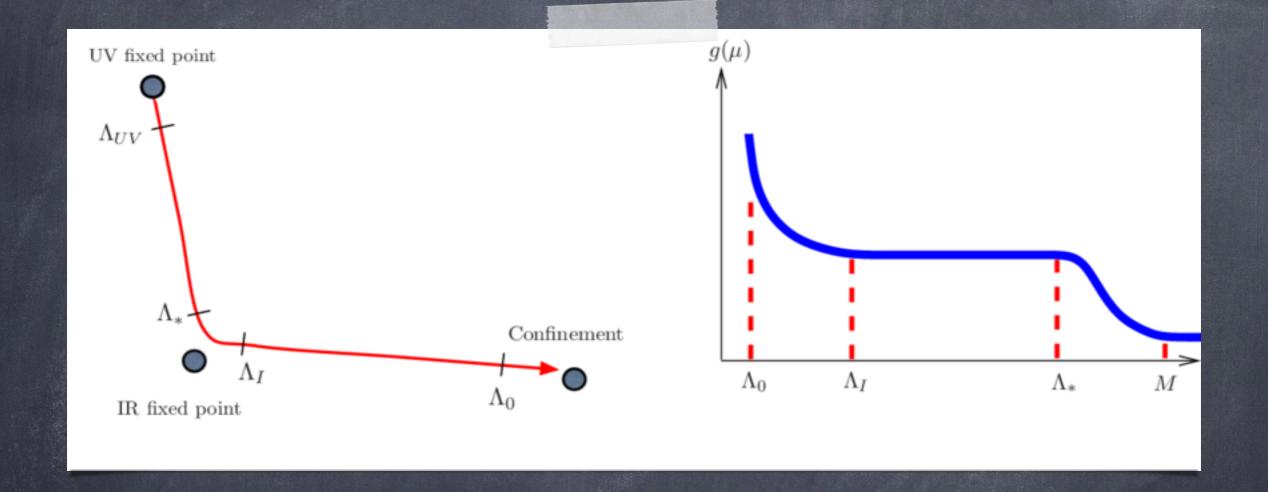
Vacuum energy of the type I Goldstones: $\zeta(-1/2|S^3) = -\frac{0.414...}{r_0}$

$$E_0 = \frac{1}{2} \left(2 \times \left(\frac{N_F^2}{4} - 1 \right) \sqrt{\frac{\alpha_h}{3\alpha_h + 2\alpha_v}} + \frac{1}{\sqrt{3}} \right) \zeta(-1/2|M_3).$$

Conformal dimension (via state-operator corr.):

$$\Delta(J) = r_0 E(S^3) = \frac{3}{2} \frac{N_F^2}{\alpha_h + \alpha_v} \left[\mathcal{J}^{4/3} + \frac{1}{6} \mathcal{J}^{2/3} - \frac{1}{144} \mathcal{J}^0 + \mathcal{O}(\mathcal{J}^{-2/3}) \right] - \left(\left(\frac{N_F^2}{2} - 2 \right) \sqrt{\frac{\alpha_h}{3\alpha_h + 2\alpha_v}} + \frac{1}{\sqrt{3}} \right) \times 0.212 \dots$$

D.Orlando, S.R., F. Sannino, arXiv:1905.00026

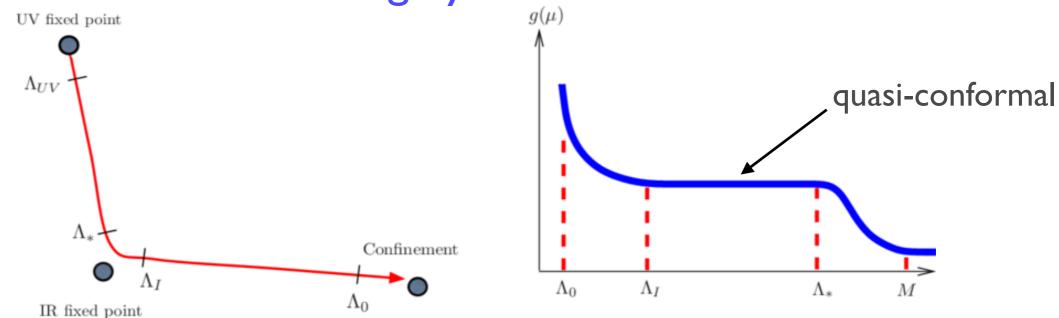


There is no reason why the large-charge approach should not work for general QFTs.

Of course, there are many practical advantages in working at conformality (restricting the form of terms appearing in the eff. action, state/op. correspondence...)

First step: work near enough a conformal point that it still dominates the dynamics.

Possible scenario: walking dynamics



Consider simple case with a global U(I) at large charge in 4D.

The leading term in the effective action (on torus) is given in terms of the Goldstone,

$$L_{NLSM}[\chi] = k_4 (\partial_{\mu} \chi \, \partial_{\mu} \chi)^2$$

Class. ground state: $\chi = \mu t$ $\mu = (4k_4Q)^{1/3}/L$

Start differently: two-derivative EFT for Goldstone:

$$L_2[\chi] = \frac{f_\pi^2}{2} \partial_\mu \chi \, \partial_\mu \chi - C^4 \qquad \text{dim[I] constants}$$

Introduce new field σ to non-linearly realize conformal invariance. σ acts as the massive Goldstone of broken conformal symmetry.

Under dilatations: $x \to e^{\alpha}x$: $\sigma \to \sigma - \alpha/f$

To non-linearly realize conformal symmetry, dress all

$$\begin{array}{c} \text{operators:} & [\mathcal{O}_k] = k \\ \\ \mathcal{O}_k \rightarrow e^{(k-4)f\sigma}\mathcal{O}_k & \text{kin. term} & \text{coupling} \\ \\ L_{CFT}[\chi,\sigma] = \frac{1}{2} g^{\mu\nu} f_\pi^2 e^{-2\sigma f} \, \partial_\mu \chi \, \partial_\nu \chi - C^4 e^{-4\sigma f} + \frac{1}{2} e^{-2\sigma f} \left(g^{\mu\nu} \, \partial_\mu \sigma \, \partial_\nu \sigma - \frac{\xi R}{f^2} \right) + \mathcal{O}(R^2) \end{array}$$

Introduce complex field: $\Sigma = \sigma + i f_{\pi} \chi$

Recast action as
$$\varphi = \frac{1}{\sqrt{2}f}e^{-f\Sigma} \qquad u = 4C^4f^4$$

$$L[\varphi] = \partial_{\mu}\varphi^* \ \partial^{\mu}\varphi - \xi R\varphi^*\varphi - u(\varphi^*\varphi)^2 + \mathcal{O}(R^2)$$

LSM model action, σ appears as radial mode!

Fixed-charge ground state:

$$\chi = \mu t,$$
 $\sigma = \frac{1}{f} \log(v),$ $\mu = 4c_{4/3}\Lambda_Q/3,$ $v = 2f_{\pi}\sqrt{c_{4/3}/3}/\Lambda_Q,$ $c_{4/3} = 3(C/(2f_{\pi}))^{4/3},$ $\Lambda_Q = Q^{1/3}/L$

Expanding the fields around this vacuum, we find (as expected) a massless and a massive mode (which decouples in the EFT) \Rightarrow go back to NLSM Can use it to explicitly break conformal invariance: add a (small!) mass for σ .

$$L_m[\chi, \sigma] = L_{CFT}[\chi, \sigma] - U_m(\sigma)$$
$$U_m(\sigma) = \frac{m_\sigma^2}{16f^2} (e^{-4\sigma f} + 4\sigma f - 1)$$

Energy-momentum tensor no longer traceless:

$$T^{\mu}_{\ \mu} = \frac{m_{\sigma}^2}{f} \sigma$$

What is the signature of this mass term at large charge? Action admits same type of fixed-charge ground state solution.

Energy:
$$E = c_{4/3} \frac{Q^{4/3}}{L} - \frac{m_{\sigma}^2 L^3}{12f^2} \log(Q) + c_0$$

Dispersion relations of the two modes:

$$\omega = \frac{1}{\sqrt{3}} \left(1 + \frac{m_{\sigma}^2}{9c_{4/3}f^2\Lambda_Q^4} \right) p,$$

$$\omega = bc_{4/3} \sqrt{\frac{32}{3}} \Lambda_Q + \frac{5}{8\sqrt{6}bc_{4/3}\Lambda_Q} \left(1 - \frac{m_{\sigma}^2}{20c_{4/3}f^2\Lambda_Q^4} \right) p^2.$$

Near the conformal point, physics is still governed by fixed point. Makes sense to study conformal dimension.

Calculate 2-point fn on the cylinder and map it to flat space via Weyl-rescaling:

$$\langle \mathcal{O}_Q(t_0, \mathbf{n}_0) \mathcal{O}_{-Q}(t_1, \mathbf{n}_1) \rangle_{\text{cyl}} = \int \mathcal{D}\chi \mathcal{D}\sigma \exp[Q \log(\varphi(t_0, \mathbf{n}_0)\bar{\varphi}(t_1, \mathbf{n}_1)) - \int dt d\Omega L_m[\chi, \sigma]]$$

Large Q: integral is dominated by saddle point,

$$\chi = i\mu t, \qquad \sigma = \text{const.}$$

$$\langle \mathcal{O}_Q(t_0, \mathbf{n}_0) \mathcal{O}_{-Q}(t_1, \mathbf{n}_1) \rangle_{\text{cyl}} \approx e^{-E_{\text{cyl}}|t_1 - t_0|}$$

$$r_0 E_{\text{cyl}} = \frac{c_{4/3}}{(4\pi^2)^{1/3}} Q^{4/3} + c_{2/3} Q^{2/3} + c_0 - \frac{\pi^2 m_\sigma^2 r_0^4}{3f^2} \log Q + \dots$$

$$c_{2/3} = (\pi/(f_\pi \Lambda^2))^{2/3}/(2f^2)$$

Map to flat space:

$$\langle \mathcal{O}_Q(t_0, \mathbf{n}_0) \mathcal{O}_{-Q}(t_1, \mathbf{n}_1) \rangle_{\text{flat}} = \frac{c_Q}{|x|^{\Delta^* + r_0 E_{\text{cyl}}}} = \frac{c_Q}{|x|^{2\Delta}}$$
$$\Delta = \Delta^* \left(1 - \frac{m_\sigma^2}{24c_{4/3} f^2 \Lambda_Q^4} \log Q + \dots \right)$$

We studied various CFTs in sectors of large global charge Concrete examples where a (strongly-coupled) CFT simplifies in a special sector.

 O(2N) model in 3d: in the limit of large U(1) charge Q, we computed the conformal dimensions in a controlled perturbative expansion:

$$D(Q) = \frac{c_{3/2}}{2\sqrt{\pi}}Q^{3/2} + 2\sqrt{\pi}c_{1/2}Q^{1/2} - 0.094 + \mathcal{O}(Q^{-1/2})$$

- Excellent agreement with lattice results for O(2),
 O(4)
- Can be applied beyond vector model: SU(N) matrix models, SCFT

- Asymptotically safe CFT in 4d (scalars, fermions and gauge fields). Controllable UV fixed point.
 - fermions and gluons decouple
 - large-charge expansion for scalar sector
 - interesting Goldstone spectrum
- near-conformal/walking dynamics:
 - radial mode can be reinterpreted as dilaton of spontaneously broken conformal symmetry.
 - Explicitly break conformality by adding mass term for dilaton.
 - log(Q)-term appears in ground state energy: signature of massive dilaton

Some questions:

- Does it work?
 - For all the examples, we tried, yes! Confirmation from lattice data (O(2) and O(4))
- For what kinds of theories does it work?
 - (S)CFTs and non-relativistic CFTs
- In how many space-time dimensions?
 - d>1 space dimensions
- For what kinds of global symmetries does it work?
 - we checked U(I), O(2n) vector models, SU(N)
 matrix models

- What happens if we fix several charges?
 - k charges with same chemical potential: homogeneous solution with type I and type II Goldstones.
 - different chemical potentials: inhomogeneous solutions
- What can we learn via this approach?
 - calculate CFT data of <u>strongly coupled</u> CFTs at large charge!

Further directions

- Further study of supersymmetric models at large R-charge (higher-dim. moduli spaces) Hellerman, Maeda, Orlando, Reffert, Watanabe
- Connection to holography (gravity duals)
 Loukas, Orlando, Reffert, Sarkar
- Operators with spin; connection to large-spin results
 Cuomo, de la Fuente, Monin, Pirtskhalava, Rattazzi; Cuomo
- Understanding dualities semi-classically at large charge
- Use/check large-charge results in conformal bootstrap
 Jafferis and Zhiboedov
- Further lattice simulations: inhomogeneous sector, general O(N)

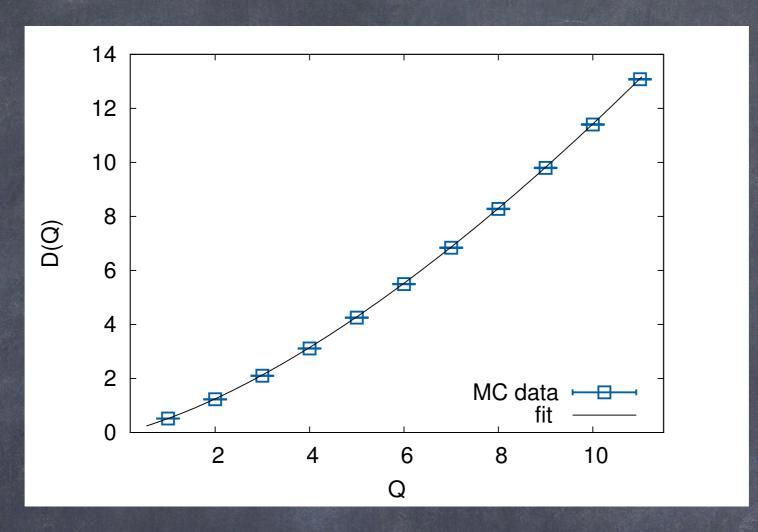
 Chandrasekharan et al.

Further directions

· Chern-Simons matter theories @large charge

Watanabe

- 4-E expansion @large charge
 Arias-Tamargo, Rodriguez-Gomez, Russo;
 Badel, Cuomo, Monin, Rattazzi; Watanabe
- strongly coupled CFTs in 4d at IR fixed point
- non-conformal case Orlando, Reffert, Sannino; Dodelson, Hellerman, Yamazaki
- Fishnet CFTs (non-unitary)
- Study fermionic theories. Can large-charge approach be used for QCD (e.g. large baryon number)?



Thank you for your attention!